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Exactly solvable lattice models and character formulas

A BB W R E £ (Michic Jimbo)

§0. Introduction

The subject of this article concerns with critical
phenomena in 2 dimensional statistical systems. Apart from
approximate methods, there are pfesently two different approaches
to this problem:

(i) Exactly solvable model (ESM)

(1ii) Conformal field theory (CFT).
In the first approach, one attempts to construct lattice models
for which physical quantities of interest (such as the free
energy) can be obtained in a closed form. Representative
examples are collected in Baxter's monograph [1]. The second
one has been developed rather recently. Instead of working
directly on the lattice, one starté with the (Euclidean) field
theory that should correspond to the continuum 1limit of lattice
models at criticality. Making full use of the conformal
symmetry, along with consistency requirements, the authors of
[2] were able to enumerate series of possible continuum models

with various types of critical behavior (such a list can be

-1 -



28

compared to the "periodical table" in atomic chemistry [3]).

The methodology and applicability of these two appear to be
quite different. The first covers non-critical models on the
lattice, but it is very difficult as a rule to calculate general
correlation functions (except for the Ising model discussed in
§1). The second, on the other hand, deals with continuous and
critical models (the conformal symmetry is achieved only under
these restrictions); at this cost the general correlation
functions are governed by linear differential equations. Since
no reference is made to lattice models, this second approach
applies equally well régardless of whether the "corresponding"
lattice model is exactly solvable or not. (In other words,
there is no direct way to identify a lattice model that tends to
a given CFT in the "periodical table.)

In this article we shall mainly deal with ESM. After
giving a brief review (§§1-2), we shall present a class of ESM
whose one point correlation functions are given in terms of
modular forms that arise in the representation theory of affine
Lie algebras. We then observe that there is a mysterious

correspondence between ESM, CFT and affine Lie algebras.

§1. Ising Model

Among known solvable models, the best understood case is
the two dimensional Ising model with nearest neighbor inter-
action. Consider a planer square lattice. At each site 1
assocliate a random variable o4 thét assumes two values +1 or

-1. (This is a simple model of a magnet consisting of molecules
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that can point two directions: up-down, or north-south.) The
K o.0.
interaction is introduced by assigning a welght e void (v=1,2)

to each bond joining neighboring sites (i,j), where the
coupling constant Kv > 0 1is proportional to the inverse
temperature ‘I‘_l and v=1,2 refers to whether the bond is

horizontal or vertical.

The probability of finding a particular configuration o = {oi}

is then given by

-1 \)Gio" \)Oic.
p(o) = 2 I e o, z= ) I e J
bond config. bond

The quantities of interest are the free energy
_ 1
f = Yol log Z
and various correlation functions

<o, > = Yo, p(o), <o, o, >=1Y o, o, p(e), ***

-1 o 11 - v

in the large lattice limit vol(=#(sites)) + o». (To be precise
the boundary spins are kept fixed to one of the ground states in

passing to the limit.)
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At zero temperature only two configurations are allowed
—— all spins up, or all spins down (extreme order) whereas at
infinite temperature, all configurations are given equal weight
(extreme disorder). In between there is a critical temperature
T = TC where the quantities above become singular:

2
faing ™ |T-T,|“log|T-T| (T > T, %0)

(1) '
|1/8

<oy >0 [’I‘—TC

. (T » T,-0).

The powers 2, 1/8 are the critical exponents which characterize
the nature of the phase transition. This much is the classical
result of Onsager [4] who found exact expressions for f and

<o, >. For example, the formula for <o, > reads

1 1

- 3 5
= 1=q 1-g- 1-g

(2) <g, > =
T 14143 14q?

Here we have used Onsager's parametrization of Kv = Kv(u,q) in
terms of elliptic functions; roughly speaking u plays the role
of anisotropy K1:K2 and q of the temperature. In particular
g + 0 corresponds to the extreme order, while q »+ 1 corresponds
to the criticality. The critical behavior (1) can be extracted

thanks to the automorphic property of (2) under

(3) T+ =1/1 (q = 2™y,
T+ =1/7T
N )
T=0 T=TC T=co0
(q=0) (g=1)
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Note, however, that there is no a priori reason why <0i >
1

should be a modular form.
Higher correlation functions are governed by nonlinear
differential/difference equations. When T # Tc’ the two point

function at large distance decays expcnentially as

-11,-1,]/¢
<0, Oz > = <0, ><0, > "N € .
1, 1. 1

As T approaches Tc’ the correlation length & diverges like

|T—TC|—1. Retaining the ratio |i,-1,|/¢ = mr fixed (assuming

K1=K5
scaled two point function Ti(P). As it turns out,'they are
' T -T

expressible in terms of ¢ = -log (———F) that satisfies the
) T_f1+

for simplicity) and letting T - TctO, one gets the

nonlinear ODE [5]

d 1d , _ 1.
sV + = 35 Y = 251nh(21p).

This is an equivalent form of what is known as a Painlevé
equation of the 3rd kind. General correlations obey nonlinear
PDEs related to monodromy preserving deformations of linear
differential equations. [6] The corresponding difference

equations on the lattice are also known [7].

lattice continuum
T#Tc NL difference eq. NLDE (Painlevé type)
T=T, LDE (hypergeometric type)
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If one stays on criticality, these equatlons simplify drastically:
these nonlinear equations reduce to linear ones. For instance

- the scaled 2 point function is a simple power function r_l/u.

*
This 1s precisely the regime covered by CFT. )
Unfortunately, the Ising model is to date an isolated

example for which all the lattice correlations are determined.

§2. Exactly Solvable Models

Apart from the Ising model, there exists a class of exactly
solvable models in the sense that their free energy and 1 point
function can be computed exactly. One of the formulations goes
as follows [1].

Consider again a square lattice, and to each site attach
Qi (to be called a height variable), this time allowed to take
multi-states, say li =1,2,+++,L-1. The interaction is
introduced by giving a weight to each configuration round a face

(rather than to a bond):

2 7 *x I
"V/// — W™
/ / i j

(In the case when W(Z c

b) takes the form Fachd’ the model
splits into 2 mutually non-interacting ones on diagonal
sublattices. The Ising model can be regarded as this special

case with L-1 = 2.)

¥) We remark that on the lattice the NL difference equations do
not reduce to linear ones even at T=T,.
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Suppose the weights depend on an additional complex parameter

u€ € so that the following functilional equations are satisfied

e d
for all
£ A o - c a,b,...’f=
1, ,L-1
O
a b

éwg Elww(g §lviu(E g!u+v)=éW(§ Nwus Elvw@ 2lutv).

In this circumstance there is a known method to compute the free
energy and the one point function.

The functional equations above (the Yang-Baxter equation,
or the Star-Triangle relation) involve (L-—l)u unknowns w(g g[u),
whereas the number of equations is (L—1)6. Each time a solution
is found, we get a solvable lattice model. 1In all known cases
the solutions are expressed in terms of elliptic, trigonometric
or rational functions (recall the elliptic parametrization in
the Ising model). The theory of the Yang-Baxter equation itself
has an intriguing algebraic aspect related to Lie algebras and

the Braid group [8], but we do not discuss it here.
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§3. One point function and character formulas.

We shall now describe a series of models whose one point
functions are related to the character formula of the affine
Lie algebra Ail) s, (E[t,t71]) X Te.

Given positive integers L,N (L > N+3), consider an (L-1)-
state lattice model as in §2 subject to the following restric-
tions: |

(1) L, = 1,2,---,L-1

(1i) Qi—lj = N,N-2,+-+,-N

(1iii) N < 2i+2j < 2L-N
where (i,j) signify neighboring sites. Any configuration

violating these 1s given zero weight. A system of welights

2m JLk
0, 2,19
i
have been found in terms of elliptic functions [9]. The one

W( satisfying the star triangle relation and (i)-(iii)
point function, to be called the local height probability (LHP),
is the probability of finding a height 21 to be a particular
value, say, a. The boundary heights are fixed to be one of the
ground states. Hereafter we consider the simplest region of the
parémeter space (called Regime III). 1In a ground state configura-
Tion, all height variables are the same along the southwest-northeast diagonal,
and in the horizontal direction have the form --- bc bc.---

b

i) P(albc)=Prob(21=a|bdry=b,c)

c

In order to state the result, we need to prepare notations.

Consider a pair of Lie algebras
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% = altenlt) 5 § - a(all))

1

where A signifies the diagonal embedding. Let Xk,m(z’q)
(0<k<m) denote the characters of irreducible highest weight
representations of level m (see [10] for the terminology).
Decomposing irreducible Q}—modﬁles into & -irreducible pieces,

we are led to the identity of the form

(4) X (z,9)x (z,q) = B (a)x (z,q)
TRymy KoMy O§E3§m3 kykokts 7 Mgy

= -+ . il il : —
where my=m, +m, Actually Xk,m(z’q) is a ratio of theta func
tions [10], and consequently the B’s have automorphic property

under the transformation (3). After a>1engthy and complicated

computation, we find:

Theorem [11].

B (@)x (V/4,q)
kol ky L-2

(5) P(alb,c) =
xklN(fOI,q)xk2 L-N-2(Yd,a)
_ b-c+N _ btc~N _
(kl_ 5 ,kz—'—z——l, k3—a—1).

This formula may‘seem unwieldy, but the structure is quite

simple: specialize the identity (4) to z = /q and divide by

the LHS so the total probability JP(a|bec) is 1. Notice that
: a

there is the following correspondence:
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(6) center .height a <——> irreducible representation of &£ .

boundary heights b,c «— irreducible representation of %u

S0, here again the one point function is a modular form; this
enables us to know the critical behavior g =+ 1 of the LHP.
However, we know of no mechanism that accounts for this
phenomenum. It can be shown in fact that the B’s are characters
of the Virasoro algebra (¥ the Lie algebra of infinitesimal
conformal transformations). For small N(=1,2,4), the critical
exponents of (5) are in agreement with known CFT's in the
"periodical table" [3], so it is natural to suspect that these
CFT's are the critical, continuum limit of our model. We remark
also that the pair of affine Lie algebras % D ﬁ played a
crucial role in constructing discrete series fepresentations of
the Virasoro élgebra [12].

To summarize, we have encountered an empirical correspondence

among the three objects:

ESM CFT

Similar structure has been observed in a different series of ESM
[13] (Q—=A£l), k== (homogeneous) Helsenberg subalgebra), and also

in another region of the parameter space (Regime II) of the

(1)
2L-1°

(6) is valid in all cases. The true nature of this picture is

present model (57 = A k = C£1>)[14]. The correspondence
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yet to be explained.
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