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On higher-order terms in Asymptotic expansions for

irreducible characters of semisimple Lie groups

FXTE A0 % (Atsushi YAMAGUCHI)

(Kyoto Univ., Fac. of Science)

Introduction.

1. wet G be a real connected semisimple Lie group, Q}. its
Lie algeikra. To make Harish-Chandra's theory on invariant eigen-
distributions appliceble, we assume following two conditions to
hold:

i) +the center of G is finite,

W) G is accept?ble in the sense of Harish-Chandra.
These conditions are satisfied by the examples considered in what
follows, namely, the groups G=SL(2,R) and SL(2,C). More gener-
ally, if G is a real connected semisimple Lie group with finite
center, then the condition i) above is satisfied by a suitahle
finite—-fold covering group of G,

Let n be a continuous representation of G on a Hilbert space,
We assume © to be quasi-simple in the sense of Harish-Chandra.
Then the character Ch of # is defined, »nd is a distribution on

G:

@ ¢'r— #trace&n(g)¢(g)dg, 9‘ GGD (G).

G

C%: is an invariant eigendistribution, in the sense that
@ it is invariant under the inner automophismsof G,
C) it is a simultarneous eigenfunction (in distribution sen-
se) of all differential operators on G wvhich are invariant under

right- and left-translstions of G.
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The detailed study of characters gives us much information

about the original representetion m; for example, we have

Froposition. uLet m and m, be two irreducible ﬁnitary
representations of G. Then they are unitarily equivalent if and

only if their characters coincide:

O, = ®1t1

'
Thus the characters have been the subject of many deep stu-

dies, due originally to Harish-Chandra.

2, Let exp denote the exponential mapping, which is a

local diffeomorphism from ﬂ} to G:

exp : q' > G.

This mapping is not in genera'! injective or surjective, but if

we restrict it to a sufficiently small neighborhood S)L of O

in q., it is a diffeomorphism:

exp : L)L r—grppeo > exp({)), OE-O-Q”} .

Now we pull back the distribution C% and obtain a distribution

Oy on £L in the following manner. For 95 € OD(D-), we define
<0 P> = < @1,527,
where %e LD (exp(£)) is defined by
SZ( wpX) = S/ YR,
with % an auxiliary function on 0} defined by
g(yf = (Jacobian of exp at X ) | “g(o)=‘\ .

2
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/
Then the so-defined Gﬁétb(ﬂ) is-an invariant eigen-
distribution, in +the

©)
©

sense that

it is invariant under the adjoint action Ad of G,
it is a simultaneous eigenfunction (in distribution

sense) of all constant-coefficient differential operators on Z}

which are invariant under the adjoint actior.

3. As mentioned above, the detailed study of @7( and (971
was initiated by Harish-Chendra. He proved in particuler that
@1( (resp. O ) is identifiahle to o locally summable function

which is actually real-anelytic on G (resp. on 0O glg) except

for a certain set of lower dimension.

4.

The study of @1( snd &K is being continued by many
autbors.

Among other people, Barbasch and Vogan defined in [l]

an asymptotic expansion near Oe‘g. for such GK , in the follow-
ing’form:

6n(§r) ~~— % tlD:(sl)

as tlo,
=t

where D;'s are suitable tempered distributions on d} , and

when f is in b (_Q.), §-ke b(”}) is defined by'

S, 00 = £ §/8) , Xep | n=dimG,
Here we have extended £

o

from £) to the whole of q; by putting
f=

0O outside f) . Ve review the details of the definition
in Chapter 1.

At this point, an interesting object is the set

AN ~
cl(u supp D;)_C_ 0}* , where D,

. 1s the Fourier transform of D,

3
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and "supp" stands for the support, and "cl" means the closure.
Barbasch and Vogan call this set the asymptotic support of @O ,
and write AS( 61? )= cl(U supp ﬁ: ). It can be shown thet
\Jsupp ﬁt is a closed stset of (7}* , so that the symbol '"cl"

is actually unnecessary.

AS(Oxr ) can be considered as something indicating in which
direction G-R 1s singular (in the tangent space at 0). We note

that similar objects have been the subjects of Kashiwara-Vergne

[7] and Howe [3] .

Among the distributional coefficients D; in the expansion,
the lowest-order non-vanishing term D; turned out to be very

to

important. To be particular, we have by [ /] and [2]:

@® i, is necessarily non-positive. More precisely,
-i, = G,k-o\Tm(U(nlc)/In),

where G.K-dim means the Gel'fand-Kirillov dimension of 2 €-
algebra, and U(o}‘)is the universal enveloping algebra of the
complexification O}C of 0} , and ]:,—L denotes the annihilrtor

ideal of =.

@ When G is a complex group, D;, is the Fourier transform
of a certain important distribution on 0}¥ , called a nilpotent

orbital integral (see Chapter 1).

@ In case where AS( &n ) is an irreducible variety, we
A ~
have AS( 0—,‘ ) = supp Dy, , and AS( Bx ) and/or supp Dy serve
as a tool to get a concrete description for the theory of class-
ification of‘: priritive ideals for 0} , which has been in an

abstract sense already completed by Duflo, Joseph and Vogan.

4
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For @ above, we remark that the results in (2] , [3] were

later generalized by Hotta-Kashiwara [7:].

5. A natural Question to ask is, therefore, the one concer-
ning the higher-order terms in the expansion. Motivated thus,
we examine in this ﬁaper the explicit forms of the higher-order
terms D; and their VFourier transforms, for irreduciblé repre-

sentations of certein groups.  Our hope is to get from them some

information about the original representation.

As the simplest examples, we take G:SL(Z,R) and SL(2,C).
Our result is completé in that it treats all irreducible repre-
sentations (unitary or not) of these groups. It turns out that
the higher-order terms are characterized by the appearance of

certain invatiant differential operators.

6. Let us now explain the content of each chapter.

In Chapter 1, we review the definition and elementary
properties of the asymptotic expansion, given ir [ /].

In Chapter 2, we treat the case of G=SL(2,R). We list all
D{ and their Fourier transforms, for all irreducible represen-
tations of this group. We find especially that for a "principal
series" representatioﬁ T, AS(GR,) is not supported on the closu-
re of a single orbit.

Chapter 3 trerts G:SL(Q,C). ‘Again we give a complete list,
for all irreducible representations of this group. Here the

following two differential operators come in:

(3/3%) + (3/349) —~ (a/2z)
§

O

1l

!
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O, = (3/9%7+ (3/5%) - (3/3Z)

where x, y and z are complex numbers.

In Chapter 4 we make some observation on the connection
between the asymptotic expansion and character formulae of Kiri-
llov type. There we encounter a problem of justifying a Taylor

series expansion of the following kind:
o(Px,q.2)+¢) =
= 0(kay.2) + ¢ §'(Rxg.2)) +

+ 2.0t §7(Ra.q. ) + -

Here S‘ denoﬁes the Dirac deltes function in one variable, and

the hypersurface defined by P=0 has singularities. The answer
to this problem and its generalization to groups of higher ranks
would require some rather deep knowledge about the G-orbit stru-

cture of the Lie algebra.

Chepter 1. Definition and elementary propetties of asymp-

totic expansion.

In this chapter we recsll some basic defiritions and propo-
sitions that we will use later. We begin by reviewing the defi-

nition of a nilpotent orbital integfal.
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1-1. Nilpotent orbital integrals.

Let 0} be a real semisimple Lie algebre, G the adjoint
group of 0} . An element Xéo} is called nilpotent if ad(¥X )
is a nilpotent linear transformation in 0} . VWe identify

0}*‘-_'-‘. Homk( 0} ,R) with 0}, via Killing form. Thus we say
\\/e OJ* is nilpotent if T is, as an element of ‘7} , nilpotent.
G acts on 02‘)‘ by coadjoint action. We denote by }\[ the set of
all nilpotent. elements in 0}* . If X is in }\f , the G-orbit
Coad(G)'X is called a nilpotent orbit. '
The G-homogeneous space () =Coad(G)-¥X has a G-invariant

measure. Call it Mo We have the following:

Proposition 1-1 (Ranga-Rao, [/0] ) For ¢G(D(°}*), let ¢|0_

be its restriction to O' = Coad(G)'X . Then

Mot ¢ — >S¢L,-/A

is » distribution on 0}* : }Ao» € «b/("}*).

We call }*Q the nilpotent orbital integral corresponding to

the orbit O

1-2. Definition of asymptotic expansion.

As in Introduction, let
S}t(x) = -t'“-%()(/t) o, on= O\TMD}.

for 3}‘(—{/3(0]) . Let 0€®,(.D.), where £L is a fixed neighborhood

ofOino} .
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Definition. We write

05 ~ S aip.gy  as KO

= o

with {D;k a family of distributions on t? , if the following

condition (A) holds:

Condition (A): For any positive integer N, and a compact
subset KEJQ., there exist a constant CN*7O, a positive integer
k and a constant ENk> 0, such that if supp%»Q,I( and

N,K ?

0<t = €4y

then
supp 5, € O
and
2 D ol N+t
| 665 = 2EDH | < Cuyp sup!DEL 1T
i=h e
=Ry
Here we used a multi-index o : ol =( oAy, o, = - odn), o 20,

i
let] =3&; , end D= (/2% V" +ooer (3/3%0"

1-3. Basic results for asymptotic expansion [I].

The fundamental properties of the asymptotic expansion are

collected in the following proposition.

Proposition 1-2. GD If a distribution 0 admits an asymp-

totic expansion, the distributional coefficients D;'s gare unique.

() D; 1is homogeneous of degree i:

D: Fe> = "D )y,
and is tempered (since any homogeneous distribution is necessari-

ly tempered).
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(E) Any invariant eigendistribution defined in a neighborhood
of O in f} admits an asymptotic expansion.
C) If 9 is an invariant eigendistribution defined in a

¢ 1is G-invariant, and

Supp ]5‘ - j\fz-{nilpotent elements in 0}*1, U}}
T = /N

neighborhood of O in 0} , then D;

1-4. An explicit description for the distributional coeff-

icients D; .

Now let 9 be an invariant eigendistribution in a neigh-
borhood of O in 0} . Then by @ above, @ admits an asymptotic
totic expansion:

Bk ~ T Dy s Koo

(SR ¥y
According to [7 ] y P.35, an explicit description for D;
is available, using Harish-Chandra's general formula for an inv-
ariant eigendistribution restricted to a Cartan subalgebra. To

explain this, we introduce some notation.

et G be a real connected acceptable semisimple Lie group
with finite center. Let 0} = Lie(G) be its Lie algebra, 6,
a Cartan subalgebra, and ‘ﬁ" a connected component of 6/'—‘ ﬁn‘g/,
the set of regularelements in '%, . (011 = the set of regular

eiement‘s in 0} )

: +
Definition 1-3. Let M be a function on ﬁ , taking the
same value on any two points on a single G-orbit. We define

{EG , a function on ‘7 , by
o= [RM, it Xz g for some qe 6,

0 otherwise.

?



Thus 'ﬁ,c_) is a G-invariant function which vanishes for

x& M-

Now let ”6, , 67_ y ST ,ﬁs be a complete set of repre-

sentatives of conjugacy classes of Cartan subalgebras in 0} .

Also let ’ , 2, A BN * be the connected components

of ‘61/:'61/‘ D}/ .

We recall that, on a fixed ¢ (9 has the form
L ’

fxo= TLOO /T o0

)

where TL,_OQ-‘: Tl)o{()k) , the product of all positive roots for -6’9"
o
for a fixed order on —6: , and jf is a real-analytic funct-

ion in X . We write the Taylor series expansion of :)'Qj' as
. 0o +
4 _
SSL ) = Z_o(jg_ )t (X) ,

where (j{)t denotes the homogeneous part of degree 1i.

Proposition 1-4 ( [ I] Theorem 3-2).

Using the notation of Definition 1-3, we have

@ for iz0, the function

LZ_ [(ji)t / Tt’!.]a
ot

is locally summable.

@ the distributional coefficients D: are given by

0, ~ gttD; €\

N
« = lo

where

/10



(1.1) D; =| 0, if i< -(n-r)/2,

b if iz -(n-r)/2,
% [CJL)I_‘_%:_ /TLL]C_) ’

with n:dim(G), r=rank(G).

Remark. It may happen that [D_ n-v =0 § this is the case
2

if all the JF  are without constant terms.

The above proposition enables us to calculate the Fourier
transforms ﬁk . Namely, all irreducible characters are known
for G=SL(2,R) and SL(2,€) (see e.g. Hirai[5-3 ), so we use Prop.
1-4 to obtain Dl . It only remains to carry out the Fourier
transformationy we do this explicitly, and get ﬁ; . Thus diapgr-

amatically,

®r 3 O 2 D :736; .

A
We propose another possible way to obtain D. in Chapter 4.

L

There the corresponding diagram is:
A A
@T{ j 0'7‘ ﬁ 0-“ ﬁ D; .

Regrettably enough, we have not been able to make necess-
ary justification to legalize this latter diagram.  If we could,
it would certainly clarify ean essential aspect of the asymptotic

expansion.

/1
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Chapter 2. Fourier transforms of higher-order terms.

the case G=SL(2,R)

In this chapter we give a detailed calculation for the
formulas for the Fourier transforms ﬁ; , for a1l irreducibl e
representations of G:SL(Z,R). The representations consist of
the discrete series (D.S. for short), the principal series

(P.S. for short), and the finite dimensional ones.

2-1. Definitions on Lie algebra 0} :slz(iR).

e'z(:) —D|> ) e":((: L) , 83:(01 A:)

Then q, :"Z.iR.et .

We denote an element Xea} by its coordinates:

Let

= AL e T2 = (4,,2) .

Then the quadratic form 2% ¥*- "}" =det X is G-invariant

under the adjoint action, and we have a two-fold covering:

G —_— 300(11‘7.

Also we make following definitions for certain subsets

ofo}

—r“\'

|

Lo ol et > e, 2v0}
T = {lag, == gy, 2<0],

S =l )=y} |

/12
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We note that there are three nilpotent orbits:
L-+

|-

1l

fam.2 | 2-oiqi=0, 2%0 |

nl

{0y, 2 | 22190, 2<o |

2

tes. N v
- 4 4;

2-2. Explicit formulas of characters.

Given a representation o§ G=SL(2,R), we pull back its
character to q} :slz(R) in the manner prescribed in Intro-—
duction. We get an inveriant eigendistribution éﬂt , whose

value on the x~ and z-axis 1s. given as follows:

1) For D.S.

(=2nl>-x

Bccx,0,0)) = o / AL A0 .

'

6((0, Y 2)) — C 8(“),' eLi(n)(l\M—\)i‘ / i ’ 2*0

Here ¢(n) =sign(n), and nezs In\g]’ is the discrete series
]

parameter (Sugiura[}l] , p.322).

2) For P.S.,
BU %000 = (74 7)) /1%, %x0,

O(Co,0,2)= © 2x 0,

!

Here Se C is the principal series parameter, S = o--3

e C .
/3



270

3) For finite dimensional representations,
' - 8 S =9
O ((%,0,00)= —T (&7 &F)y /x, 470,

G ((o,0,2)) = (ef‘%_ e—g'z) /121, 2%0,
Here ‘} is the parameter: ‘f‘;e 2/~ .

2-3. Explicit formules of distributional coefficients.

Ve apply Prop. 1-4 to the above character formulas. We

thus get the following formules for Dy :

1) For D.S., we have

oo .
OS> ~ \Z‘ D,
J't-

where i
5 3
. ! by

=( 1/G+l- (1-21n) " - (A% -2)° in S,
£

' /(}-H)! - ( LEon PR (z\y\‘,\}m, (21—70‘—*]‘)" . -I_Jr’

—

. Tl i _
~1 /G - Geen)H Gl QL) in T

2) For P.S., we have

D°~
&C&L) ~ 2"-")*@’) ’

'*':-\
where
I } .
D‘* = 2/(}-\-\)“ . SJ— ‘, (ii'("'f—— 2?-?2 in S; )_o&&‘
0, a. even -

14-
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3) For finite dimensional representations, we have

o
0o ~ 2 D@,
}=0
where
Dy = 2@ /G271y F
} = LY G0y (U -2)
" S, F even.
2”/(-}¢\>\ . %}*\‘ Cigfjm_;zt)%
n T, T, } evewn,
0, } 0dd .

_Thus we have obtained the distributional coefficients DL

We now investigate their Fourier transforms.

Fourier transforms of distributional coefficients.

2—4.
Ve are going to carry out the Foutier transformation for

the D; in 2-3. VWe define the Fourier transform by, for

Pe b @)
-3 I(kpufezj-ﬂ;a) _
(? ¢) C"kl,{ii, ﬁ;): CZT\) SSS € '¢(1,"J,2’) did‘adi,

and for ¢€ ,A((Q), QQJ/MJ*)/'
<FD, 47 = <&, F47.

/1S
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Let, for Ze , two distributions ?3‘ and P_g be

<2, 972588 (Raga) ege drdyde,

£<0

<?_Z‘, ¢>= SSS (Y(ﬁ,q,%)y\cﬁ(i,q,%? dio(qdz ,

Pyo
where P: 21‘70_"11) 4) G,A (op These make sernse when Re)\ is

large, and are extended to other values of Py by analytic

continuation.

Theorem 2-1. 1) Put

1

-

'F: ?_ = (11-#"&1- 21>—; ) if (x,y,z) is in S,

\
2

O , otherwise.
Then, as a distribution in ¢e,&(o}*),

<HFE, > =
= 5. (9 ko, T+ ik TR TR

'2) Put

\ A
C}= ST}V\(Z)'Y.:: (21-'1—1"/3;) , if (x,y,z) is in T‘r’

\
"‘(22—‘11"/11) 1, if (x,y,z) is in "r_
)

O -

’ otherwise.

Then, as a distribution in 5&6 ,&(0}*) ,

/6
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(Fg, $> =
= (g BT i o T A R ke

Proof. VWe use the results given in Gel'fand-—ShiloV[q'],
p.365, on the Fourier transforms of special functions. Note

that they use ‘9(.1*%;"(}—1—4{52 . for the inner product, while ours is

3
o, X+ '&;‘}"&32 , ahd that we put the factor (’).‘rt) 2 in the
definition of a Fourier transform, so that the formula in their

table reads:

3
) ’ X3 N
(2.1) ?E’_‘:fmt-Tc"-T()m)‘)"()w—})-[—(Q—m) +(@+70) ]

)

where in the present case @= fe:—’ﬁ.’-’%f.

Also we have the fundamental identities
- M m T M
(2.2) (Q+7) = QL + ¢V Q.

Q-t) = QY+ &77Q

where for //L e C ’
‘ ‘ f 2,044k
a5 =1 (@ckAhn) Pk b by dhidhdh,

QYo

<alf ¢>=(1 (= Gy Ao A~ (R o o) AL Ay

Q<o

Also we know from [4’], p.351, that Q_): and @r have

simple poles at /J\': -] , and that the residues are given by

resQr = vesQ” = §(Q)

’A!'l »-:;|

where

/7
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(2.3) <5, P> =
~ §[¢<%,,%=;M~>-r qé(&.,&z,-mﬂ e &m‘ e b

|
The formulas (2.1), (2.2) and (2.3) yield, as C\—ﬁ-ﬁs)

1

FPE = e et (s € - (@12

M-
: \
) 3.0 e —{® ,
=y~9J::\ Gmy-s [({Lr” }A>@~£A]

. _l_ o . R
= (U2, (m2|i)- res Q7 ,

which proves 1).

For ?. in 2), we work in the opposite direction, that is,

we define a distribution U on a}* by
<Y, $r= §[4><&.,&,,m~>_~ Pl e, -] /2 akdb, |
and prove thet | |
FT= -6y
We calculate, for <;§e/3(0)),
< 7-'4’, Ty = (7—‘!?)'% S[ S[Mf(-l(%mfzz‘}-zf{ﬂ?)) -

, Ak,
— wAp(-1 (l”e,mf?zz‘}afzm\) ] ‘75(‘1,1,%7&1&'3&‘]" iﬁ?@

-2
(2.4) = (e’ S%\gg g (e (fitete)-2 e -2 T ) —
— onplt ek 2B - 1 R ) - Fug) dadgde «

§ sk, Ak
2

/8
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By the Lebesgue dominated convergence theorem, (2.4) is equal to

(2.5) (z«S%ngg[8[‘/*\’(’“&”&*}‘2@?’T‘iﬂ_—"*‘t? » —
qL0

- o -1 2 )) ] P .2 ) dAdud2
bfT( (Rt 2 ks - e ks ) #tqh&‘a x

Z\FE‘*I‘

By Fubuni's theorem, (2.5) is equal to

3
(2.6) (m)"g [%S[M\a( —I(&m—fzﬂ-zm; ~telld)) —

Ak
— bp(-t ety +2 o - T ) % J , ¢(1,.1'3)A¢d3<13.

We pass to the polar coordinates in carrying out the inte-

gration with respect to 'fé, and -&z :

. S Loy (=T gt ‘9«:}- e Hhr e m)) — ok
~ (ks Ry 2R D) S

2N peo

= SS M\’ (’T (reRO-K + TST-«G"} -Y2- I.QY'))' ‘;_‘;' ) YO“’AG _
0= =0
2N oo

~ S % o (03 4 S0 2 1er ) o - vhrdO

& )
1% ‘

20 T
(2.7) = '—;' S ( _ \ }&G.

o o0 X+ STV\G"J-Q‘ -1¢ MGI{STWG‘?*‘Z—IQ

If we put (x,y,z)=(0,0,41), (2.7) becomes

] (respectively).

— - e + y
T T35 43¢
Letting ¢d0 , we see this tends to

_'._‘.‘Z_TL‘L " (respectively).

/1
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Therefore, from G-invariance and homogeneity property of the

function under consideration, we get

(2.8) Qx,(; [wy(«t(&x theY —a ks - T RRR)) —

M. d’&z
— Uy (.,1(%‘1-«&‘}1-2\"&?«-2;‘— Te kD)) - b

1

= -l Spr @) GERYTE Lo 0 e T T

. + ay
For (x,y,z) in S = +the outside of cl(T v T ), we have

(2.9) (the left-hand side of (2.8))=0.

In fact, by G-invariance and homogeneity, it suffices to verify
that (2.9) is true for (x,y,z):(l,0,0). But this is clear from

(2,7). This proves 2). O.E.D.

Using the above theorem, we can now give the Fourier trans-
forms of D; . In fact, the lowest-order term D; ~—of a charact-
er is a linear combination of ; and } above, and the high~-

er order terms are of the form
(a G-invariant polynomial) X (the lowest—order term),
so that their Fourier transforms are of the form

(a G-invariant differential operator):(the Fourier trans-

form of the lowest termz

In this way we get:

20
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Theorem 2-2. Let G:SL(Z,R). Then the Fourier transforms

of the distributional coefficients D; in the asymptotic exp-

ansion for irreducible characters are given as follows.

1) For D.S., letting n>0 (resp. n< O ) be the D.S.

parameter (see p. 13),

7

. . +
El‘: an invariant measure on the upper half (i (resp. on

the lower half L— ) of the "light cone'",

and

D—H-z} = )

| | 2} 0 Poa
——— - ’ * j 2 .
Gl (2inl=1) - (d3) D, izl

Moreover,

A
D, = (1 =2In]) . (Dirac measure at the origin),

n | 2¢ R
Dz}: (2in1-1) " (D3).D° : izo,

-

(2 })!.
where

(3/9%:) = (3/>k)— (3/2h.)

1l

Q,

A
is the 3-dimensional d'Alembertian, and E33 acts on D; in

distribution sense.

2) TFor F.S., letting Se { be the P.S. parameter, S=o-7,

N
= an invariant measure even in the variable k, on * and
-1 3

IR

A | 2y } A
D..H'Z}: (2})! S EDB) ) D_‘ ) izl,

A

Dz.} =0, izo

2/



3) For finite dimensional representations, with para-

meter q,é /2

N

T)° = 2,%,* (Dirac measure at the origin),

A \ 2% } A
Di- @y ¥ (ODLG,

N
- = 12
D;}_ﬂ o yZ 0.
Proof. We have only to note that the expressions

S b, oo Fek2)- ;w«ﬂgfﬁ

and

YT
S#m’i.,&«., ). e

define the nilpotent orbital integrals corresponding to the

nilpotent orbits

1* = { kb et fpAlzo, o }

and

1

{ch o e | Afiotl=o, < o}

* -—
so that they are indeed G-invariant measures on L_ and L_ .
0.E.D.

We note that in each of above cases the parameter enters

as a multiplicative factor. We discuss this in Chapter 4.

Also we notice that all calculation needed to get Theorem

2-2 is mainly combinatorial in nature. For groups of higher

22
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ranks, similar calculation should work as well. But due to the
presence of many nilpotent orbits and invariant polynomials,

the situat ion would be much more complicated.

Chapter 3. Fourier transforms of higher-order terms.

——the case G=SL(2,C)—

In this chapter we calculate the Fourier transforms of the
distributional coefficients in asymptotic expansions for irred-

ucible characters of G=SL(2,().

3-1. Definitions on Lie algebra (7} =slz(C).

Let €, , €, , end €; be as in Chapter 2:

t © > ) o !
= Q.= =
e (V3) e () e (D).
Then 0}: ZQ)C.'e.
1€3¢< ¢
=)=3 | o
We fix 2 Cartan subalgebra 67 as ‘6’= C(o _'), Also we

note that there are two nilpotent orbits:

N = {(1,3‘%)0’” T-1t=Yy =0, (i,‘).%)#(mofo)é

/

2) SL(O’O’O)X .

3-2. Explicit formulas of jrreducible characters.

The "pull-back" 6& of irreducible characters are given

in the following proposition.

Proposition 3-1. The explicit forms of é% are given rs
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follows.
1) For P.5., with B, Cc e C,
9((-*,0 N = [M\’(B'X—f Ci )“' MF(‘B‘i- Ci)] /'il
(Haris‘n—Chandra[S ] , f.‘;\\ ).

2) For finite dimensional representations, with Y,QTGZ/" ’

Ox, 0.0))= [Mf(fﬂ—M‘;(—Tx)]»[bf?(ﬁ)..e,xr(-ariﬂ/m‘
(Warner ['\3 ) , P 14 ).

Decomposing 8 into homogeneous parts as in Prop. 1-4,
we get the distributional coefficients D; for the asymptotic

expansion. We have:

Theorem 3-2. Let G=SL(2,€). Then the distributional coeff-

icients D; in the asymptotic expansions for irreducible char-

acters are given as follows.

1) For P.S.

Wak
, D} = (&* Sy [B(i-n-") 2‘) + C(‘x-wq T 2Y) ] /bH‘]—%

122, It e_vev\_

0 ’ "} oJ\d

2) For finite dimensional representations,
u+t Vel

D.= (& 3~ P %

¢ (wt) - (0!

wld

wn
i (il'l"},"‘ 21)1 s (11_\..‘11‘_21)
V=l
W,V ewen
WAz o
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0, s odd .
3-3. Fourier transforms of distributional coefficients.
Pa
We are now going to calculate Dy . To do so, we first

compute the Fourier transform ?/,LNI of the orbital integral

/A” for the orbit }\[l (see 3-1).
|

We define the Fourier transformation as follows:
for 4 ¢4 (0}) ’
F¢) kA, k)=
= (ar™. S i 2. xp (@ RaCRitehyfesd)): i Mg ™G Mand
and for ¢pe 80N, Fe A,
<GS, o= <y, TV,

» 3
where OJ*E HDMR(Q’ RY , with identification q ~ C  given by

ERC I S (1.4,2) — R«.(@.iﬂéz«yﬁ&)

. N
Here, as in Chapter 2, we denote by C} (and occasionally by )

the Fourier trarsformetion.

3-4. In this subsection we calculete ?/M)\f .
!

Theorem 3-3. Let /AN" be the nilpotent orbital integral

corresponding to the orbit )\r‘ . Then
-1
Frw = A k- RS A

for some constant A:-‘*;O .
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Remark. Of course, the above constant F\ is something to
be explicitly determined. For our purpose, however, it is not
strictly necessary, since our primary interest lies in examining

what sort of distributions appear in higher-order terms.

Proof of Theorem 3-3. }AWG is given by the following vol-

ume element on Aﬂ

,_Fz.F- - da X I\d,,} I\OLE )
Since the Fourier transform of a nilpotent orbital integral is
an invariant eigendistribution with trivial eigenvalue (or inf-
initesimal character), SZ/&Q is a locally summable function on
ﬁ;¥ . By Coad(G)-invariance, Theorem 3-3 is proved if we

verify the following two points:

1) <396N| is invariant under the phase transformation

ke, e, R s €0 (e, ke k), O ER,

2) S}yﬁﬂ|is homogeneous of degree -2:

<}/AN| ('k (‘e‘\ , '&1, "f%) ) = *-2‘ ?/MN\ ((‘e‘\ ,’&‘:'e")), "kZO_

And these are easily observed from the definition of a Fourier
transform and the above-mentioned form of the volume element

defining My, . G.E.D.

3-5. The above Theorem 3-3 allows us to calculate the
Fourier transforms 31 . In fact, Theorem 3-3 takes cere of the
lowest—order term, and the Fourier transforms of higher-order
terms are obtained by applying suitable invariant differential

operators on it. In this way we get:

2¢
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Theorem 3-4. Let G:SL(Z,C).

Then the Fourier transforms

of the distributional coefficients D; in the asymptotic exp-

ansions for irreducible characters are given as follows

1) For P.S., with parameters B, Ce (C ,

B ~ }Z.,:Z*}Dx‘*’ ,

where

N
tlzz an invariant measure on ﬁﬂ

A
fan m 3
D"l‘!'l_}: :—/ D. \—':Iz;"gc' b
where the differential operators Ez and E; _ are given by
. I3
1+2 g £ N -'Q >
m o i-e+2 S
B G ()8 ¢ (B
'I} }‘\'73 e ?
~ \ " - e+t e e
—_ 32 e e ST N2
T oo ()R T (noT (Y
¢ "¢ opdd <
A
D. =0, j20.
?.a-\

2) For finite dimensional representations, with p, q € Z/&

>
k) ~ 21D,
a-:.o

where

A , 21,

where the differential operator EE is given by

5
fu-ﬂ AT+ ) ¥ n
LA — .
\:3,'),: 4 Z(u-m‘(vm\ (D ) (D)
W2
W\ ewen,
W,V 20,
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and
N
‘D’.H\: 0, J>O .
3
In 1) and 2) above, 51 denotes the Dirac measure at the
origin of 0}* ~ ‘Ré , and the complex d'Alembertians Dc

and DC are defined by

= 2, 37 Ch
ped > Y —m = I
Dc )-&l 7‘&: ;%3 !

-— 2 b2
« 3%, k. 3+,
Here in this theorem again, the parameter specifying the

representations appears as multiplicative factors. We will

give a discussion on this point in Chapter 4.

Chapter 4. Some observation on the asymptotic expansion.

In this chapter we make some observation on the connection

between Kirillov character formula and the asymptotic expansion.

Let us consider the Kirillov character formula, for inst-

ance, for the unitary principal series representations of G=

=SL(2,R):
-1
(a.1) H = F e, €70,

where /A_( is a G-invariant measure on U}* with support on the
2

hypersurface defined by P-—_-_ 21-1,1"‘1 =-C . We may alterna-

tively denote it as X(E-f C) , where 5 is the Dirac measure

in one Variable. Note that (4.1) is valid in a neighborhood

of O in (7} (Rossmam;[”]).
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In accordance with gt defined in Introduction, we have

(F0), = _;_3 SCP(R/p, /s, R/p) + )

1

L S (P ki, Ao o e )

So we are naturally led to consider the following formal exp-

ansion:

(4.2)  S(DP(k, f ksd+ K<) = J (PR, #e R+
4+ 3¢ 8 (P (ks Ak o))+
LG SRk, ke k) e

2
Notice that (C is essentially the P.S. parameter: C::_-Qr-i),

W-:tf)-(-—;' , Pe{? , and it enters in each term in (4.2) as a multi-

plicative factor. This is in agreement with Theorem 2-2:
~ o
(4.3) D—\-\-z'& = 5 (E(%\)'&’—,‘&.S)) (formally).

Thus we have the following problem:

Problem. 1) Justify the expansion (4.2). More precisely,

. . . . . o
justify the substitution "g—(_—:-_Y into § %) >

sV

where §~ denotes the Dirac delta function, and the surface
f’: O is singular at the origin. Also justify the formal

Taylor series expansion in (4.2).

2) Verify the formula (4.3), so that (4.2) becomes another
way of expressing the Fourier transforms of higher-order terms

(see diagrams at the end of Chapter 1).
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3) Generalize these to groups of higher ranks.

Solving the above problems may serve our purpose of obtain-

ing from the asymptotic expansion some information about the

original representation =.

The author gratefully appreciates everything that Prof. T.

Hirai has given him.
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