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Introduction: Suppése you are given a number field K; for
whichprimes p is there a cyclic extension of K of degree n
totally and only ramified at n? When K = & the answer is
well known: for it follows from the Kronecker-Weber theorem
that any such extension in contained in @(Cpa) for some ad>0
and therefore such an extension exists if and only if there

a, *
) of order n. In

is a cyclic quotient group of (Z/p
general, if K contains the n'th roots of unity then much can
be said here also. 1If, however, K does not contain the n"h
roots of unity then little seems to be known. This paper is

an exposition of work that is still in progress on this

problem.

Continuing the analogy with cyclotomic fields: we know by
class field theory that’ any such extension would be
contained in the ray class field with conductor r® for some
a > 0. We will denote the ray class field with conductor a
by K(a). 1In fact if we restrict ourselves to the case when
(n. £} = 1 we know a would have to be one. {Any tamely
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ramified extension has a square-free conductor). However
here complications set in because the group K(a) contains
the Hilbert Class field of K, HK and the tower of fields

K c HK < K(a) corresponds to a short exact sequence of

groups:

*
(0/a)  =--=>I, /P———> c

Q

/

K
u/u’ (a)
where 0 is the ring of integers in K, U (resp. b (a)) is the
unit group (units = 1 (a)). I, is the group generated by
ideals prime to o, P, is the set of principal ideals
containing a generator congruent (multiplicatively) to 1
(mod a) and finally CK is the class group. If a were a
power of a prime ideal p then the group is the inertia
group T(r) in this extension. (See Lang for a proof of this

or any of the other facts from class field theory we may

need.) Thus our problem reduces to showing:

1) n divides the order of (0/0)*

u/ut (a)

2) There exists a subgroup of index n not

containing T(p).

Note that if n doesn‘t divide the class number of K, hK then
of course the exact sequence * splits at n and 1) is both
necessary and sufficient. If n divides hK then as we shall

see it 1is quite possible that the first condition is



satisfied but the second is not.
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First off we show there exists a set of primes of positive

density for which n divides |T(p)]|.

Theorem 1: Let n and a finite extension K/Q be given. Then
there exists a finite extension L of K with the property
that every prime ideal that is above a prime ideal that

splits completely from Q to L satisfies n]| |U(ﬂ)].

We need to show that the index of the group U/Ul(ﬂ) in

1/n)'where U is the

(O/ﬂ)* is divisible by n. Let L = K(U
unit group of K. This contains Cn and is a finite extension
of Q by the Dirichlet unit theorem. We claim any prime of Q
that splits completely in L satisfies the conditions of the
theoren. To prove this note that when a prime splits
completely in L, the completion at any of the primes above
p is just Qp. Moreover evefy global unit is locally an n'th
power since the polynomial X - u splits completely in @p.
Now (0/ﬂ)* is isomorphic to the completion of © modulo the
completion of p and so we have the global units map entirely
into the n’'th powers of the local units. But, given any
finite abelian group I' with n / IT'| the index of '™ in T is
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a multiple of n. Since we have chosen p to split completely
in a field containing the n'th roots of unity, we also have

Nre = p =1 (£€). The theorem now follows.

Remark: It's not hard to see that for (¢,n) =1,
a =1 (mod €) implies that a is locally an n'th power;’ For
this reason the above éondition on K is more or less forced.
It is also possible to strengthen this theérem somewhat if

ﬁp £ K. One can then prove:

Theorem: There exists a set of primes of positive density

such than n divides ]Tﬂl but pn does not.

In any case we have now answered our question for the case
when n and the class number of K are relatively prime. For
any prime with n dividing ITﬂI will serve. We now turn to
the more general situation and we first show that the
problem can be solved when the field K contains the n'th
roots of unity. For that we need some standard results from

Kummer theory.

lemma 1: For any field K containing the n'th roots of unity an¢
aeK; the extension K(n/a} can be ramified only at the primes
dividing (a) and the primes dividing n.

Another standard results allows us to eliminate the possibility

that any primes dividing n ramify.

lemma 2: Suppose K contains the n'th roots of unity, a is in L and

a is an n'th power residue modulo a sufficiently high power at all
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the primes dividing n. Then K(n/&) can only be ramified at the

prime ideal dividing (a).
Finally we need to insure that the primes dividing (a) do ramify.

lemma 3: If (a) is not divisible by the n'th power of any ideal

then all the primes dividing (a) do ramify in K(™/a).

All these are standard facts from local Kummer theory.

Now to:

Theorem 2: Suppose K contains the n'th roots of unity then there
exists a set of primes of positive density so that for each prime p
in this set there exists a cyclic extension of K of degree n

ramified only and totally at pr.

proof: Let L be the full ray class field of K with conductor nb and
let r be any prime from K that splits completeiy in this field.
By class field theory this can happen if and only if p is a
principal prime {(mw) which is also congruent multiplicatively to 1
modulo nb. By the previous lemmas K(n/ﬂ) satisfies the conditions

of the theoren.

Remarks:. It would be interesting to know the minimal conditions

for such primes to exist in Kummer extensions.

We now want to sketch a proof of our main theorem which roughly
says that if you want to solve the problem for a field K, it's

enough to solve it for K(Cn).

Theorem 4: Suppose a prime 2 is given with N(p) = 1 (n). Suppose
for each P above p in K(Cn)‘there exists a cyclic extension of
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degree n totally (and only) ramified at ¢®. Then K has a cyclic

extension of degree n totally (and only) ramified at np.

Remarks: Since Gal(K(Cn)/K) = A acts transitively on the
primes above 2 its enough to have such an extension at one
of the primes above 1. For then the extension of K(Kn)
»which is ramified at P say, can be mapped by an element of
Gal(K(Cn)/K) to one ramified at f'. Essentially then what
we need to do is relate the structure of the ray class field
L of K(Cn) with conductor 2, when p is considered as an
-integral ideal in K(Cn) to the ray class field of K with

conductor rn.

lemma: Let F be the composite of all the individual cyclic
extension of degree n ramified at the primes ¥ above .
This is a galois extension of K. Moreover this galois group
vis a split extension of a group of type (Z/n)d where 4 is

the degree [K(Cn):K] and a cyclic group of order 4.

proof:The extension F/K is a galois extension because we
have taken all the cyclic extensions of degree n ramified at
the primes P above 2. It is, in fact, the maximal abelian
extension of K(Cn) of exponent n ramified at the primes
above p. If we let Ti be the ramification group of ?i then
gal(K(Cn)/K) acts transitively on each of these c¢yclic
extensions and so permutes the Ti = Z/n. This in turn
implies that T....T, = gal(F/K(tn) is a free Z/n[A] module.

1 d
6



95

Such a module has trivial cohomology in all dimensions and

therefore the extension splits.

Remark: these types of groups occur often and are called
wreath products. This group contains a normal subgroup
isomorphic to (Z/n)d and also a non-normal cyclic subgroup

of order d disjoint from the (Z/n)d.

Claim: The commutator subgroup of the galois group of F
over K is isomorphic to (‘Z/n)d—1 and is disjoint from the

inertia groups of any of the primes above p.

Suppose we accept the claim, then the proof can be finished
as follows: Let H be the normal subgroup of Gal(F/K) of
index n which is obtained by taking the commutator subgroup
together with the non-normal subgroup of order d described
above. The fixed field of this group is a cyclic extension

of K of degree n ramified only (and totally) at .

So what remains is to prove the claim about the commutator
subgroup. We can actually prove a bit more. (Although this
is probably well known I was unable to find a reference so I

include a short, computational proof)>

Theoren: The commutator subgroup of gal(F/K) is the set of
a a a ‘

1 "2 d . _
elements Xy Xy .. Xy in Ti"°Td where Zai = 0 (n).



[R—
[}
(G}

We need a way of describing this group so that we can
compute the commutators. We will 1let <a> be the cyclic
group of order d that acts on the various subgroups Ti of
type Z2/n. We denote the elements in Ti by Xy Yy etc. The

group can then be completely defined by specifying that as

sends x. to x. , i.e. that a®r.a”% =T (where i+s 1is read
i i+s i s

modulo d). Consider the commutator [as,ti] =

astia-st;1 = tstzl. This proves our claim for simple

commutators.For the general case Jjust expand the general
s t

commutator [a xiyj...zk, a bi...ck]

Remark: Notice that this gives us an independent proof of

the remark before theorem 1.

Finally, non-existence is a much more subtle problem. For
example consider the naive approach to non—-existence through

the following theorem:

Theorem Let K be a number field containing the n'th roots
of unity with a non-trivial ¥€-class group. Let f a prime
ideal such that [£2] has maximal € order in a direct summand
of the class group of K; then K can have no extension of

degree € ramified only at p.

proof: Suppose such an extension F exists then there exists

. £ . . .
an element a in K such that F( ya) yields a cyclic extension

. £
of K ramified only at g. This means that (a) = ﬂea . But
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ﬂe(e,f) = 1 also has maximal £ order in a summand of the
class group so it times an <£'th power can never be

principal.

The problems with using this naive approach arise because
we must ask the question: To what extent does the hypothesis
"having maximal <-order in a summand of the class group"
not contradict the hypothesis ‘"splitting completely in
Kf/wf%. Notice‘however that this naive approach will work if
K properly contains a field k with k(Cf) = K and k had a
non-trivial ¢-class group. (For then the {-class group of k

is a direct summand of the £ class group of k(Ct) = K).

Since this work is still in progress we must leave a fuller

treatment of these questions to another paper.
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