Spectral analysis of self-affine functions

奎江 哲朗 Teturo Kamae (Osaka City University)

By definition, a <u>self-affine</u> function is a continuous function $f:[0,1]\to R$ with f(0)=0, $f(x) \not\equiv 0$ such that there exist a real number α with $0<\alpha \leq 1$, an integer $r\geq 2$ and finitely many functions $g_1,g_2,\ldots,g_k:[0,1]\to R$ satisfying that

- (1) for any N=0,1,2,... and j=0,1,..., r^N -1, there exists h=1,2, ...,k such that
 - (#) $r^{\alpha N}(f((j+x)r^{-N})-f(jr^{-N}))=g_h(x)$ ($\forall x \in [0,1]$), and
- (2) for any n=0,1,2,..., $\ell=0,1,\ldots,r^n-1$ and h=1,2,...,k, there exist integers N and j with N \geq n and $\ell r^{N-n} \leq j < (\ell+1)r^{N-n}$ such that (#) holds.

The above α and r are called an <u>order</u> and a <u>base</u> of f, respectively. The notion of self-affine function was introduced by N. Kôno [1] in a restrictive sense, which was generalized by the author [2] as above. It is known that

- I. if f is a self-affine function of order α , then f satisfies the Hölder continuity of order exactly α at each point [1], hence, α is determined by f,
- II. a self-affine function is a linear function if and only if it has an order 1,
- III. if a self-affine function f has bases r and ℓ with log r/log ℓ irrational, then f is a linear function, and IV. there exist exactly a countably infinite number of self-affine functions which are linearly independent.

A non-linear, self-affine function f has a remarkable spectral property, namely, the Fourier coefficient $\hat{f}(n)$ decreases in the order of n^{-1} as $n \to \infty$, where

$$\oint_{f} (n) := \int_{0}^{1} (f(x) - xf(1)) e^{-2\pi i n x} dx \qquad (n \in \mathbb{Z})$$

For a self-affine function f with order $\boldsymbol{\alpha}$ and base r, define

$$\tau_{r,N}(j) = r^{\alpha N} (f(j+1)r^{-N}) - f(jr^{-N})),$$

where $N=0,1,2,\ldots$ and $j=0,1,\ldots,r^N-1$. Note that

$$\{\tau_{r,N}(j); N=0,1,2,..., j=0,1,...r^{N}-1\}$$

is a finite set. A self-affine function f with base r is called r-invertible if

$$\tau_{r,N}(j) = \tau_{r,N}(j')$$

holds for any N=0,1,2,... and j=0,1,..., r^N -1, where j' is an integer with $0 \le j' < r^N$ such that

$$[j'r^{-n}]-r[j'r^{-n-1}]=[jr^{N-n-1}]-r[jr^{N-n}]$$

for any n=0,1,...,N-1.

THEOREM. Let f be a self-affine function with order α and base r. Then,

$$\hat{f}(n) = \frac{1}{2\pi i n} \lim_{N \to \infty} r^{-\alpha N} \sum_{j=0}^{r^{N}-1} \tau_{r,N}(j) e^{-2\alpha i j n r^{-N}}$$

holds for any neZ with n +0. Moreover, if f is r-invertible, then we have

$$f(rn)=r^{-1}f(n)$$

for any $n \in \mathbb{Z}$ with $n \neq 0$.

Example 1. Let
$$\begin{array}{c}
n \\
\sum_{\substack{x \\ n=1}}^{\infty} x^{2j-1} \\
\end{array} (x_{2n}),$$

where

$$x = \sum_{n=1}^{\infty} x_n 3^{-n}$$

with $x_n \in \{0,1,2\}$ and η is a permutation $(\begin{smallmatrix} 0 & 1 & 2 \\ 2 & 1 & 0 \end{smallmatrix})$. Then, f is a 9-invertible self-affine function of order 1/2, which shall be called Peano function. We have

$$f(n) = \frac{1}{i\pi n} \prod_{k=1}^{\infty} \frac{1}{3} \frac{1 + \omega_k^n + \omega_k^{2n}}{1 - \omega_k^n + \omega_k^{2n}},$$

where $\omega_{\mathbf{k}} = e^{2\pi i 9^{-\mathbf{k}}}$ and $n \neq 0$.

Example 2. Let
$$\begin{array}{c} n-2 \\ \Sigma \\ \text{f(x)} = \\ \sum_{n=1}^{\infty} 2^{-\lfloor n/2 \rfloor} \\ (-1)^{j=1} \end{array} x_{n},$$

where

$$x = \sum_{n=1}^{\infty} x_n 2^{-n}$$

with $x_n^{\epsilon\{0,1\}}$ Then, f is a 4-invertible self-affine function with order 1/2, which shall be called Rudin-Shapiro function.

We have

for any $n \neq 0$, where

$$f(n) = \frac{1}{2\pi i n} \lim_{N \to \infty} 2^{-N} \int_{j=0}^{4^{N}-1} a_{j} e^{-2\pi i j n 4^{-N}}$$

$$a_{j} = (-1)^{k=0} \int_{k=0}^{\infty} j_{k} j_{k+1}$$

with

$$j = \sum_{k=0}^{\infty} j_k 2^k \qquad (j_k \in \{0,1\}).$$

REFERENCES

- [1] Norio Kôno, On self-affine functions, Japan Journal of Applied Mathematics 3-2 (1986), pp. 259-269
- [2] Teturo Kamae, A characterization of self-affine functions, ibid., pp. 271-280