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Theta functions on the hyperbolic three space

by Robert Sczech

To introduce our topic, let's consider the Dedekind eta-function

o<
’YL("C) =q 1/24 ; ( (l—qn), q = exp(277iT)

n=1

defined for all T in the upper half plane H. This function was

introduced by Euler who proved the beatiful identity

Aif(t) - q1/24 E (_l)n qn(3n—1)/2

nezZ

The series on the right is a theta series, and the identity is

a special case of a more general formula knownbas the Jacobi
tripel product identity. The behavior of the theta series under
the modular group SLZZ can be analyzed with the help of the

Poisson summation formula. In this way, Hermite proved the

following theorem,

at+b, _ ab cT+d _,ab
IYL(C‘E+d) = e P \/’_j.1 M©) for A =(, o) € SLyZ

with a 24-th root of unity A, g(A)24 =1, Hermite also

established a formula for §¢(A) as a Gaussian sum and gave a
closed expression for ¢€(A) in terms of the quadratic residue
symbol. If we think of 41(¢) as an infinite product, then the

formula of Hermite is highly nontriﬁial.



On the other hand, from the definition as infinite product it is
obvious that &Lﬁt) + 0 does not vanish for all < in H, but
it is far from obvious that the theta series has the same
property. Because H 1is simply connected and -WKST) + 0, we
know that 1og/wff) is well defined if we fix the branch of the

logarithm by requiring 1log n}i) to be a real number.

The next contribution was made by Dedekind (and that's apparent-

ly the reason why NLiS named after him):

aTt+b : 1 cT+d i ab .
- = = a2 >0,
log ’VL(cfHd) log /VL('E) 2log( 7 )+ 13 @(C d) if ¢>0, where

S| .

@(a by - ad _3 cotm(Eycor n) for ¢ + O.

cd c c c c
k(c)
where the sum on the right is called a Dedekind sum. As a

corolary, we get

@(Al) + @-(AZ) + @(A?’) = ’sign(clczc3

* *
if AjAAg =1, A = (Cj &) € SL,Z

In other words, if we forget the correctional term sign of
(°1C2c3 on the right hand side, then @? is an homomorphism

of SL, % bécause q>(A_1) = —Q?(A). But there are no rational
valued homomorphisms of SLZZ (which do not wvanish identically%

therefore the correctional term is necessary.

The real reason why Dedekind sums appear in connection with.,
log'qﬁm) is that logzqff) is the integral of an Eisenstein

differential form,
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4TCilog fr*L(fE) = & E(z)dz, E(z) = 2'_ Z (mz+n)_2 ,
‘ T m n
(m,n) %0

because Dedekind sums are the periods of
Eisenstein series. The last equality follows easily from the

infinite product for ﬂq}¢).

If we compare the formulas of Dedekind and Hermite, we get the

remarkable relation

£(A) = exp %(—2]: @(A)) for Ace SLZZ/,

establishing a relation between the quadratic residue symbol
and the Dedekind sum. Although this formula can be proved |
directly (using the lemma of Gauss in the theory of quadratic
residues), in our view this is only the tip of an iceberg, the
iceberg being Euler's representation of m (t) as a theta

series.

2. 'Now let Fﬁ = Ssz?k be the unimodular group ofran imagi-
nary quadratic field K. This group acts on the hyperbolic
three space H3 which can be conveniently defined as the
quaternionic upper halfspace of quaternions <€ = x + jy

with x e« €, y >0, j2 = -1, jx=%j. Using this definition, the

action of (2 g)e_r‘ on H3 can be written in the familiar way

T —> (aT+ b) (cT+ d)—l .



To define theta functions on H3, we need an integral ideal L
in Crk of norm N = N(L) = 1(2), and determinant A = [&(L)
= N\fﬁ" where D 1is the discriminant of K. For simplicity we
assume that D = 1(8), but with small modifications everything

is valid for arbitrary discriminants.

Then

M/~ 2 2
,\}((C) = \By >_._~—ﬁ4 exp(_lzf_‘.&‘__z+qritr(%ﬂ))

Je Ly lar

is an analogue of the Dedekind eta-function for imaginary
quadratic fields. The reason for this claim is the number of

properties ’lf(ft) shares with NL&'I). First of all, we have

b

Theorem: m/(ft) does not vanish for all T in H3.

Because the hyperbolic three-space H3 is simply connected,

this implies that log4}(¢:) is a well defined function on

H3 if we require loga)(&,) to be a real number. But the
analogy goes further than that. As is well known, /ﬂv(q:)
is a cuspform, that means ﬂl}‘t) vanishes exponentially if
we approach 1ioo or a rational boundary point of the upper
half plane H. The same is true for 1}(q;),'it vanishes

exponentially if -« appraoches jo< or a number in

K < €+j-0.

How to prove the non-vanishing of x%(TZ) ? To this end we

embedd H3 in the Siegel upper half space JQZ of genus 2.
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Then AJ(<T) is the restriction of the Riemann theta function

Q(T) (defined on J} ) to H3 C EA .
2 42

Q(T) can be determined exactly (and in an elementary way).

Now the zero locus of

It consists of certain Humbert surfaces in the Siegel space.
These surfaces are defined by some quadratic equations. All
we have to do is to verify that H3 does not meet these sur-

faces (in fact, it meets these surfaces exactly in the cusps).

Concerning the behavior of q%(ft) under iﬁ‘, we have the
following

Theorem: a}(Ac) =<CX1A)Q}(®) with ?((A)S =1

for all A ¢ xIﬁx~l, where x E(i i), det(x) =N.

In other words, up to an eighth root of unity C(, the theta
function q}(ft)’ is invariant under the action of [1 .( This
can be proved in the same way as Hermite got his result. With
some care, the proof also givés an explicit formula for the
eighth root of unity CK(A) in terms of the quadratic residue

symbol (c§7t) in K. If eN = 1(2), then

a b, _ 2a | Ti (a+d)cN2
/><(c FO X\CL/T-) exp ( 4 tx A ))

The case cN£1(2) caﬁ easily be reduced to the case c¢cN=1(2),
so that this formula gives a complete determination of ik(.
The formula is useful not only for calculational, but also for
theoretical purposes as we will see in a moment.

-5-
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From the theorem we conclude that /<=1Xix' is an homomorphism:

rl*~> %/8%Z because

o) (any

X (amy "} ()
XAy ) = X)X B,

|

and therefore (because ~ (T) does not vanish)
./ y
W)y = X X .

This property suggests the introduction of the following

function ({: ["—> 2z,
1ogﬂ3(xAx—%t) - log\}(T ﬁ

Then the same reasoning as before tells us that 1 1is an

4
i

™

A): =
?( )

homomorphism,

(f(AB) = {i&(A) + fo»(B) for A,B & \h .

i
It is easy to see that if is nontrivial; for example if

L =0 and x = id, then

K
? G

How many different_homomorphisms do we get this way? To answer

by _ . b
D = tr () for be (.

this question remember that ¥ = ?(L,x) depends on the choice
i

of L and x. Denote by ~<;%L,x)>n the vector space over
H

Q generated by all possible L and x.



Theorem: dim <?KL,X)> = h = class number of K,

dim (T(L,x),L fixed>- = {# of genera in K.

. The proof of this theorem rests on the fact that we can calcu-

late the value of %9 on parabolic matrices by expanding

«}(T ) mnear a cusp. Knowing the value of 7’ on parabolic
matrices, wé form the hxh-determinant. det (f(U)) where v
and U run through a system of suitably chosen homomorphiéms
resp. parabolic matrices. The crucial point is that it is
possible to préve the non-vanishing of this determinant in an
elémentary way. This is remarkable because in a similar but
earlier situation [ 3], we had to deduce this property from

the non~vanishing of certain L-series at s=1.

3. To analyze {2 further, we have to talk about the first
i

cohomology group of [ ;
B (T, @) = Hom (2P, @)

which is nothing else than the Q-vector space of all homo-
morphisms of . This is a finite dimensional vector space

"which comes with a canomical decomposition
1 1 3 - 1 et
RO([) = 8_(7) & "5 ().

The subspace Hi (called the cuspidal part of Hl) can be
defined as the subspace of all homomorphisms which wvanish on
parabolic matrices, whereas the so called Eisenstein-part Hi
is generated by homomorphisms explicitly given by Dedekind

sums [ 3], compare H. Ito's talk at this conference (without
_.7..
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1
recourse to explicit formulas He can be defined as the largest
1 . . s .
subspace in the complement of Hc which is invariant under the
action of Hecke). This subspace is well-understood; around 14

years ago, Serre proved that
, 1
Theorem: dim He (M =nh

by using geometric properties of the so-called Borel-Serre
compactification of the quotient H3/f'. If we decompose the
theta homomorphisms ? as ? = ¥ +%¥ , where eH; is the
] jc e i c c
1
cuspidal, resp. Lgee.He the Eisenstein part of Y', then our
results give another proof of Serre's theorem (by displaying
h linear independent homomorphisms (fe) because it is easy to

see that dim Hi < h.

1
Concerning Hc not much is known: N. Kramer [ 1 ] and

J. Rohlfs [ 2] proved (by refining ideas of Serre and Harder)

that
ID] ; 1 1 3/2
Theorem: —7- - h (dlmkHc 5 |DI
. . (/2 1
Since h grows like ‘D; » this means that He is a rather
tiny subspace of Hl for large %D » but surprisingly, no
cuspidal homomorphism of ;3 is known so far! Given this

situation, the following three conjectures about *re could be

of some interest.

For'simplicity, we assume for the rest of the paper that

L= @k and x=id 1is the identity matrix.

-8-
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Recall that Y = Wc+?; is integral valued, but this is not
i
necessarily true for ?c and (fe which are in general

rational valued homomorphisms. The following table shows the

first nontrivial denominators of ¥, Tesp. 7o
i

D =55 -79 -87 -95 -103 -111 -119
11 9 11 19 59 11 7

To find these numbers we have to determine a set of generators

m
for ! , and calculate Lﬁe on these generators. Determining
|

generators for ? is a time consuming job, but for Lge there
is a closed formula in terms of Dedekind sums (generalizing

Dedekinds formula mentioned in the introduction) which is easy

to implement on a computer.

Conjecture 1: The denominator of (Qc is odd.
I

This denominator is a divisor of a special value of a Hecke
L-function. To explain that, let NV be a Grossencharacter

of K satisfying

2
’\*/((d\)) = o
Then my'oNH/K is a Grossencharacter of H, the Hilbert
i

class-field of K. Let L(ﬂ(o NH/K,S) be the corresponding

L-function (defined over H), and set

§2. 40 m23) | oo 140D
- (9D)l/4 WLOC) ’ 2 ’

-9~
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Using non-trivial results from complex multiplication, it can

be shown that the number

X = 8 (250720 1 (Y e Ny s 2)

is an algebraic integer. On the other hand, from the explicit
formula for 77e it follows that the denominator of igc
]

divides X . This gives

Theorem: If X is rel. prime to 2, then the conjecture 1

is true.

Assuming the conjecture 1 is true, we can state our second

conjecture.

Conjecture 2: {fCEE 0 (8).

This means that the eighth root of unity />( defined by the
action of r‘ on '\&(‘C) can be written as in the classical

case
294
N = exp E2E fe)

Clearly, the second conjecture implies the first one. Both

conjectures are supported by the following result.

Theorem: The behavior of (?,%2 under the Hecke algebra

;
i

is the same module 8.

-10-
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o~
9 O

For example, if the Hecke operator Tp corresponds to (

where p 1is a prime number in K, then

(p +P) Y _»

-
p (9

Tp(kf)) (P+P)‘\§}'(8)-

The last congruence follows from the explicit formula for ?f‘
stated in section 2. If we would have a multiplicity one re-
sult modulo 8, then the conjectures 1 and 2 would follow

from this theorem. But I am not sure whether such a result is

known.

Finally, to state the third conjecture, let N be the normali-

zer of r} in SLZK.. By a result of Hurwitz, the quotient

N/ is isomorphic to the genera group of K. An element

x e N acts on Hl(r') by \.f —% Yy,
. . -1 w1,
WX(A) = LU (xAx ") for WeH (! ), Ac
/ ; /

Notice that this action is trivial for x é{j, so we have an

action of the genera group on Hl(7w).

Conjecture 3: W?C is an eigenvector of x for all =xeN.
/
In other words, it is ( ?c)x = 1 YC. This property, if true,
H

would indicate that E is not just 8 times a "random" ele-
/

1 e X . . ’
ment in Hc (") as a pessimistic interpretation of the second

conjecture could suggest, but an interesting cohomology class in

Hi (") worth further studys.

-11-
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For every fixed D, the conjectures can be verified by a finite

calculation. This has been done for all D =}(8) , ;Dzé 100.
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