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Large-time behavior of solutions for

the equations of a viscous gas
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1. Introduction

We consider one-dimensional flow of a compressible fluid. In the
Lagrange mass coordinate (t,x), the motion of the fluid is described by

the following equations.

vy -u =0, ug +py, = (mu/v), o,
(1.1)
(e + u2/2)t + (pu), = (kB,/v + uuu /v), .

Here v > 0 1is the specific volume, u the velocity, 6 > 0 the absolute
temperature, e the internal energy, u the coefficient of viscosity and «
the coefficient of heat-conductivity. Let us denote the entropy by s. It
is known that among five thermodynamic variables v, 6, p, e and s, only
two of them are independent. In fact they may all be considered as smooth
functions of (v,8), (v,s), (v,e) or (p,s). We write p = p(v,0) =

A

p(v,s) and e = e(v,0) and assume that
(1.2)] ap(v,0)/av < 0, 9p(v,0)/90 >0, de(v,0)/36 >0,

(1.2), 32n(v,s)/av% > 0 .



Notice that these conditions are satisfied for the case of an ideal poly-

tropic gas:
(1.3) p = Re/v = lsv'Ye(Y'”S/R , e =Re/(y-1) + constant ,

where R > 0 is the gas constant, y > 1 1is the adiabatic exponent and R
is a positive constant. We also assume that u and «k are smooth func-
tions of two independent thermodynamic variables and satisfy one of the

following two conditions.

(1.4)1 u>0, k>0 (viscous heat-conductive fluid) ,

(1.4)2

pn=0, x>0 (inviscid heat-conductive fluid).

We shall study the large-time behavior of solutions to the initial
value problem for (1.1). Our main result is as follows: If the initial
data are close to a given constant state, then a unique smooth solution of
: (lf]) exists for all time t > 0 and approaches the superposifion of the
nonlinear and linear diffusion waves constructed in terms of the self-
similar so]utionsvdf the Burgers equation and the linear heat equation as
t > o,

We remark that the same asymptotic result has been obtained in [5]

for a wide class of systems including (1.1).

Notations
We introduce several function spaces. Let p e [1,0], 8 ¢ R and

s> 0. LP denotes the usual Lebesgue space on R, with the norm I-]p.
Lg denotes the space of functions f = f(x) such that (1+lxl)8f e LP,
with the norm |-]|

2

H® denotes the space of functions f = f(x) such

p,8°
0 2

that aif e L° for 0 < 2 <s, with the norm ]l-HS. Note that H” =L
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and ||« 9 CO([O,w);}F) is the space of continuos functions on

0= B
[0,o) with values in H>.

2. Preliminaries

We first choose v and 6 as independent thermodynamic variables and
write p = p(v,08), e = e(v,8) and s = s(v,8). The thermodynamic law de

= gds - pdv gives
(2.1) e, = - (p-0py) » s, =Py Sy =ey/0,

where we used abbreviations such as e, = se(v,0)/3v. When v and s are

regarded as independent variables, we write 6 = 6(v,s), p = p(v,s) and

e = e(v,s). Using (2.1), we obtain

A

v - - epe/ee b pv

A

2
pV - epe/ee ’ e

0

It

1
o
-

v
(2.2)

~ A

s = e/ee . Ps epe/ee , ey = e,

0

where 6 = 36(v,s)/ov, etc. In particular, we have Bv <0 by (1.2)].
Similarly, choosing v and e as independent variables and writing 6 =

8(v,e), p = p(v,e) and s = S{v,e), we obtain

2 v
(p, - 8Pg/eq) * Ppgley s 5, =p/0

@
1

v - (p'epe)/ee s EV
(2.3)

1]

1/6 ,

2
!

- ]/ee ) pe = pe/ee B Se

~

where 8 = 38(v,e)/dv, etc. In particular, we have P, - pp, = P, -

3. Vector form of the system

Put E=¢e + u2/2. Then (1.1) is regarded as a system for (v,u,E)



and is rewritten in the vector form

(3.1) we + fw), = (G(ww,), ,

where w = (v,u,E)T, f(w) = (—u,p,pu)T, and G(w) 1ds the matrix given by

(3.3) below. We denote by A(w) the Jacobian of f(w) with respect to w.

Then (3.1) is equivalent to

(3.1)" w, + A(w)wX = (G(w)wx)

t X °

A(w) and G(w) are given explicitly as follows.

0 -1 0
~ 2~ ~
up, P-Up, up,
0 0 0
(3.3) G(w) = 0 u/v 0

KeV/v uU/V-KUBe/V Kee/v

By straightfoward calculations, using (2.2) and (2.3), we know that

the eigenvalues of A(w) are given by
(3.4) M) =-(-p)V2, =0, 2w = (-p)%.

These are all real and distinct since Bv <0 by (1.2)]. This means that

the inviscid system wy + f(w)x = 0 1is strictly hyperbolic. The corre-

sponding right and left eigenvectors, rj(w) and kj(w), are

a.(1, - ., -u)\j-p)T . §=1,3,

rjlw) = a; j

(3.5)
rz(w) = az(Pe, Os "Pv



Py
Ce
o
=
-
i

bj(‘pva -)\J-'*‘Upe, —Pe) H) j=]:3a
(3.6)

o
N
——~
=
o
1]

bz(P, - U, 1) s

.b. ¥ 0, j=1,2,3. . . b. =
where aJ 5 % j=1,2,3. We choose aJ and bJ such that ZanJ

1/(-pv), j=1,3, and azb2 = 1/(-8V). In this case we have

(3.7) < zj(w),rk(w) >= 8. j.k=1,2,3,

jk ?

where < , > denotes the standard inner product of R3. When (1.2)2 is

assumed, we determine aj such that aj = - ij/pvv’ j=1,3, and a,

e/(-pv), where va =3 g(v,s)/avz. Then we have
(3.8)  <wrw) >=1,  §=1.3,

(3.9) < VS(w),rZ(w) >=1.

Here the gradient V is with respect to w, and s = s(w) is the entropy.

Since < ij(w),rj(w) >% 0, j=1,3, the first and the third characteristic

fields are genuinely nonlinear in the sense of Lax [7]. While the second
field is linearly degenerate ([7]) because we have < sz(w),rz(w) >=0

by Az(w) = 0.

4. Global existence and decay of solution
We consider (3.1) with the initial condition

(4.1) . w(0,x) = wy(x) ,

where Wy = (vO,uo,EO)T with E0 = e0-+ug/2. We seek a solution of (3.1),

(4.1) in a neighborhood of a constant state w = (V;E}E)T, where v > 0,

ue R, and E = E7+EQ/2 with 8 = 8(V,e) > 0. We have the following
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global existence result.

Theorem 4.1. ([6], see also [4]) Assume (1.2)], and (1.4)] or
(1.4)2. If wO(X) - W is small in HS, S > 2, then the initial value
problem (3.1),(4.1) has a unique global solution w(t,x) in an appropriate
function space. In particular, we have W - W € CO([O,oo); H)  and
Jw(t) - W”s < CHWO - W”s for t e [0,), where C is a constant.
Moreover, the solution W(t,x) converges to the constant state W uni-

formly in X e R as t - o,

This result is proved by an energy method which makes use of the fol-
Towing properties: The system (3.1) has an entropy function and is trans-
formed into a symmetric system of hyperbolic-parabolic type which satisfies
the stability condition. We refer the reader to [4],[5] for the details.
See also [1],[2].

Next we study a decay rate of the difference w(t,x) - w for t > o,
The Tinearized system of (3.1) around the constant state w is

(4.2) Wi + A(W)w; = G(W)wix .

tR

Denote by e the semigroup of (4.2). We have

(4.3)  |24e®e)|, < cetate], + c(1at) (V2HKIZ ke

where 0 <k < ¢, C and c are positive constants, and f = f(x) is a
function such that the norms on the right hand side of (4.3) are finite

(see [9]). Making use of (4.3), we obtain the following

Theorem 4.2. ([4]) Assume (].2)], and (1.4)] or (].4)2. If wo(x)

- W s small in M n Ll, s = 3, then the solution w(t,x) of (3.1)

constructed in Theorem 4.1 satisfies



RS

(@.8) D) -, < on ety (V2FR/2 g,

where & 20, 3% <s-2, C is a constant and N, = Hwo-W“S + lwo-W]].

5. Approximation by uniformly parabolic system

We first note that the matrix A(w) has the spectral resolution A(w)

=¥ Aj(w)Pj(w), where Pj(w) = rj(w)zj(w) and the summation is taken over

all j=1,2,3. We then define the matrix D(w) by

: 3
(5.1) D(w) = } Kj(W)Pj(W) .
j=1
where Kj(W) = < zj(w),G(w)rj(w) > with G(w) given by (3.3). By straight-
forward calculations we have

<5() = (- up, +kp/6)/(-2vp.) 5 §=1.3,
(5.2)
ko(w) = (-xkp )/ (- vegp,) .

Note that these coefficients are all positive by (1.2)
(1.4)2.

Now we consider the system

1’ and (1.4)1 or

(5.3)  z, +f(2), = D(Wz,, .

with the initial condition z(0,x) = wo(x). The system (5.3) is semilinear
and uniformly parabolic, and hence has a unique global solution z(t,x),
provided that wo(x) - W is small in H%, s > 1. The linearized system of

(5.3) around the constant state w is

(5.4) zy + A(W}z; = D(GDZ%X .

tS

Denote by e the semigroup of (5.4). We easily obtain the estimate
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(5.5) lai’(etsf)l2 < Ce'Ctlaif[Z + c(1+t)‘(]/2'*Q'k)/zlatfl] i

where 0 < k<2, C and ¢ are positive constants. Making use of (5.5),

1

we know that if wo(x) - w is small in H L , S =1, then the solution

z(t,x) of (5.3) satisfies
(5.6)  [oh(z(t) - W, < oN (1) 1/2ERZ o),

where 0 < ¢ <s and C 1is a constant.
Furthermore, we can show that for t - », the solution w(t,x) of
(3.1) is well approximated by the solution z(t,x) of (5.3). More pre-

- cisely, we have the following

Theorem 5.1. ([5]) Assume (1.2)], and ('1.4)-I or (1.4)2. If WO(X)

1

- W is small in M al ,» S 25, then we have

)-(3/2-+£)/2-+a

(5.7)  |ai(w(t) - 2(t))], < CN.(1+t . telo),

where £ 20, 32 < s-5, C <8 a constant, and o > 0 <is a small fixed

constant.

This approximation result is based on the following better decay esti-

mate for the difference between the semigroups etR and ets.

2, tR tS -ct.2
(5.8) Iax(e - e”)f|, < Ce ]axflz + C(1+t

where 0 < k<2, C and c are positive constants.

6. Diffusion waves

Following Liu [8], we shall construct the diffusion waves. First we

determine the coefficients sj(ED, j=1,2,3, by
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© 3
(6.1) | (nylx) - W - 1,5

Put &(w) = (ai(iﬂ;dz(ﬁ),ég(ﬁ)) and assume that &(w) % 0. Next we intro-
duce the Riemann invariant. A function of w which are constant in the
direction of rj(w) is called j-Riemann invariant. For each j, we have

two independent j-Riemann invariants given below.

v
s and u + f xj(v,s)dv for j=1,3,
(6.2)
p and u for j=2.

Here the eigenvalue Aj(w) is regarded as a function of v and s.
Now, for the genuinely nonlinear field Aj(w), j=1 or j=3, we

define j-diffusion wave wj(t,x), wj = (v.,u.,E.)T with Ej = ey + u§/2, by

NN AR K
_ : _ve(t,x)
s;(tx) =5, ug(t,x) =u - I_J As(vos)dv
(6.3), v

25(v5(£:%),5) - A5(W8) = V(B x-0 (V.3) (141 5 15 (W), 85())

Here s = s(V,e), Kj(W) and 6j(iﬂ are given by (5.2) and (6.1), respec-

tively, and

2
(ES/ZK_-I)‘e—g,

co 7 °
/T o+ (ea/ZK -1)J e” " dn
'3

The function Y in (6.4)] is the self-similar solution of the Burgers

(6.4);  Y(t.x;x,s) = Jet1/2 £ = x//BRE .

equation Y b Yy = Ky and satisfies

(6.5) fm Y(t,x;k,8)dx = & , t e (0,x).

=00

See [3],[8]. Note that wj(t,x) 1ies on the curve Rj(W) defined by
dw/dt = rj(w) and w=w at T =0. Since Aj(w) is monotone along

Rj(W) by (3.8), the relations in (6.3)] uniquely determine vj(t,x) and

-9 -



sj(t,x) and therefore all other thermodynamic variables.
For the linearly degenerate field xz(w) = 0, we define 2-diffusion

T . 2
wave wz(t,x), W, = (VZ’UZ’EZ) with E2 =e,t u2/2, by

uz(t,x) =u,

I
o]

pz(tsx) =
(6.3)2
sz(t,x)

s = Y(t+1,x 5 k(W) ,8,(W))
where p = p(v,e), etc., and
“1/2_-£°
(6.4)2 Y(t,x 3 k,8) = &(4mct) e . £ = x//At .

This Y s the self-similar solution of the linear heat equation Yi = Wy
and satisfies (6.5). Notice that wz(t,x) lies on the curve RZ(W). The
relations in (6.3)2 define pz(t,x) and sz(t,x) and therefore all other
thermodynamic variables. |

Finally, we define W(t,x), the superposition of the diffusion waves,
by

3

(6.6) W(t,x) - w= J.Z](lhlj(’c,x) -w) .
By straightforward calculations, using (6.3)1,2 and (6.4)1’2, we have

(6.7) W + f(W), = DWW, +r (t,x) - q(t,x) ,
where r(t,x) and q{(t,x) are known functions such that

labr(t,x)] = cls(m e (B XD

IA

(6.8) 3 - 2
CIS(GD!2(1+t)-(4+2)/2.zle CgJ
J:

A

|a%alt,x)|

where & > 0, g5 = (x-xj(W)(t+1))/¢t+1 , and C and c are positive

constants.A For the details, see [5],[8].

- 10 -
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7. Large-time behavior

We shall show that W(t,x) defined by (6.6) is an asymptotic solu-
tion for t > = of the uniformly parabolic system (5.3). To this end we

construct the linear hyperbolic wave z(t,x) as the solution of

(7.1) gy + Alwlg, = q(t,x) ,

with the following condition: z(t,x) - 0 uniformly in x ¢ R as t > .
Here q(t,x) is the function in (6.7). By the characteristic method, we

have a unique smooth solution <z(t,x) satisfying

3 .
(7.2)  |ol(tx)] < C|6(W)IZ.Z]{(t+l+]x-xj(G0(t+]);2)'(2+%)/2 .
J:

3+2)/2}

b

+ (t+1+|x-kj(ﬁ)(t+1)l)—(
where 2>0 and C 1is a constant. Also, it is shown that for t ¢ [0,»),
00 _ 3
(7.3) [ (M) - T+ gtk = I 65y -
e j=-l

From (6.1) and (7.3) we know that wo(x) - W(t,x) - z(t,x) has zero inte-
gral for each t e [0,). By virtue of this property, we have a desired

conclusion.

Theorem 7.1. ([5]) Assume (1.2); 5, and (1.4); or (1.4),. Suppose
that wo(x) - W is mall in H Lé, s>1 and B=1/2. ILet z(t,x)
be the solution of (5.3) and let W(t,X) be the superposition of the

diffusion waves defined by (6.6). Then we have
(7.4)  [9%(z(t) - W(E)], < on (1) (THRZF g o,

where 0<% <s, C s a constant, M, = Hwo—WHS + IWO'W!],]/Z’ and «

> 0 <s a small fixed constant.

-1 -



30

In the proof of this theorem, the following estimate for the semigroup

ets plays an essential role: If f e Lé, B ¢ [0,1], and f(x) has zero
integral, then we>have
(7'5) |8§(etsf)lp < Ct-(] -]/p+6+2)/2|fl1 8 . t € (0’00)’

where 2 =0, p e [1,o] and C 1is a constant.

We remark that (7.4) is a meaningful asymptotic relation for t - o,
because for large t, the Lz—norm of ai(w(t,x) - w) 1is bounded from below
by cla(ihlt'(]/2'+2)/2 with a positive constant c.

A combination of Theorems 5.1 and 7.1 gives the main result of this

paper.

Theorem 7.2. ([5]1) We assume the conditions of Theorem 7.1 with

s > 1 replaced by S = 5. Then the solution W(t,x) of (3.1) satisfies
(7.6)  [25(t) - ()], = em(1ae)"(PH/ZFE e o),

where % 20, 32 < s-5 and C <s a constant; Ms and o are the same

as those in Theorem 7.1.

This theorem means that the superposition of the diffusion waves defined

by (6.6) is also an asymptotic solution for t +« of the system (3.1).
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