KNOTTED ATTRACTING PERIODIC ORBITS IN SILNIKOV BIFURCATIONS

東京理科大户门美郎 (Yoshio Togawa)

1. INTRODUCTION

Let X be a C^1 -vector field on \mathbb{R}^3 which satisfies the following conditions:

- (i) X(0)=0,
- (ii) DX(0) has eigenvalues λ , $-\mu \pm i\omega$ with $0 < \mu < \lambda$, $\omega \neq 0$,
- (iii) $W^{S}(0)$ and $W^{U}(0)$ intersect at a homoclinic orbit Γ .

We call such a vector field a Silnikov system. A Silnikov system has infinitely many periodic orbits arbitrally close to the homoclinic orbit Γ^{3} . Moreover the knot types of these periodic orbits and their linking numbers around Γ determines μ/λ . Therefore μ/λ is a modulus, that is , if X and X' are two Silnikov systems with $\mu/\lambda\neq\mu'/\lambda'$, then they are not topologically equivalent. If a Silnikov system X has eigenvalues λ , $-\mu\pm i\omega$ with $0<\mu<\lambda<2\mu$ and $\omega\neq0$, then one can perturb X to X' so that X' has an attracting periodic orbit arbitrally close to Γ . Attracting periodic orbits in \mathbb{R}^3 are the simplest attractors which can have non trivial embedding types. So

it would be important to ask whether μ/λ gives any restrictrions on the possible embedding types of attracting periodic orbits of perturbed systems. In this paper, we prove that:

THEOREM Let X and X' be Silnikov systems with homoclinic orbits Γ and Γ' and eiginvalues λ , $-\mu \pm i\omega$ and λ' , $-\mu' \pm i\omega'$ respectively. Suppose that $0 < \mu < \lambda < 2\mu$ and $\mu/\lambda < \mu'/\lambda'$.

Let X_s be a 1-parameter family of vector fields with X_0 =X. Let X_s satisfies the transversality condition defined later. Then there exists a $\delta>0$ such that for any $\epsilon>0$ there exists a positive $s<\epsilon$ such that

- (i) X_s has an attracting periodic orbit γ in the ϵ -neighbourhood of Γ , and
- (ii) any δ -perturbation X'' of X' has no periodic orbit in the δ -neighbourhood of Γ ' whose embedding type into the δ -neighbourhood is the same of that of γ .

To prove the theorem we use the attracting periodic orbits which trips three times arong $\Gamma.$

2. ANALYTIC STUDY OF ATTRACTING PERIODIC ORBITS

Let S be the unit cylinder;

$$S = \{(x_1, x_2, x_3) | x_1^2 + x_2^2 \le 1, |x_3| \le 1\}.$$

We use (r, θ, z) -coordinate in the unit cylinder S;

$$x_1 = r\cos \theta$$
, $x_2 = r\sin \theta$, $x_3 = z$.

Let SS be the side surface of S;

$$SS=\{(x_1,x_2,x_3) | x_1^2+x_2^2=1, |x_3| \le 1\}.$$

Let X_s be a 1-parameter family of C^1 -vector fields on \mathbb{R}^3 with X_0 Silnikov. To avoide the technical difficulties, we suppose the following;

(*) there exists a 1-parameter family of diffeomorphisms which linearlizes $\mathbf{X}_{\mathbf{c}}$ in the unit cylinder.

Take a sufficiently small \boldsymbol{r}_1 so that any \boldsymbol{x}_s which starts at a point \boldsymbol{p} in

$$\Sigma^2 = \{ (r, \theta, 1) \mid r \leq r_1 \}$$

crosses SS at a point $f_s(p)$, and the mapping

$$f_s: p \in \Sigma^2 \longrightarrow f_s(p) \in SS$$

is a diffeomorphism onto its image. For each s let hight(s) denote the z-coordinate of the point at which $\mathtt{W}^{\mathtt{U}}(\mathtt{0})$ crosses SS. We suppose the transversality condition;

$$\frac{d}{dt}$$
hight(s)|_{s=0} $\neq 0$.

Let L_s be the map SS ---> $\{(r,\theta,1) \mid r \le 1\}$ induced by the linear vector field $X_s \mid S$. Let AP(s,E) be the set of attracting periodic orbit γ of X_s which satisfies

- (i) γ is in the ϵ -neighbourhood of Γ ,
- (ii) γ crosses SS at three points, say $P_1(\gamma)$, $P_2(\gamma)$ and $P_2(\gamma)$ with z-coordinates $m_1(\gamma)$, $m_2(\gamma)$ and $m_3(\gamma)$,
- (iii) $f_s \cdot L_s(p_i) = P_{i+1} \pmod{3}$ and $m_1(\gamma) \cdot m_2(\gamma) \cdot m_3(\gamma)$.

Note that AP(s, E) may be empty. Let

$$\eta$$
 (s, ϵ) = inf $-\frac{1}{1}\frac{\text{og}}{\text{og}} -\frac{\text{m}}{\text{m}_2} \frac{(\gamma)}{(\gamma)}$

where infimum is taken over all γ 's in AP(s', ϵ) with 0<s' \leq s.

PROPOSITION 1. For any $\epsilon_0>0$ there exists a $\delta>0$ such that

$$\eta(s,\delta) > \mu/\lambda - \epsilon_0$$

for all IsI(8.

PROPOSITION 2. $\eta(s_0, \epsilon_0) \le \mu/\lambda$ for sufficiently small $s_0 > 0$ and ϵ_0 .

2. PROOF OF THE PROPOSITIONS.

Proof of proposition 1. Let $c(s)=\mu/\lambda$. If $\delta_0>0$ is sufficiently small, then there exists a constant K such that

$$hight(s) - K(m_1(\gamma))^{c(s)} \le m_2(\gamma),$$

$$m_3(\gamma) \le hight(s) + K(m_2(\gamma))^{c(s)}$$

for all γ in AP(s, δ_0) with $0 < s \le \delta_0$. Since $m_1(\gamma) < m_2(\gamma)$, we get

$$m_3(\gamma) \le (1+2K)(m_2(\gamma))^{c(s)}$$
.

Taking the logarizm, we get

$$\frac{\log m_3(\gamma)}{\log m_2(\gamma)} \geq c(s) + \frac{1}{\log m_2(\gamma)}.$$

Taking a smaller δ , we get the required inequality.

Proof of proposition 2. The proposition 2 would be prooved by a standard but very messy arguments.

3. TOPOLOGICAL INVARIANT

The braid of the periodic orbit in AP(s, ϵ) is indicated in the fig 1, where β is an unknown but fixed braid. The numbers N_1 and N_2 goes to infinity as ϵ goes to zero. The ratio of N_1 and N_2 is estimated by the propositions 1 and 2, so the remaining task is to relate the numbers N_1 and N_2 to some topological invariants. Hence the following proposition completes the proof of the theorem.

Let $\Delta_{\gamma}(t)$ be the Alexander polynomial of the knot γ^2 . Let $n(\gamma)$ be the number of the non zero terms of the polynomial $\Delta_{\gamma}(t)$.

Fig ⁻

PROPOSITION 3. There exists a constant C such that

| degree of
$$\Delta_{\gamma}(t)$$
 - $(6N_1+N_2)$ | < C,

for all N₁ and N₂.

Proof. Let $\left(a\{t\} \ b\{t\}\right)$ be the Peron Mugnus representation of the braid β^{1} . Then the Alexander polynomial $\Delta_{\gamma}(t)$ is

.
$$(-1)^m t^{-(6n+m)} (a(t)d(t)-b(t)c(t)) + t^{-3n}b(t) \sum_{k=1}^m (-t)^{-k}$$

- $(-1)^m t^{-(3n+m)}a(t) - t^{-3n}d(t) + 1,$

where $n=N_1$ and $m=N_2$. Now the proposition is clear, since neither b(t) nor a(t)d(t)-b(t)c(t) is a zero polynomial. (Note that neither a(1)d(1)-b(1)c(1) nor b(-1) is zero).

REFERENCES

- 1. Murasugi, K, On closed 3-braids, Memoirs of the Amer. Math. Soc. No 151, 1971.
- 2. Rolfsen, D, Knots and Links, Publish of Perish, 1977.
- 3. Silnikov, L.P, A case of the existences of a denumerable set of periodic motions, Soviet Math. Dokl. 6, pp163-166, 1965.
- 4. Van Strien, S, One parameter families of vector fields, Thesis Rijksuniversiteit.
- 5. Togawa, Y, A modulus for 3-dimensional vector fields, to appear in Ergodic theory and dynamical systems.