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UNIQUENESS OF PRODUCTS IN HIGHER ALGEBRAIC K-THEORY

KAZUHISA SHIMAKAWA (RIMS)
B | 4a A GRKZHCLMIRIAR )

Let E be a higher algebraic K—theory defined on rings,
that is to say, E assigns to each ring R a spectrum ER of
algebraic K-theory of R. Fiedorowicz uniqueness theorem [2]

. says that if E has an external tensor prqduct, then there is a

natural map of spectra
f : ER > GWR

which induces an equivalenée between (-1)-connected covers of ER
and the Gersten-Wagoner spectrum GWR ([3] and [13]). May [6]
has given a similar uniqueneSS theorem for higher algebraic
K-theories (or, infinite loop space machines) defined on permuta-
tive categories: given an infinite lqop space machine E defined
on permutafive categories, there exists a natural equivalence of
spectra between EU and the spectrum SBU constructed by Segal
[9].

In this article-we study the multiplicativity of such
natural transformations between various higher algebraic K-
theories defined on permutative categories, or exact categories,
or rings. Here the term 'multiplicativity' is used in the

following sense. Let E and E' be functors C + § from
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permutative categories (or exact categories, or rings) to CW-
spectra, and suppose that E (resp. E') functorially asso-
ciates to each pairing UxV + W in C a pairing EUAEV » EW
(resp. E'UAE'V > E'W) of CW-spectra. Then a natural transfor-
mation” £ : E » E' is called multiplicative if the following

square commutes in the homotopy category HS;

EUAEV — E

S

E'UAE'V — E'W.

Notice that most of the constructions of products in higher
algebraic K-theory, except for May's [7], provide only weak
pairings, i.e., pairings in the sénse of G. W. Whitehead. This
notion of a weak pairiné ié inadequate for sophisticated spectrum
level analysis.  Hence we want to find a condition, as generous
as possible, which ensures that a given machine functorially
associates 'true' pairings. Thus we introdﬁce a notion of a
pairing of S, -spectra which generalizes May's notion of a pairing
of I,-prespectra [7].

We now state the results.

A CW—spectrum E = {En|nz 0} is called an Sy-spectrum if
each En has an action by the symmetric group Sn which is
compatible with the structure maps and restricts to a homotopi-
cally trivial Anfaction. There is a relevant notion of a pairing
vof Sx—-spectra and we can show that pairings (E,F) » G of

Sy-spectra functorially determine pairings EAF » G in HS.
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We use the term higher algebraic K-theory defined on permu-
tative categories to denote a functor E which assigns to every
permutative category U a connective CW-spectrum EU’= [EnUln;
0} together with a natural map A : BU ~» EOU such that the

composite BU =+ QmEmU = \ulﬂnEnU is a group completion.
n .

Definition. E 1is called a multiplicative higher algebraic
K-theory if (i) EU has a natural structure of an S*—spéctrum,
and (ii) there associated, to every bibermutative functor f : U X
VW, a hatural pairing Ef = {Em,nf} : (EU,EV) » EW of
Sy—-spectra such that the following square commutes;

BUABV —3f 4 gy

AA\Al l A
E f

E,UAEY —20— EW.
Thus a multiplicative higher algebraic K-theory E
functorially associates a true pairing Ef : EUAEV - EW,
It will be shown that both May machine M [7] and Shimada-
Shimakawa machine GC [10] are multiplicative higher algebraic
K-theories defined on permutative categories. (But Segal's

machine [9] is not.)

Now our first theorem is

THEOREM A. Let E be a higher algebraic K-theory defined
on permutative categories. Then there is a natural equivalence

Yy ¢: EU >~ CU which‘is'multiplicativé when E is a multiplicative
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higher algebraic K-theory.

Next let K denote the Waldhausen’machine [14] which
assigns to each exact category U a CW-spectrum KU = {BQ“U[n]|
nz0}) (cf. [11]). Then K associates to any biexact functor
f : UxV>W a pairing Kf : (KU,KV) » KW of S,-spectra. (This
is essgntially the resulf of [11].) Let us denote by IsU the

subcategory of all isomorphisms in a category U.

THEOREM B. There is a multiplicative natural transformation

k ¢+ CIsU » KU defined as the composite of a natural equivalence

]

n : QCQU KU with a natural map v : CIsU » QCQU which deloops

the familiar map BIsU + Q2BQU.

Note that by the "+ = Q" theorem [4], Kk becomes an equiva-
lence if every short exact sequence in U splits.

Finally we consider higher algebraic K-theories defined on
rings. We do not know whether Loday's pairing (GWR,GWR') >
GW(R®R') induces a 'true' pairing GWRAGWR'> GW(R®R') or

not. However we have

THEOREM C. There exists a functor A from rings to
Sy-spectra which satisfies the followings:

(1) A assigﬁes to every pair of rings R  and R' a natural
pairing u : (AR,AR') +» A(R®R') of S,-spectra.

(2) For each n2z1l, there exists a natural group completion

£ : BIsP(S"R) » AR = Kos“RxBGLs“R+ = GW_R such that
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BIsP(S™R) ABIsP(S"R') —— BIsP(S™™(R®R'))

fm/\fn u l fm+n
1 m,n '
AmR/\AnR —_— Am+n(R®R )

commutes. (Here P(R) denotes the category of finitely
generated projective modules over R.)
(3) The structure map AnR/\S1 > An+1R is given by the

composite

1 LA 1

u
n =
_— AnR/\Alz —= An+1.(R ®Z) A R

ARAS n+1

1

where 1 : S~ - Alz represents the standard generator of K.SZ =

1
Z (cf. [5, Chapitre II}).
(4) There is a multiplicative natural transformation @

CIsP(R) -+ AR such that the induced map 'QmCmIsP(R) - QwAmR is

an equivalence.

Note that the condition (3) is similar to the description of
the structure map of GWR "given by Loday [5]. From (2) we see
that Moo is weakly homotopic to Loday's map GWmR/\GWnR' >

Gwm’n(R ®R'").

As a consequence we have

COROLLARY. The product structures in higher algebraic
K-theory of rings constructed by Waldhausen [14], May [7],
Shimada-Shimakawa [10}, and Loday [5] (modified as in Theorem C)

all agree with each other,
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