goooboooogn
0 604 0 19870 46-61

46

On the asymptotic behavior of solutions of
nonlinear Volterra equations and its application

to nonlinear heat flow with memory

Nobuyuki Kato ( Waseda Univ. D
BLZEF (FRRE)
1. Introduction.
We shall consider the problem of nonlinear heat flow in

materials with memory:

t
§-—(u(t,x)+J k(t-sdu(s,xdds) = oCu_(t,x))  + h(t,x),
at o X X

D teR, xe(0,1),
u (1,00 € Ry (t,00), —u (1, 1€ 8 Q(t, 1), teR,

u(t,x)=u0(x), te (-»,0), x &, 1.

”» L

Our main objective is to show the existence of a generalized
solution of (M) and its asymptotic behavior. We interprete (M) as

an abstract nonlinear Volterra equation in Lp(O;l) of the form:

g’Z u (1) +Au (1) +G () () 3> h () +k (D, ter",
E
u (0) =u

0’

which can be rewritten as

t
u(t)+J b(t-s)Aulsdds 3 gCtd, teR',
0

with appropriate functions b and g (cf. (B)).
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In §2 we prepare an abstract theory dealing with (E), after
that in £3 we state the main result of this paper (Theorem 3. 3)

and some remarks, and the proofs are contained in §4.

2. Abstract results.
In this section, let (X, l|-§) be a real Banach space and A be
an operator in X, and we consider the following evolution

equation:

+

%—t u () +Au (4G (W) (1) S h (1) +k (D u t erT,

® 0

u(0)=u0,

t

+
where G(u)(t)=k(0)u(t)+J u(t-s)dk (s), kéﬁBVloc(R > and h(®) €

0
+
Lioc(R :X). By a strong solution of (E), we mean a function in
1,1
loc

wh PR %0 A C®RT;DA) which satisfies (E) for a.e. t€R'. A
function uéiC(R+;D(A)) is called simply a solution if it is an
"integral solution™ of (E) considefing h(t)+k (tdDu—-G uw) (t) as an

inhomogeneous term. For the existence of a solution of (E), we

recall the following

THEOREM 2.1 ((5)). Assume that A is m—accretive, uOE;D(A), and he

Lioc(o,w;X). Then there exists a unique solution u(t) of ((E). If

X is reflexive, hé&BVloc(R+;X) and uOE_D(A), then u is a strong

solution.



48

Now, we consider the asymptotic behavior. For the sake of
simple and unified treatment, let X be uniformly convex and

smooth. Then we can define the continuous nearest point mapping P

onto A—10, provided A—IO % ¢, Denote by J the single—valued

duality mapping.

Definition ((11)). A is said to satisfy the convergence condition

if (xn,ynJe_A,llxn” s M, Ny s M and lim <yn,J(xn—Pxn)> =0

n-2o©

imply lim f{x_—-Px_ || = 0.
n-oo n n

Concerning the asymptotic behavior, we have the

THEOREM 2. 2. Let ke;Ll(R+), nonnegative, nonincreasing, and

bounded. Let héiLl(R+;X) and uoé;D(A). Assume that A is m—

. -1 . . -
accretive, A "0 » ¢ ,and A satisfies the convergence condition.

Then

2. D lim { Put+h)-Pu(tdll =0 for each fixed h >0

t-o0w

implies that the solution u(td) of (E) converges strongly to an

element of A—IO as t =o,

It can be shown that if (I'FA)._1 is compact, then lim Pud(t)
{20

exists, and hence (2.1) is valid. Therefore we obtain the

1

COROLLARY 2. 3. Let k, h, and A be as above. If C(I+A) = is

Ugs
compact, then the solution ud(t) of (E) converges strongly to an

element of A—IO as t 2o,
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Remark. Indeed, we can assume the weaker condition than the
compactness of (I+A)~1, the bounded compactness of A—IO as (13),
but the above setting is available from the viewpoint of

proposition below, which states the sufficient condition for A to

satisfy the convergence condition.

PROPOSITION 2.4 ((11,12))>. Let X be uniformly convex and smooth.

Let A be m—accretive with A_IO ¥ ¢, If <y,Jx-Px)> >0 for evefy

(x,y) € A with x¢A 0, and the resolvent (I+A> ' is compact, then

A satisfies the convergence condition.

' +
Proof of Theorem 2. 2. Note that Pu(-) & Lm(R :X) by the

boundedness of ultd) (since A—IO #* ¢>. Using (10, (3.1 or (7,
Lemma 2. 10Ca)>), it may be assumed that uOE;D(A), h(&Cl(R+;X)(\
vl 1®¥:% and u(t) is a strong solution of (E). Then (70 shows
that

(2.2 lim ju(d-Pu(Oi= 0

t2>®

by using the convergence condition. ffu(t+th)—u (| s Yult+h)=Pu ()|

+ | Pult)—utdf and

t
fludt+hd) -Pu (Ol S fud-Pudtdj + J k(t—-Dlju(rd)-Pu ()| dr
0

t+h
+ J f R (rd+k (0D g (O ~k (DPultdiidr
t
t
S YudO-PudOll + J k(t—ha (td)-Putilidr
0

o [: )

+ J fh(lidr + M J k(tddr,
i t

by (10,Lemma 3.1). Thus if we show that



a0

t
(2.3 lim J k(-0 judd)-Pultdlidr = 0,
0

t=2w

then the proof will be complete. Now, fix T >0 and let t >T.

t
J k{(t—)jju () -Pultdi dx

0
t—-T t
= J k(t—-)lludt)-Pudtdiidr + j k(t—=)lfu () -Pultdjdr
0 t-T
0 [
=M J k(n)dn + sup [jud(&)-Pud& j k(n)dn
T t—-TSE<w 0
t
+ J k(MU Pudt=n)-Pu (] dn
0
~ (® T
s M(J k(n)dn + sup fuE)-Pu g {l + J ff Pu(t=n)~Pu ()il dn).

T t—-TSE<w 0
By (2.2), (2.1) and the Lebesgue convergence theorem, we have

©

t "~
lim J k¢t—-dlud¢x)-Pu (i dt s M J k{(n>dn. Since T is arbitrary,

too 0 T
(2.3) is proved. O
Proof of Cororally 2. 3. Noting that {Pudt):t20} is bounded and

Pu(t)=CI+A) TPu(t), since (I+A) ' is compact, {(Pu(t):t20} is

precompact. Thus there exist tn%w such that lim Pu(tn)=a for some
n-o©

ae-A—lo. Let r(y)= lim fudt)—-y W\ for any yesA—IO (indeed, limit

t-ow

exists by (10,Lemma 3.2)). In general if X is uniformly convex,

then there exists uniquely Z(EA_IO such that r(z2)=inf{r(y):ye¢

A"10). (See e.g. (6,Chap.1,Th.4.1).) It then follows that

r()=1lim juCt D= & lim udCt D=z + N Pudt dD—«ld = r(z).
n-oo n n-=2o n n

Thus « = z and lim Pu(t) = z. This completes the proof. 0
tsm



3. Nonlinear heat flow with memory.
In this section, we consider the following problem of

nonlinear heat flow in materials with memory:

1
a—(u(t,x>+f k(t-sduls,x>)ds) = oCu (t,x>)  + h(t,x),
at —o X X

+
M teR, xe (0, 1),
u (t, 00 e B, (u(t,0), —u ((t,1>&e B, (u(t, D), teR,
b'e 0] X 1

11(t,x)=u0(x), te (-, 0, xe (0, 1.

where ke¢€ I_.1

(o) UECI(R), (=0, o®R=R, o’ ) >0 (reR,

+ +
R I n BVlOC(R > and o satisfies

and Bi (i=0,1> are maximal monotone graphs in RxR satisfying

0 ¢ ei(oj. '

Examples:
1. Bi=0 (i=0, 1> =» Neumann condition.

2. B.(x)=5t'R if x=0 (i=0,1> = Dirichlet condition.
1 .
¢ if x»0 «

3. =0 and R (x)={R if x=0 = u’ (0>=0 and u(1>=0.
0 1 . :
$ if x=0

Let 1<p<w, In order to interpret (M) as an abstract equation

(E), define L by

D(L)={ueC2(0, D: w0 eB, w>, —u' (1>e B, (wlldd}

0 1

Lu = —g’)’ for ue DL,
and then, considering L:D(L)CLLP(O,l) - Lp(O,l), let

A = LP-closure of L.



Since u(t,x)=u0(x) for te (—=,0),

t t ®©
Q—(J k (t=sdu (s, x) ds) = 3—(] k (t—sdu (s, x)ds + J k(s)ds u.(x))
X at '), . 0

t
= k(O)u(t,x)+J u(t-s,x)dk (s> - k(t)uo(x).
0

Therefore, we can see (M) as (E).

Our main aim is to show the following two propositions:

PROPOSITION 3. 1. Suppose that

[

3. I r min{c’ (s):|s|Sr}dr = », and
0

(3. 2 sup {])y| : yéiR(Bi)) < o for i=0 or 1
Then A is an m—accretive operator in Lp(O,l), the resolvent .
1

(I+A)  © is a compact operator, and A satisfies the convergence

condition defined in §2.

PROPOSITION 3. 2. Suppose that

(3.3 36 >0: o’ (r) 2 6 (Note that (3.3) = (3.1>.)

Then the same conclusions as above hold.

Once the above propositions are obtained, we can apply the
abstract results Theorem 2.1 and Corollary 2.3 to obtain the
existence of a unique generalized solution of (M) and its
asymptotic behavior, where generalized solution of (M) means the

(integral) solution of (E) when we interpret (M) as (E), with A

defined above,
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THEOREM 3. 3. Let ké'Ll(R+), nonnegative, nonincreasing and

bounded. Let he LI ® ;LP (0, 1)) and quLP (0,1, 1<p<®, Assuming
either (3.1 and (3.2, or (3.3), then the unique generalized
solution u(t,x) of (M) exists and it converges strongly in

Lp(O,l) to some constant & satisfying Oé:Bi(Cm) (i=0, 1>.

Remarks 1. In the case of Neumann boundary condition, (3.1) is

~unnecessary as will be shown in (3), and it is easy to see that

1 © o 1
E, = J uo(x)dx + (1+J k (s)ds? lj J h(t,x)dxdt (cf. (2)).
0 0 0’0
2. In the case of Dirichlet boundary condition, we don’t know

(3.3) can be removable. (For A to be m—accretive, it sufficies to
assume only (3.1) as shown in Lemma 4.2.) If the Dirichlet
boundary condition and (3.3) are assumed, A becomes strongly
accretive by the Poincaré inequality and if k is as above, we can

obtain the estimate of decay ((4), (@&>:

-]

L i
(3. 1) Ha () S (I r(dd)llusfl. + w 1] r¢t—-)[ud¢),h(}],dr,
P ¢ 0%p o +

where w >0 is a constant for which A-wl is accretive, and r is

defined by r+uwb*r=wb, b+k*b=1, and [x,y]+=lim(ﬂx+AyH—“x“)/A. It
A0

is known (4) that r 20 and re;Ll(O,m). Observe that if k=0, then

®

J r(tddr =

C ~ut
¢ w

e . Thus (3.4) corresponds to an exponential

decay.



4, Proofs of Proposition 3.1 and 3. 2.

The proofs are established by a series of lemmas below.
Lemma 4. 1. A is accretive in Lp(O,l).

Proof. It sufficies to prove the accretiveness of L in Lp(O,l).

_ 1

”u—vnp 1[u-v,Lu—Lv]+ = —J ]u—vip_lsgn(u-v)(G(u’)’—c(v’)’)
0

= (—)u-v|pﬁlsgn(u—v)(OCu')—G(v’))Jé
1 -2 2
+J (p—l))u—v|p (sgnu-v))" ' —-v’) (c’)—av’))
0

= —|u(-v )| P72

) =-v ) (o’ 1dd=adv’ (131D

+iu (0 —v (o) P72

1
+J (p—1) ju—v |
0

Since —u’ (1) ¢ Bl(u(l)), -v’' (1) € Bl(v(l)), Bl is monotone and ¢ is

increasing, sgn(o(u’ (D)=-oc(v’® (1)J)d=sgnu’® (1)~-v’ (1D)=—sgnul)-

(w @ =v ) (aCu’ (0>—a v’ (013

P72 0t =v') (o u' ) =g (v' D)

v{1)). Thus @ -v 1)) (o’ (1d>)=o (v’ (11D)>) s 0. Similarly, <0>-

v) (ocu’ (MI)X—ocv’ (0DD) 2 0. Also, since o6 is increasing, u’'-

v')(oQ@')-o(v’)) 2 0. Hence [u—v,Lu-Lv]+Z 0. . O
Lemma 4. 2. Assume (3.1). Then A is m—accretive in Lp(O,l).
Proof. (14) shows that L is m—accretive in C(0, 1)J. Hence

C (0, 1D=R(I+L) c R(I+A) < LP (0, 1.
By Lemma 4.1, A is accretive in Lp(O,l), and by the definition it
is closed in Lp(O,l). Hence R(I+A) is a closed subset of

LP (0, 1), and so LP (0, 1D=RI+A). 0
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Lemma 4. 3. Assume (3.2). Then

D(A)C(uewz’p(o,l); u’ (0 e B>, -u’ (1)681(\1(1))), and

0
Au = —g@’)’ for ue D).

Proof. Suppose (3.2) holds for i=0. Let (u,v) € A. Then there
exist uneD(L) such that u, 2. u in LP(O,l) and —o(ur’l)’ 2> v in

Lp(O,l). Since u;l(O)e Bo(un(O)), one can extract a subsequence

{nk} < {n} such that u;l (0) » FweR. For simplicity, denote ny by
k
n again. Noting that
X
4. 1 o (u’ (x))—0g(u’ (0))=I o’ ()*dr,
n n 0 n
we have
4. 2> \u;l(x)l = C

Furthermore, (4.1) and the continuity of U—l imply that uI'l(x)

2 0 1(CI(W)—-V(X)), x &€ (0, 1), where V(x)=J v(r)drt. Therefore, ul’_l =
0

a—l(c(w)—V(~)) in LP(0,1>. It then follows that uewl’p(o,l) and

u'=c 1o -V). Since Vew!"P(0,1>, we have ue w>*?(0,1> and

dg(u’)’=-v, Thus A is single—valued and Au=—c@’)’ for u&e D).
Finally, we check the boundary condition. Since c(u;l)’ 2 —Au

=g’)’ in Lp, there exist nj-m such that O(u;1 (x))* » o(u’ (X2’

J
a.e. x € (0,1> and ]cs(u}"l (x))" s h(x),Vj, a.e. xe€(@,1> for some
J
h € LP (0,1). (see e.g. (3,Theorem IVY).)> Then observing O—IQC]’(R)

and u” (x)=(g 1)’ (g (u’ (0))+I gCu’ ())’dr) oC’ (x))’', we have
n n 2 n n
u;’l (x) » (o )'(U(W)"'J’ g’ (M)’drtdoCu’ (X))’ =u”"(x) a.e. x, and
J 0



56

1

x
oCu’d’dr| SJ jou?’d’) dr =
0 n

}u;’1 (x)] S Mh(x>. <(Here note thatlj
J 0

1

1 - -
J lou’>’| dt, (4.2, and o ‘e Cl® imply that (o > (o u! 0>+

J

x
J 0(ur’1 >'dt| S M.) Thus by the Lebesgue convergence theorem,
0 J

w' s u” in L, so that u_ » u in w2 P0,1>5cl0,1) and then
J
u’ (0 » u ), u W) » ud®, u’dd1) » u’' (1>, and u 1> » udld. By
n n n n
the closedness of Bi(i=0,1), we conclude that u’ (O)eBO(u(O))

and —u’ (1> € B, (u(1d>. If (3.2) holds for i=1, then instead of

1
i
(4. 1), we use U(ur’l(l))—o(u;l(x))=J o (u’ (t)>'dr. O
X
Lemma 4. 4. Assume (3.1) and (3.2). Then
D(A)={uc-W2’p(0, D: uw e BOCu(O)), -u’ (1) e Bl(u(l))} , and
Au = —g@’)’ for ue DA,
Proof. Define B:LP » LP by

D®B)=1{u ewz’pm,n; u’(O)&'BO(u(O)), -u’ (1)eel(u(1))}, and
Bu = =og(u’)’ for ueDMB.
As Lemma 4.1, B is accretive in LP (0,1) and by Lemma 4.3, A c B.

Since A is m—accretive in Lp(O,l) by Lemma 4.2, the maximality of

A implies A = B. O
Lemma 4. 5. Assume (3.3). Then

DAY={ue Wz’p(O,l); u’ (O)EBO(u(O)), -u’ (l)eBl(u(l))}, and

Au = —g(’)’ for ue DA,
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Proof. Let (u,v) € A. Then there exist une;D(L) such that u -

u in L? and -o@’)’ - v in LP. Hence log” u?>’u” || £ M. Since
n n n'p .

1 1
MP 2 J \d’(u’)u”)p 2 J 6p1u”1p, we have
n"'n n
0 0
(4. 4> fu”jf S M/s.
n-p

Moreover, since ju (. s M,
n-p
y . p " p + s p i)
4. 5 “un"p s K(nunnp "un“p) s M7,
where K depends only on p (cf. (1,Lemma 4.1)). Similarly to Lemma
4.3, we obtain from (4.5) that ueng’p(O,l). Furthermore by

(4.4), we have ue W>*P(0,1). Again by (4.4) and (4.5),

4.6) fJu_ £ C fu_j s M
n7el o, 1) nTy2. P
Especially, since lu;(O)\Sﬁ, u; €4)) #aweER for some subsequence
‘ k
nkﬁm. Then by (4.1) and continuity of 0_1, u; (x) = U-I(U(W)"
k
X -1
J v(r)dr). Noting (4.6), we obtain u’ = o ~(6w)-V) in LP¢o, 1),
0 k
X
where V(x)=J v(t)dtr. Then similarly to Lemma 4.3, we can conclude
0

that A 1s single—valued and Au=—og@’)’ for.u € D(CA). The boundary
condition is shown in the same way as in Lemma 4.3. Since A is m-—

accretive, the rest of proof is similar to Lemma 4. 4. d

Lemma 4. 6. Assume (3.1) and (3.2). Then (I-f-A)'_1 is a compact

operator in LP (0, 1.

Proof. Suppose first that (3.2) holds for i=0. Let féELp(O,l)

and take u e DA sucﬁ that u+Au=f. Then by Lemma 4.4,

P X
“4.nD o(u'(x))—c(u’(O))=J u - J i
0 0
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Then by the Holder inequlity and Lemma 4.1, we have ju}j 1.p s
w »

C(l{fllp). Since the imbedding Wl’p(O,l) C Lp(O,l) is compact, we

conclude that (I+A)'—1 is compact. If (3.2) holds for i=1, we use

1 1
gCu’ (1))—o(u’ (x))=J u - J f instead of (4.7) for feLp 0, 1. O
X X
Lemma 4. 7. Assume (3. 3). Then (I‘l-A)—~1 is a compact operator in
L? ¢o, 1.
Proof. For feLp (0,1), take ueDC(A) such that utAu=f. Then by

(3.3 and Lemma 4.5, (u”" x| = %(iu(x)l*’if(x)l), so that

c .. 2C
" -— — . .
fu”py. s 5 Cluy,. + Hfn D> s 5 Wil (by Lemma 4. 1)

Hence ;)u’up s K(]lu”l(p + 'uu;'p > s CCifi ) and the rest of proof
P p IP P

can be done as in Lemma 4. 6. O
Lemma 4. 8. Assume either (3.1) and (3.2), or (3.3). Then A

satisfies the convergence condition.

Proof. Keeping the Lemmas 4.4 and 4.5 in mind, we observe
firstly that A—103u@u(x)= const and writing u(x)=u0, OeBi(uo)
(i=0, 1. () cW')’'=0 © olu’')=const & u’'=const & ulx)=ax+b.
Since u&€DA, u’ (O)EBO(U(O)) and -u’ (l)ésl(u(l)). so that ae¢
Bo(b) and —a681(3+b). Since Bi are monotone and OéBi(O), we
have a*b 2 0 and —a(a+b) 2 0, which implies a=0. Thus u(x)=b and

NS Bi(b)' (&) trivial.
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Above observation shows that if ue DCA) and uQ;A_IO, then

ufgconst., In fact, if udZA_IO, then either u¥const or u=u, and O¢

0

Bi(u > (i=0 or 1. Since ue D), u=u, implies O(&Bi(uo). Thus

0

only u#const is valid.

0

Let P:Lp(O,l) > A_10 be the nearest point mapping, and ué& D(A)

and u¢;A_10‘ Then, by virtue of Lemmas 4.4 and 4.5,
p—2 1 p—1
<Au, J (u=Pw >| u—Puj = J —g(u’)’sgn (u—Pu) {u-Pu|
0
-1, 1 1 -2
=(-0(u’)’sgn(u—Pu)]u—Pulp )0 + (p—l)J o(uf)u’lu—Pu\p .
0

The proof of Lemma 4.1 shows that (...)é 2 0 and the continuity
of u’ implies the existence of an interval @ (0,1} such that

u'»#0 on 2. Hence <Au,J (u-Pu)> >0 is obtained. Combining this with
Lemmas 4.6 and 4.7, we conclude that A satisfies the convergence

condition by Proposition 2. 4. O
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