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KNOTTED ATTRACTING PERIODIC ORBITS

IN. SILNIKOV BIFURCATIONS

(Yoshie ~ Togawa )

1. INTRODUCTION

Let X be a Cl-vector field on R3 which satisfies the following
conditions; ’ '

(i) X(0)=0,

(i) DX(0) has eigenvalues \,-ptie with 0<n<k,m#0,-

(111) ¥%(0) and W%(0) intersect at a homoclinic orbit .

We call such a vector field a Silnikov 5ystem; A Silnikov
syStem has infihitely pany periodic orbits'afbltrally Elose to the
homoclinic orbdbit r3). _Moreover.the knot types of these periodic
orbits-and their linking numbers around T determines B/X. Therefore
ﬁ/k is a modulus, that is , if.x aﬁd X' are two Silnikov systems with

p/x=pr /XN, thén.ihey.are not tébologiéally equlvalent.4)5).

If a
Silnikov system X has eigenvalues X,-ptio With 0<u<A<2p and ©#0, then
one can perturb X to X' so that X' has an attracting periodic orbit
arbitrally close to T. Attracting periodic orbits in RS are the

simplest attractors'whi¢h can have non trivial embedding.fypes. So
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it would be important to ask whether p/)\ gives any restrictrions on
the possible embedding types of attracting periodic orbits of

perturbed systems. In this paper, we prove that:

THEOREM Let X and X' be Silnikov systems with homoclinic orbits T
and T and eiginvalues A,-utio and X’',-u'*ie' respectively. Suppose
that 0<u<i<2u and p/A<p' /X',
Let X, be a l-parameter family of vector fields with X,=X. Let X
satisfies the transversality condition defined later. Then there
ezists a 8>0 such that for any €>0 there exists a positive s<g such
that

(1) X nas an attracting periodic orbit y in the g-neighbour-

hood of T, and
(ii) any o-perturbation X'' of X' has no periodic orbit in the

d-neighbourhood of T'' whose embedding type into thae

8-neighbourhood is the same of that of y.

To prove the theorem we use the attracting periodic orbits which

trips three times arong T.

2. ANALYTIC STUDY OF ATTRACTING PERIODIC ORBITS
Let S be the unit cylinder;
= 2 2
S—((xl,xz,xa)l x, “+x, %<1, |x3|$1}.
Ve use (r,8,z)-coordinate in the unit cylinder S;
=rcos 6, x

X =rsin @, X3=2.

1 2
Let SS be the side surface of S;
- 2 2_
SS—((xl,xz,x3)| x, “+x,%=1, |x3l51}.
Let Xs be a l-parameter family of Cl-vector fields on R3 with XO

Silnikov. To avoide the technical difficalties, we suppose the

following;

I~



(%) there exists a l-parameter family of diffeomorphisms
which linearlizes Xs in the unit cylinder.

Take a sufficiently small r, so that any Xs which starts at a

1
point p in
=2=((r,8,] rsr))
crosses SS at a point fs(p), and the mapping
. 2 ___.
f,: p € > > f,(p) € SS
is a diffeomorphism onto its image. For each s let hight(s) denote

the z-coordinate of the point at which Wu(O) crosses SS. We suppose

the transversality condition;
d_

dt

Let L be the map S§ ---> {(r,08,1)] r<1) induced by the linear

hight(s)| _, =0.

vector field XSIS. Let AP(s,g) be the set of attracting periodic
orbit ¥y of Xs which satisfies
(i) Y is in the g-neighbourhood of T,
(ii) 7 crosses SS at tﬂree points, say Pl(?), Pz(?) and Pz(y)
with z-coordinates ml(v),mz(?) and m3(7),
(iii) fs°Ls(pi)=Pi+

1 (mod 3) and ml(Y)<m2(Y)<m3(Y).

Note that AP(s,€) may be empty. Let

R(S,8)=inf-iag-ﬁ;z§3-

where infimum is taken over all ¥'s in AP(s',g) with 0<(s’'<s.

PROPOSITION 1. For any £€.>0 there exists a 8>0 such that

0

nis,8)> u/x - €,

for all Isl<é.
PROPOSITION 2. n(So,so)Su/k for sufficiently small s0>0 and €y-

2. PROOF OF THE PROPOSITIONS.
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Proof of proposition 1. Let c(s)=u/X. If 60>O is sufficiently

small, then there exists a constant K such that

c(s)s

hight(s) - K(ml(?)) mZ(Y),

my (¥)< hight(s)+K<m2<y))°(S)

for all y in AP(s,8,.) with 0<s<3,.  Since m (¥)<m,(¥), we get

0

m3(7)5(1+2K)(m2(?))C(S).

Taking the logarizm, we get
log m2 ‘

Taking a smaller &, we get the required inequality.

Proof of proposition 2. The proposition 2 would be prooved by a

standard but very messy arguments.

1]

3. TOPOLOGICAL INVARIANT

The braid of the periodic orbit

in AP(s,g) is indicated in the fig 1, r
where 8 is an unknown but fixed braid.
The numbers N1 and N2 goes to infinity

as €& goes to zero. The ratio of N1 zﬁ

B

and N2 is estimated by the proposit-

N

ions 1 and 2, so the remaining task is L
to relate the numbers N1 and N2 to some
topological invariants. Hence the

following proposition completes the

N \__\\//~

proof of the theorem. M

Let n(yY) be the number 53

Let AY(t) be the Alexander polynomial

of the knot ?2. )

Fk;1

of the non zero terms of the polynomial A?(t).



PROPOSITION 3. There exists a constant C such that
I m(t)-N, <c
| degree of A, () - (6N;+N,) l<c,

for atll N1 and N2.

Proof. Let (%E%g 32%3) be the Peron Mugnus representaion of the

braid 81). Then the Alexander polynomial AY(t) is

cEDMTEM M G na-bhet) ¢ 1Mo o7
PTG Ly - 173G ¥ o1,
where n=N1 and m=N2. Now the proposition is clear, since heither

b(t) nor a(t)d(t)-b(t)c(t) is a zero polynomial.( Note that neither

a(1)d(1)-b(1)c(l) nor b(-1) is zero ).
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