goocooooogn
0 6010 1986 0 57-66

57

T30 NERBORE L MED S

MAAXE H%FHE ( Hideki Takayasu )

(ZDHEXR . ROE T Phys. Rev. Lett. c#fdTd, )

” f‘”_Power Spectrum and Stable Distribution”

Abstract

Statistical properties of fractal noises with"ff” power
spectrum are analysed theoretically. Such noises are produced by
fractional integral of white noises and their distribution can be
calculated by applying Holtsmark's method. The obtained
distributions are Levy's stable distributions and any stable
distribution is derived from those noises. An application to

turbulence is discussed.
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Fluctuations with f~-% type power spectrum can be found in
many fields of science, and they are attracting much attention
recently from the stand point of the fractal®. Kolmogorov's 5/3
power law in turbulence and 1 _/f noise in electric systems are
good examples of these fluctuations. Although experimental
discovery of these fluctuations was done several decades ago,
theoretical analyses have not developed sufficiently.

Fractional Brownian motion'! introduced by Mandelbrot is one
of the mostvbasic model for such fluctuations. It is defined by
fractional integral of Gaussian white noise and has been applied,
for example, to computer graphics for.earth's relief !. However,
little application has done in physics so far and much of its
statistical properties are not yet elucidated.

In this letter, we are going to analyse generalized
fractional Brownian motions with f~4 power spectrum and show
that the distribution of >such fluctuations follow the stable
law 2, namely, their distribution become ILevy's stable
distribution. Characteristic exponent of the stable distribution
will be represented by a simple function of 8, the exponent of
the power spectrum. If we generalize the white noise to
non-Gaussian, then we can obtain not only symmetric stable
distributions but also_any asymmetric ones. This may be the first
report in which a total parameter family of stable distributions
is derived from a physical model.

Let us consider a fluctuation x (t) which is produced by
a linear transformation of white noise w (t) with a Green

function G (t):
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o0
x(t) = § G (t—tHw (t')dt’ ) (1)

Power spectrum of x (t), Sx (f), is calculated by using the

properties of white noise as,

2 ~
S (B) = S8

5 , (2)

where <w2?> 1is a constant which denotes the variance of the

white noise and é (f) is the Fourier transform of G (t) . In

order to make the power law of this spectrum, that is,
S, (f) = £7F , (3)

one of the best candidates for the Green function is

o t=0

G(t) = { 1 A1 (4)

T() t>0
Here A=8/2 and I' (A) 1is the gamma function. This is the
Green function for the fractional integral of order A, which is
well-known for mathematicians as Riemann-Liouville integral®.
The distribution of the fluctuation x (t), P« (x),
can analytically be obtained in the following way by generalizing
Holtzmark's method *. In order to calculate the distribution, we
discretize Eq.(1) by considering the case that the white noise is

composed of N sharp pulses in a finite range of t:

-3-



X ()= ZW, G (t-t) (5)

where t;e [-T, T] and w; denote the 1location and the
magnitude of the j-th pulse, respectively. Then, we have the

distribution as

P (x)=§- SHdwdt 6(x—2wG(t t»(2T Hp(w)

)N

51;5 dp e iPX @ (p) , , (6)

where p (w;) 1is the distribution of w; and

(o) = [ deS gt PW) p(w) e iPWG (1-1) ]N N

is the characteristic function for x. We now‘ let N and T tend

to infinity keeping m=N_ /T constant. IWe thus obtain

o (p)=eZ(® , (8)
where
o0 0 3 —?
Z(p):dewp(w)Sdt’{elpWG(t t)—l} (9)
- 00 -0
is the cumulant. The integral of t’ in Eq.(9) can be carried
out by introducing s=|w /T (A) | |l t-t’ |*?' as the

variable of integration instead of t’ . Then t dependence in

the integral vanishes and Eq.(9) is transformed into
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Z(ﬂ)zqsdss C'(cosps—l)+ir5dss “®%sinps |, (10)
(o] [0]
where
1 _ 2
A=A~ 2=8
[0 6] o0
= d - wa r= d —_ _ . 24
q CSO W{p(W)+p( W)} , cgo W{p(W) p( W)}W
and = na _ 11
IT ()% , 1)

This cumulant, Eq.(10), directly leads the normal form of the
stable distribution 2, if we adjust the mean and scale factor
appropriately. We finally reduce the distribution of x (t),
P.(x), to the following well-known normal form of the
stationary stable distribution:

For O0<a<1 and 1 <azf?2
00 .
P(x;a,’)’)=%ReSdpexp(—ixp—p“ ein?/2) ; (12)
o
and for a=1
r 1 4 ; | 12T
P (x;l,q)=—iReS(§ipexp{—1x,o—p(1—1?q109,;)} , 13)
where

y=2tan’ (—g tanlcz-g——) ' (14)

This parameter ¥ and also r//q in Eqg.(13) dominate the

symmetry of the distribution of x and they range
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a o<a<l

<
IYL—{Z—a 1<a<2

and |§I§_1 . (15)

In the case these parameters are zeros, the distributions are
symmetric. For example, if the white noise is statistically
symmetric, namely, p (w) =p (-w), then y and r/gq
vanish automatically, and the distribution of x becomes also
symmetric as is expected directly from Eq.(1). In other cases
such that r#0 , the distribution of x is asymmetric.
Especially, stablé distributions with extreme asymmetry are
obtained when the distribution of the white noise is one-sided.

The characteristic exponent of the stable distribution, a,
is always réstricted within the .above range, 0 <a < 2. This
condition is equivalent to the restriction for B, 12 8, which
insure the stationarity of the random process x (t) . For
B>1 the process is not stationary and the distribution of
X (t) does not converge. 1/ f power spectrum is obtained at
the critical case g=1, when a=2 and the distribution
" becomes Gaussian with diverging variance.

It is wellknown that every stable distribution except

Gaussian (a#2) possesses long-tail, that is, for

sufficiently large | x|,

P(x;a,7) o |x|7*1 . 16)
This singular behaviour of x originates in the singularity of

the Green function, G (t) at t=0. Actually, we can show

that the long-tail disappears if we introduce a cut-off t. and

-6—



modify the Green function such that G (t) = const. for
o0<t=st. in Eq.(4).

In Eq.(4) we have applied Riemann¥Liouville's Green function
for the fractional integral, however, it is not the only choice.
For example, Mandelbrot has introduced an anti-symmetric Green

function *

_t -2
G(t)————F(D Itl . am)

In such case, the distribution of x is also stable with the same
characteristic exponent as in Egs.(12) and (13), but the symmetry
parameters, ¥ and r_,q, vanish automatically and we can obtain
only symmetric stable distributions.

So far, we have considered that the coordinate t is in
1-dimensional Euclidian space. It is not difficult to generalize
the space dimension to d, namely, we can consider the case that
t is a vector with d-components in Eg.(1). The Green function
for fractional integral of order A is then generalized, for

example, to

d

G(t) oo 11T (18)

Further, we can generalize the spatial distribution of the white
noise to fractal, that is the case that the distribution of the
location of white noise (t; in Egq.(5)) is not uniform but D

dimensional. Omitting +the calculation, we obtain the most

generalized results: The power spectrum of x (t) becomes



3d—-2D-2A-1

Sy(f) e« £ (19)

The distribution of x (t) becomes also the stationary stable

distribution and its characteristic exponent is represented as

d—2a , ; ‘ (20)

The symmetry parameters of the stable distribution, ¥ and

r/q are almost identical to Eq.{14) and those in Eq.(11).

Applicability of these results are very wide. For example,
let us first consider the Holtsmark's problem, that is, what is
the distribution of the force acting"on a star, per unit mass,
due to the gravitational attraction of the neighboring stars? In
this case, we regard t, x and w (t’ ) as the 3—dimensional'
coordinate, the gravitatibnal force and the mass of star at t’ .
Then the spatial dimension d =3 and the inverse second power
law is reduced to 2.¥ 1, hence from Eq.(20) we'readily know that
thé desired distribution is the stable distribution with the
characteristic exponent a =D /2, where D denotes the fractal
dimension of the stars. Here the Green function should be an odd
function of t 1like Eq.(17), the obtained stable distribution is
symmetric. In the special case that stars distribute uniformly
throughout the universe, then D=3 and the distribution becomes
the Holtsmark distribution *. ( Remember that the Holtsmark
distribution is the symmetric stable distribution ﬁith the
charactristic exponent 3/2, P (x ;3/2, 0) in Eq.(12).) This
kind 6f generalization of the Holtshark distribution has already

been done by the author * in a more rigofous way.
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More interesting applications are expected to be developed
in the theory of turbulence. We can easily constitute a random
velocity field with k-? power spectrum by the fractional
integral of white noise. For example, Eq.(19) indicates that
k~3/® power spectrum is obtained by the»fractional integral of
order 11/6 1in 3-dimensional space. Mandelbrot has already
proposed such model of turbulence about ten years ago ¢. The
distribution of velocity of such random field can not be defined
because the random field 1s not stationary. However,if we
consider vorticity, instead of velocity, we can obtain its
distribution by applying the above results. For vorticity is the
first order derivative of velocity field, the order of fractional
integration for the vorticity field, A, becomes 5/6. Then from
Eqg.(20), we may conclude that the distribution of the vorticity
is the stationary stable distribution with 'the characteristic
exponent a =18/13. This indicates that the distribution of
vorticity in real turbulence may have a long-tail as shown in
Eq.(16).

It may be better to consider the effects of intermittency,
finiteness of Reynolds number, the boundary condition, etc..
However, this 1letter is a preliminary report and detailed
discussions about turbulence will be published elsewhere.

The author is grateful to Professors S. Amari and K. Ito for

their valuable discussions.
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