Large-time behavior of solutions for the equations of a viscous gas

Shuichi KAWASHIMA (川島秀一)

Department of Mathematics, Nara Women's University

1. Introduction

We consider one-dimensional flow of a compressible fluid. In the Lagrange mass coordinate (t,x), the motion of the fluid is described by the following equations.

$$v_{t} - u_{x} = 0 , \qquad u_{t} + p_{x} = (\mu u_{x}/v)_{x} ,$$

$$(1.1) \qquad (e + u^{2}/2)_{t} + (pu)_{x} = (\kappa \theta_{x}/v + \mu u u_{x}/v)_{x} .$$

Here v>0 is the specific volume, u the velocity, $\theta>0$ the absolute temperature, e the internal energy, μ the coefficient of viscosity and κ the coefficient of heat-conductivity. Let us denote the entropy by s. It is known that among five thermodynamic variables v, θ , p, e and s, only two of them are independent. In fact they may all be considered as smooth functions of (v,θ) , (v,s), (v,e) or (p,s). We write $p=p(v,\theta)=\hat{p}(v,s)$ and $e=e(v,\theta)$ and assume that

$$(1.2)_1$$
 $\partial p(v,\theta)/\partial v < 0$, $\partial p(v,\theta)/\partial \theta > 0$, $\partial e(v,\theta)/\partial \theta > 0$,

$$(1.2)_2 \quad \partial^2 \hat{p}(v,s)/\partial v^2 > 0$$
.

Notice that these conditions are satisfied for the case of an ideal polytropic gas:

(1.3)
$$p = R\theta/v = \hat{R}v^{-\gamma}e^{(\gamma-1)s/R}$$
, $e = R\theta/(\gamma-1) + constant$,

where R > 0 is the gas constant, γ > 1 is the adiabatic exponent and R is a positive constant. We also assume that μ and κ are smooth functions of two independent thermodynamic variables and satisfy one of the following two conditions.

$$(1.4)_1$$
 $\mu > 0$, $\kappa > 0$ (viscous heat-conductive fluid) ,

$$(1.4)_2$$
 $\mu \equiv 0$, $\kappa > 0$ (inviscid heat-conductive fluid).

We shall study the large-time behavior of solutions to the initial value problem for (1.1). Our main result is as follows: If the initial data are close to a given constant state, then a unique smooth solution of (1.1) exists for all time $t \ge 0$ and approaches the superposition of the nonlinear and linear diffusion waves constructed in terms of the self-similar solutions of the Burgers equation and the linear heat equation as $t \to \infty$.

We remark that the same asymptotic result has been obtained in [5] for a wide class of systems including (1.1).

Notations

We introduce several function spaces. Let $p \in [1,\infty]$, $\beta \in \mathbb{R}$ and $s \geq 0$. L^p denotes the usual Lebesgue space on \mathbb{R} , with the norm $|\cdot|_p$. L^p_β denotes the space of functions f = f(x) such that $(1+|x|)^\beta f \in L^p$, with the norm $|\cdot|_{p,\beta}$. H^s denotes the space of functions f = f(x) such that $\theta_X^{\ell} f \in L^2$ for $0 \leq \ell \leq s$, with the norm $||\cdot||_s$. Note that $H^0 = L^2$

and $\|\cdot\|_0 = |\cdot|_2$. $C^0([0,\infty); H^S)$ is the space of continuos functions on $[0,\infty)$ with values in H^S .

2. Preliminaries

We first choose v and θ as independent thermodynamic variables and write $p = p(v,\theta)$, $e = e(v,\theta)$ and $s = s(v,\theta)$. The thermodynamic law de $= \theta ds - p dv$ gives

(2.1)
$$e_{\mathbf{v}} = -(\mathbf{p} - \theta \mathbf{p}_{\theta})$$
, $s_{\mathbf{v}} = \mathbf{p}_{\theta}$, $s_{\theta} = e_{\theta}/\theta$,

where we used abbreviations such as $e_v = \partial e(v,\theta)/\partial v$. When v and s are regarded as independent variables, we write $\theta = \hat{\theta}(v,s)$, $p = \hat{p}(v,s)$ and $e = \hat{e}(v,s)$. Using (2.1), we obtain

$$\hat{\theta}_{\mathbf{v}} = -\theta p_{\theta}/e_{\theta} , \quad \hat{p}_{\mathbf{v}} = p_{\mathbf{v}} - \theta p_{\theta}^{2}/e_{\theta} , \quad \hat{e}_{\mathbf{v}} = -p ,$$

$$\hat{\theta}_{\mathbf{s}} = \theta/e_{\theta} , \quad \hat{p}_{\mathbf{s}} = \theta p_{\theta}/e_{\theta} , \quad \hat{e}_{\mathbf{s}} = \theta ,$$

$$(2.2)$$

where $\hat{\theta}_{\mathbf{v}} = \partial \hat{\theta}(\mathbf{v}, \mathbf{s})/\partial \mathbf{v}$, etc. In particular, we have $\hat{\mathbf{p}}_{\mathbf{v}} < 0$ by $(1.2)_1$. Similarly, choosing \mathbf{v} and \mathbf{e} as independent variables and writing $\theta = \hat{\theta}(\mathbf{v}, \mathbf{e})$, $\mathbf{p} = \hat{\mathbf{p}}(\mathbf{v}, \mathbf{e})$ and $\mathbf{s} = \hat{\mathbf{s}}(\mathbf{v}, \mathbf{e})$, we obtain

$$\widetilde{\theta}_{\mathbf{v}} = (p - \theta p_{\theta})/e_{\theta} , \quad \widetilde{p}_{\mathbf{v}} = (p_{\mathbf{v}} - \theta p_{\theta}^{2}/e_{\theta}) + pp_{\theta}/e_{\theta} , \quad \widetilde{s}_{\mathbf{v}} = p/\theta ,$$
(2.3)
$$\widetilde{\theta}_{\mathbf{e}} = 1/e_{\theta} , \qquad \widetilde{p}_{\mathbf{e}} = p_{\theta}/e_{\theta} , \qquad \widetilde{s}_{\mathbf{e}} = 1/\theta ,$$

where $\tilde{\theta}_{v} = \partial \tilde{\theta}(v,e)/\partial v$, etc. In particular, we have $\tilde{p}_{v} - p\tilde{p}_{e} = \hat{p}_{v}$.

Vector form of the system

Put $E = e + u^2/2$. Then (1.1) is regarded as a system for (v,u,E)

and is rewritten in the vector form

(3.1)
$$w_t + f(w)_x = (G(w)w_x)_x$$
,

where $w = (v,u,E)^T$, $f(w) = (-u,p,pu)^T$, and G(w) is the matrix given by (3.3) below. We denote by A(w) the Jacobian of f(w) with respect to w. Then (3.1) is equivalent to

(3.1)'
$$W_+ + A(W)W_X = (G(W)W_X)_X$$
.

A(w) and G(w) are given explicitly as follows.

(3.2)
$$A(w) = \begin{pmatrix} 0 & -1 & 0 \\ \widetilde{p}_{v} & -u\widetilde{p}_{e} & \widetilde{p}_{e} \\ u\widetilde{p}_{v} & p - u^{2}\widetilde{p}_{e} & u\widetilde{p}_{e} \end{pmatrix},$$

(3.3)
$$G(w) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \mu/v & 0 \\ \kappa \widetilde{\theta}_{\mathbf{V}}/v & \mu u/v - \kappa u \widetilde{\theta}_{\mathbf{e}}/v & \kappa \widetilde{\theta}_{\mathbf{e}}/v \end{pmatrix}.$$

By straightfoward calculations, using (2.2) and (2.3), we know that the eigenvalues of A(w) are given by

(3.4)
$$\lambda_1(w) = -(-\hat{p}_v)^{1/2}, \quad \lambda_2(w) = 0, \quad \lambda_3(w) = (-\hat{p}_v)^{1/2}$$

These are all real and distinct since $\hat{p}_v < 0$ by $(1.2)_1$. This means that the inviscid system $w_t + f(w)_x = 0$ is strictly hyperbolic. The corresponding right and left eigenvectors, $r_j(w)$ and $\ell_j(w)$, are

(3.5)
$$r_{j}(w) = a_{j}(1, -\lambda_{j}, -u\lambda_{j} - p)^{T}, \quad j = 1,3,$$

$$r_{2}(w) = a_{2}(\widetilde{p}_{e}, 0, -\widetilde{p}_{v})^{T},$$

$$\ell_{j}(w) = b_{j}(-\tilde{p}_{v}, -\lambda_{j} + u\tilde{p}_{e}, -\tilde{p}_{e}), \quad j = 1,3,$$

$$\ell_{2}(w) = b_{2}(p, -u, 1),$$

where $a_jb_j \neq 0$, j=1,2,3. We choose a_j and b_j such that $2a_jb_j = 1/(-\hat{p}_v)$, j=1,3, and $a_2b_2 = 1/(-\hat{p}_v)$. In this case we have

(3.7)
$$\langle \ell_{i}(w), r_{k}(w) \rangle = \delta_{ik}, \quad j,k=1,2,3,$$

where < , > denotes the standard inner product of \mathbb{R}^3 . When (1.2)₂ is assumed, we determine a_j such that $a_j = -2\lambda_j/\hat{p}_{vv}$, j=1,3, and $a_2 = \theta/(-\hat{p}_v)$, where $\hat{p}_{vv} = \partial^2 \hat{p}(v,s)/\partial v^2$. Then we have

(3.8)
$$\langle \nabla \lambda_{j}(w), r_{j}(w) \rangle = 1$$
, $j = 1,3$,

(3.9)
$$< \nabla s(w), r_2(w) > = 1$$
.

Here the gradient ∇ is with respect to w, and s=s(w) is the entropy. Since $<\nabla\lambda_{\mathbf{j}}(w), r_{\mathbf{j}}(w)> \neq 0$, $\mathbf{j}=1,3$, the first and the third characteristic fields are genuinely nonlinear in the sense of Lax [7]. While the second field is linearly degenerate ([7]) because we have $<\nabla\lambda_{\mathbf{2}}(w), r_{\mathbf{2}}(w)>=0$ by $\lambda_{\mathbf{2}}(w)=0$.

Global existence and decay of solution

We consider (3.1) with the initial condition

$$(4.1)$$
 $w(0,x) = w_0(x)$,

where $w_0 = (v_0, u_0, E_0)^T$ with $E_0 = e_0 + u_0^2/2$. We seek a solution of (3.1), (4.1) in a neighborhood of a constant state $\overline{w} = (\overline{v}, \overline{u}, \overline{E})^T$, where $\overline{v} > 0$, $\overline{u} \in \mathbb{R}$, and $\overline{E} = \overline{e} + \overline{u}^2/2$ with $\overline{\theta} = \widetilde{\theta}(\overline{v}, \overline{e}) > 0$. We have the following

global existence result.

Theorem 4.1. ([6], see also [4]) Assume (1.2)₁, and (1.4)₁ or (1.4)₂. If $w_0(x) - \overline{w}$ is small in H^S , $s \ge 2$, then the initial value problem (3.1),(4.1) has a unique global solution w(t,x) in an appropriate function space. In particular, we have $w - \overline{w} \in C^0([0,\infty); H^S)$ and $||w(t) - \overline{w}||_S \le C||w_0 - \overline{w}||_S$ for $t \in [0,\infty)$, where C is a constant. Moreover, the solution w(t,x) converges to the constant state \overline{w} uniformly in $x \in \mathbb{R}$ as $t \to \infty$.

This result is proved by an energy method which makes use of the following properties: The system (3.1) has an entropy function and is transformed into a symmetric system of hyperbolic-parabolic type which satisfies the stability condition. We refer the reader to [4],[5] for the details. See also [1],[2].

Next we study a decay rate of the difference $w(t,x) - \overline{w}$ for $t \to \infty$. The linearized system of (3.1) around the constant state \overline{w} is

(4.2)
$$w_t^i + A(\overline{w})w_x^i = G(\overline{w})w_{xx}^i$$
.

Denote by e^{tR} the semigroup of (4.2). We have

(4.3)
$$|\partial_{\mathbf{x}}^{\ell}(e^{tR}f)|_{2} \leq Ce^{-ct}|\partial_{\mathbf{x}}^{\ell}f|_{2} + C(1+t)^{-(1/2+\ell-k)/2}|\partial_{\mathbf{x}}^{k}f|_{1}$$
,

where $0 \le k \le \ell$, C and c are positive constants, and f = f(x) is a function such that the norms on the right hand side of (4.3) are finite (see [9]). Making use of (4.3), we obtain the following

Theorem 4.2. ([4]) Assume (1.2)₁, and (1.4)₁ or (1.4)₂. If $w_0(x) = \overline{w}$ is small in $H^S \cap L^1$, $s \ge 3$, then the solution w(t,x) of (3.1) constructed in Theorem 4.1 satisfies

$$|\partial_{\mathbf{x}}^{\ell}(\mathbf{w}(t) - \overline{\mathbf{w}})|_{2} \leq CN_{s}(1+t)^{-(1/2+\ell)/2}, \qquad t \in [0,\infty),$$

where $\ell \geq 0$, $3\ell \leq s-2$, C is a constant and $N_s = \left|\left|w_0 - \overline{w}\right|\right|_s + \left|w_0 - \overline{w}\right|_1$.

Approximation by uniformly parabolic system

We first note that the matrix A(w) has the spectral resolution $A(w) = \sum \lambda_j(w) P_j(w)$, where $P_j(w) = r_j(w) \ell_j(w)$ and the summation is taken over all j = 1, 2, 3. We then define the matrix D(w) by

(5.1)
$$D(w) = \sum_{j=1}^{3} \kappa_{j}(w) P_{j}(w) ,$$

where $\kappa_j(w) = \langle \ell_j(w), G(w)r_j(w) \rangle$ with G(w) given by (3.3). By straightforward calculations we have

$$\kappa_{j}(w) = (-\mu \hat{p}_{v} + \kappa \hat{p}_{s}^{2}/\theta)/(-2v\hat{p}_{v}), \quad j = 1,3,$$
(5.2)
$$\kappa_{2}(w) = (-\kappa p_{v})/(-ve_{\theta}\hat{p}_{v}).$$

Note that these coefficients are all positive by $(1.2)_1$, and $(1.4)_1$ or $(1.4)_2$.

Now we consider the system

(5.3)
$$z_t + f(z)_x = D(\overline{w})z_{xx}$$
,

with the initial condition $z(0,x) = w_0(x)$. The system (5.3) is semilinear and uniformly parabolic, and hence has a unique global solution z(t,x), provided that $w_0(x) - \overline{w}$ is small in H^S , $s \ge 1$. The linearized system of (5.3) around the constant state \overline{w} is

(5.4)
$$z_{t}^{i} + A(\overline{w})z_{x}^{i} = D(\overline{w})z_{xx}^{i}$$
.

Denote by $e^{\mbox{tS}}$ the semigroup of (5.4). We easily obtain the estimate

(5.5)
$$|\partial_{x}^{\ell}(e^{tS}f)|_{2} \leq Ce^{-ct}|\partial_{x}^{\ell}f|_{2} + C(1+t)^{-(1/2+\ell-k)/2}|\partial_{x}^{k}f|_{1}$$
,

where $0 \le k \le \ell$, C and c are positive constants. Making use of (5.5), we know that if $w_0(x) - \overline{w}$ is small in $H^S \cap L^1$, $s \ge 1$, then the solution z(t,x) of (5.3) satisfies

(5.6)
$$\left|\partial_{x}^{\ell}(z(t) - \overline{w})\right|_{2} \leq CN_{s}(1+t)^{-(1/2+\ell)/2}, \quad t \in [0,\infty),$$

where $0 \le \ell \le s$ and C is a constant.

Furthermore, we can show that for $t \to \infty$, the solution w(t,x) of (3.1) is well approximated by the solution z(t,x) of (5.3). More precisely, we have the following

Theorem 5.1. ([5]) Assume (1.2)₁, and (1.4)₁ or (1.4)₂. If $w_0(x) = \overline{w}$ is small in $H^S \cap L^1$, $s \ge 5$, then we have

(5.7)
$$|\partial_{\mathbf{X}}^{\ell}(\mathbf{w}(t) - \mathbf{z}(t))|_{2} \leq CN_{s}(1+t)^{-(3/2+\ell)/2+\alpha}, \quad t \in [0,\infty),$$

where $\ell \geq 0$, $3\ell \leq s-5$, C is a constant, and $\alpha > 0$ is a small fixed constant.

This approximation result is based on the following better decay estimate for the difference between the semigroups e^{tR} and e^{tS} .

$$|\partial_{x}^{\ell}(e^{tR} - e^{tS})f|_{2} \leq Ce^{-ct}|\partial_{x}^{\ell}f|_{2} + C(1+t)^{-(3/2+\ell-k)/2}|\partial_{x}^{k}f|_{1},$$

where $0 \le k \le \ell$, C and c are positive constants.

6. Diffusion waves

Following Liu [8], we shall construct the diffusion waves. First we determine the coefficients $\delta_{\mathbf{i}}(\overline{\mathbf{w}})$, \mathbf{j} = 1,2,3, by

(6.1)
$$\int_{-\infty}^{\infty} (w_0(x) - \overline{w}) dx = \int_{j=1}^{3} \delta_j(\overline{w}) r_j(\overline{w}).$$

Put $\delta(\overline{w}) = (\delta_1(\overline{w}), \delta_2(\overline{w}), \delta_3(\overline{w}))$ and assume that $\delta(\overline{w}) \neq 0$. Next we introduce the Riemann invariant. A function of w which are constant in the direction of $r_j(w)$ is called j-Riemann invariant. For each j, we have two independent j-Riemann invariants given below.

s and
$$u + \int_{0}^{v} \lambda_{j}(v,s)dv$$
 for $j = 1,3$, (6.2)
p and u for $j = 2$.

Here the eigenvalue $\lambda_{i}(w)$ is regarded as a function of v and s.

Now, for the genuinely nonlinear field $\lambda_j(w)$, j=1 or j=3, we define j-diffusion wave $W_j(t,x)$, $W_j=(v_j,u_j,E_j)^T$ with $E_j=e_j+u_j^2/2$, by

$$s_{j}(t,x) = \overline{s}, \quad u_{j}(t,x) = \overline{u} - \int_{\overline{v}}^{v_{j}(t,x)} \lambda_{j}(v,\overline{s}) dv,$$

$$\lambda_{j}(v_{j}(t,x),\overline{s}) - \lambda_{j}(\overline{v},\overline{s}) = Y(t+1,x-\lambda_{j}(\overline{v},\overline{s})(t+1); \kappa_{j}(\overline{w}),\delta_{j}(\overline{w})).$$

Here $\overline{s} = \widetilde{s}(\overline{v}, \overline{e})$, $\kappa_j(\overline{w})$ and $\delta_j(\overline{w})$ are given by (5.2) and (6.1), respectively, and

$$(6.4)_{1} \qquad Y(t,x;\kappa,\delta) = \sqrt{\kappa} t^{-1/2} \frac{(e^{\delta/2\kappa} - 1)e^{-\xi^{2}}}{\sqrt{\pi} + (e^{\delta/2\kappa} - 1) \int_{\xi}^{\infty} e^{-\eta^{2}} d\eta} , \quad \xi = x/\sqrt{4\kappa t} .$$

The function Y in $(6.4)_1$ is the self-similar solution of the Burgers equation $y_t + yy_x = \kappa y_{xx}$ and satisfies

(6.5)
$$\int_{-\infty}^{\infty} Y(t,x;\kappa,\delta) dx = \delta, \qquad t \in (0,\infty).$$

See [3],[8]. Note that $W_j(t,x)$ lies on the curve $R_j(\overline{w})$ defined by $dw/d\tau = r_j(w)$ and $w = \overline{w}$ at $\tau = 0$. Since $\lambda_j(w)$ is monotone along $R_j(\overline{w})$ by (3.8), the relations in (6.3) uniquely determine $v_j(t,x)$ and

 $s_{i}(t,x)$ and therefore all other thermodynamic variables.

For the linearly degenerate field $\lambda_2(w) = 0$, we define 2-diffusion wave $W_2(t,x)$, $W_2 = (v_2,u_2,E_2)^T$ with $E_2 = e_2 + u_2^2/2$, by

$$p_{2}(t,x) = \overline{p}, \quad u_{2}(t,x) = \overline{u},$$

$$(6.3)_{2}$$

$$s_{2}(t,x) - \overline{s} = Y(t+1,x; \kappa_{2}(\overline{w}), \delta_{2}(\overline{w})),$$

where $\overline{p} = \widetilde{p}(\overline{v}, \overline{e})$, etc., and

(6.4)₂ Y(t,x; κ,δ) = δ(4πκt)^{-1/2}e^{-ξ²},
$$ξ = x/\sqrt{4κt}$$
.

This Y is the self-similar solution of the linear heat equation $y_t = \kappa y_{xx}$ and satisfies (6.5). Notice that $W_2(t,x)$ lies on the curve $R_2(\overline{w})$. The relations in (6.3)₂ define $p_2(t,x)$ and $s_2(t,x)$ and therefore all other thermodynamic variables.

Finally, we define W(t,x), the superposition of the diffusion waves, by

(6.6)
$$W(t,x) - \overline{w} = \sum_{j=1}^{3} (W_j(t,x) - \overline{w})$$
.

By straightforward calculations, using $(6.3)_{1,2}$ and $(6.4)_{1,2}$, we have

(6.7)
$$W_t + f(W)_x = D(\overline{W})W_{xx} + r_x(t,x) - q(t,x)$$
,

where r(t,x) and q(t,x) are known functions such that

$$|\partial_{x}^{\ell}r(t,x)| \leq C|\delta(\overline{w})|e^{-c(t+|x|)},$$

$$|\partial_{x}^{\ell}q(t,x)| \leq C|\delta(\overline{w})|^{2}(1+t)^{-(4+\ell)/2}\sum_{j=1}^{3}e^{-c\xi_{j}^{2}},$$

where $\ell \geq 0$, $\xi_j = (x - \lambda_j(\overline{w})(t+1))/\sqrt{t+1}$, and C and c are positive constants. For the details, see [5],[8].

7. Large-time behavior

We shall show that W(t,x) defined by (6.6) is an asymptotic solution for $t \to \infty$ of the uniformly parabolic system (5.3). To this end we construct the linear hyperbolic wave $\zeta(t,x)$ as the solution of

$$(7.1) \zeta_{+} + A(\overline{w})\zeta_{x} = q(t,x) ,$$

with the following condition: $\zeta(t,x) \to 0$ uniformly in $x \in \mathbb{R}$ as $t \to \infty$. Here q(t,x) is the function in (6.7). By the characteristic method, we have a unique smooth solution $\zeta(t,x)$ satisfying

$$|\partial_{x}^{\ell}\zeta(t,x)| \leq C|\delta(\overline{w})|^{2} \sum_{j=1}^{3} \{(t+1+|x-\lambda_{j}(\overline{w})(t+1)|^{2})^{-(2+\ell)/2} + (t+1+|x-\lambda_{j}(\overline{w})(t+1)|)^{-(3+\ell)/2}\},$$

where $\ell \geq 0$ and C is a constant. Also, it is shown that for $t \in [0,\infty)$,

(7.3)
$$\int_{-\infty}^{\infty} (W(t,x) - \overline{w} + \zeta(t,x)) dx = \sum_{j=1}^{3} \delta_{j}(\overline{w}) r_{j}(\overline{w}).$$

From (6.1) and (7.3) we know that $w_0(x) - W(t,x) - \zeta(t,x)$ has zero integral for each $t \in [0,\infty)$. By virtue of this property, we have a desired conclusion.

Theorem 7.1. ([5]) Assume (1.2)_{1,2}, and (1.4)₁ or (1.4)₂. Suppose that $w_0(x) - \overline{w}$ is small in $H^S \cap L^1_\beta$, $s \ge 1$ and $\beta \ge 1/2$. Let z(t,x) be the solution of (5.3) and let W(t,x) be the superposition of the diffusion waves defined by (6.6). Then we have

(7.4)
$$|\partial_{x}^{\ell}(z(t) - W(t))|_{2} \leq CM_{s}(1+t)^{-(1+\ell)/2+\alpha}, \quad t \in [0,\infty),$$

where $0 \le l \le s$, C is a constant, $M_s = \|w_0 - \overline{w}\|_s + |w_0 - \overline{w}|_{1,1/2}$, and $\alpha > 0$ is a small fixed constant.

In the proof of this theorem, the following estimate for the semigroup e^{tS} plays an essential role: If $f \in L^1_\beta$, $\beta \in [0,1]$, and f(x) has zero integral, then we have

(7.5)
$$\left|\partial_{x}^{\ell}(e^{tS}f)\right|_{p} \leq Ct^{-(1-1/p+\beta+\ell)/2}|f|_{1,\beta}$$
, $t \in (0,\infty)$,

where $\ell \geq 0$, $p \in [1,\infty]$ and C is a constant.

We remark that (7.4) is a meaningful asymptotic relation for $t \to \infty$, because for large t, the L^2 -norm of $\partial_X^{\ell}(W(t,x)-\overline{w})$ is bounded from below by $c|\delta(\overline{w})|t^{-(1/2+\ell)/2}$ with a positive constant c.

A combination of Theorems 5.1 and 7.1 gives the main result of this paper.

Theorem 7.2. ([5]) We assume the conditions of Theorem 7.1 with $s \ge 1$ replaced by $s \ge 5$. Then the solution w(t,x) of (3.1) satisfies

(7.6)
$$|\partial_{x}^{\ell}(w(t) - W(t))|_{2} \leq CM_{s}(1+t)^{-(1+\ell)/2+\alpha}, \quad t \in [0,\infty),$$

where $\ell \geq 0$, $3\ell \leq s-5$ and C is a constant; M_s and α are the same as those in Theorem 7.1.

This theorem means that the superposition of the diffusion waves defined by (6.6) is also an asymptotic solution for $t \to \infty$ of the system (3.1).

References

- [1] K.O. Friedrichs and P.D. Lax, Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. USA, 68 (1971), 1686-1688.
- [2] S.K. Godunov, An interisting class of quasilinear systems, Dokl. Akad. Nauk SSSR, 139 (1961), 521-523.

- [3] E. Hopf, The partial differential equation $u_t + uu_x = \mu u_{xx}$, Comm. Pure Appl. Math., 3 (1950), 201-230.
- [4] S. Kawashima, Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, Doctoral Thesis, Kyoto University, 1984.
- [5] S. Kawashima, Large-time behavior of solutions for hyperbolic-parabolic systems of conservation laws and applications, to appear in Proc. Roy. Soc. Edinburgh.
- [6] S. Kawashima and M. Okada, Smooth global solutions for the one-dimensional equations in magnetohydrodynamics, Proc. Japan Acad., 58 (1982), 384-387.
- [7] P.D. Lax, Hyperbolic systems of conservation laws, II, Comm. Pure Appl. Math., 10 (1957), 537-566.
- [8] T-P. Liu, Nonlinear stability of shoch waves for viscous conservation laws, Memoirs, Amer. Math. Soc., No 328, Vol. 56 (1985).
- [9] T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electro-magneto-fluid dynamics, Japan J. Appl. Math., 1 (1984), 435-457.