Configuration Space and Unitary Representations of the Group of Diffeomorphisms

by Nobuaki OBATA (Nagoya Univ.) 尾、畑 岬 明 (名大·理)

Introduction

Let X be a connected C^{∞} -manifold and $\operatorname{Diff}_{C}(X)$ the group of all diffeomorphisms of X which are identical outside a compact set. The group $\operatorname{Diff}_{C}(X)$, furnished with a natural topology (see §4), becomes an infinite dimensional Lie group. Unitary representations of $\operatorname{Diff}_{C}(X)$ have been studied by many authors [1]-[92]. In this note, we shall consider them from measure-theoretical point of view.

Let Ω be a measurable space on which the group $\mathrm{Diff}_{\mathbf{C}}(X)$ acts as measurable transformations and μ a σ -finite measure on Ω quasi-invariant under $\mathrm{Diff}_{\mathbf{C}}(X)$. Then, the triple $(\Omega,\mu,\mathrm{Diff}_{\mathbf{C}}(X))$ (sometimes abbreviated to (Ω,μ)) is called a *dynamical system* after Kirillov [15]. Given a dynamical system (Ω,μ) , we form a unitary representation U of $\mathrm{Diff}_{\mathbf{C}}(X)$:

$$(U(g) f)(\omega) = \left(\frac{d\mu(g^{-1}\omega)}{d\mu(\omega)}\right)^{1/2} A(g,\omega) f(g^{-1}\omega) ,$$

where f is a square-integrable (w.r.t. μ) function on Ω with values in a separable Hilbert space H and A(g, ω) a 1-cocycle with values in the group of all unitary operators on H. Among many candidates for a dynamical system (Ω, μ) , the configuration space (for definition, see §1) seems very interesting in connection with theory of random fields, statistical models (e.g. [16],[18]) and representations of the infinite symmetric group.

In $\S\S1-3$, we shall develop a general theory of the configuration space and probability measures on it. In $\S\S4-6$, unitary

representations of Diff_c(X) associated with the configuration space will be considered mainly after [12]. Finally, §7 contains a few remarks on another dynamical systems.

§1. Configuration space

Let X be a second countable locally compact space (always assumed Hausdorff). A locally finite subset of X is called a $configuration \ \mbox{in X.} \ \mbox{The set of all configurations in X will be}$ denoted by $\Omega=\Omega_{\rm X}$. For any Borel subset B of X, we put

$$\Omega_{B} = \{ \omega \in \Omega ; |\omega \cap B^{c}| = 0 \}$$

and for each integer $n = 0, 1, 2, \cdots$,

 $\Omega^n(B) = \{ \ \omega \in \Omega \ ; \ |\omega \cap B^c| = 0 \ \text{and} \ |\omega \cap B| = n \ \},$ where $|\cdot|$ denotes the cardinality. Note that $\Omega^0(B) = \{\phi\}$, where ϕ is the empty configuration. We set

$$\Omega_{\mathbf{f}}(\mathbf{B}) = \bigcup_{n=0}^{\infty} \Omega^{n}(\mathbf{B})$$
.

If B has a compact closure, obviously $\Omega_f(B) = \Omega_B$. For each integer $n=1,2,\cdots$, put

$$B^{[n]} = \{ x = (x_1, \dots, x_n) \in B^n ; x_i = x_j \text{ if } i = j \}.$$

The symmetric group \mathfrak{S}_n acts on $B^{[n]}$ as coordinate permutations:

$$x = (x_1, \dots, x_n) \longmapsto x\sigma = (x_{\sigma(1)}, \dots, x_{\sigma(n)})$$

where $x \in B^{[n]}$ and $\sigma \in \mathfrak{S}_n$. We tacitly understand $B^{[0]} = \{\phi\}$ and $\mathfrak{S}_0 = \{e\}$. The quotient space $B^{[n]} / \mathfrak{S}_n$ is identified with $\Omega^n(B)$ in an obvious way. We denote by \mathfrak{p}_B^n the canonical projection $B^{[n]} \longrightarrow \Omega^n(B)$.

We now recall that a subset Y of X becomes a locally compact space with respect to the relative topology if and only if it is locally closed. If Y \subset X is locally closed, $\Omega_f(Y)$ becomes a second

countable locally compact space in a natural manner. Furnished with the topological σ -field, $\Omega_{\rm f}({\rm Y})$ becomes a standard measurable space.

Lemma 1.1. The σ -field of $\Omega_f(Y)$, Y being a locally closed subset of X, is generated by all sets of the form $\{\omega \in \Omega_f(Y); |\omega \cap B| = n \}$, where B runs over all Borel sets of Y and n all non-negative integers.

Lemma 1.2. Let Y and Y' be two locally closed subsets of X such that Y \subset Y'. Then the natural projection π_{YY} ,: $\Omega_f(Y') \longrightarrow \Omega_f(Y)$ defined by π_{YY} , $(\omega) = \omega \cap Y$ is measurable.

These results are not hard to prove. Unless X is a discrete space, the natural projection π_{YY} , is not continuous in general. Identifying Ω with the projective limit measurable space $\varprojlim \Omega_f(Y)$, we introduce a σ -field in Ω . The measurable space Ω will be called the configuration space. The following properties can be shown with the help of general theory of measurable spaces, e.g. [13],[20].

Proposition 1.3. The σ -field of Ω is generated by all sets of the form $\{ \omega \in \Omega : |\omega \cap B| = n \}$, where B runs over all Borel subsets with compact closures and n all non-negative integers. Moreover, the set $\{ \omega \in \Omega : |\omega \cap B| = n \}$ is measurable for any Borel set $B \subset X$.

It follows from Lemma 1.3 that $\Omega_{\rm B}=\{\ \omega\in\Omega\ ;\ |\omega\cap{\rm B}^{\rm C}|=0\ \}$ is measurable for any Borel subset B \subset X. We introduce the relative σ -field in it. If Y \subset X is a locally closed set with compact closure, two σ -fields of $\Omega_{\rm f}({\rm Y})$, i.e. the topological σ -field and the relative σ -field, coincide by Lemma 1.1 and Proposition 1.3.

A partition $\{B_j\}$ of X, B_j being a Borel subset of X, is called *locally finite* if for any compact set $C \subset X$, the number of j's such that $B_j \cap C$ is not empty is finite. The following result means that the configuration space Ω is *infinitely divisible*.

Proposition 1.4. Let B_1, B_2, \cdots be mutually disjoint Borel subsets of X and put $B = \bigcup B_j$. If $\{B_j\} \cup \{B^c\}$ is a locally finite partition of X, Ω_B is Borel isomorphic to the product space $\prod \Omega_{B_j}$.

This implies that the canonical projection π_{BB} ,: Ω_B , \longrightarrow Ω_B is measurable for any two Borel subsets B \subset B' \subset X.

Proposition 1.5. The configuration space Ω is Borel isomorphic to the projective limit $\lim_{\to \infty} \Omega_B$, where B runs over all Borel subsets of X with compact closures. If $B_1 \subset B_2 \subset \cdots \subset X$ be a sequence of Borel subsets with compact closures such that $X = \bigcup_j B_j$, then Ω is also Borel isomorphic to $\lim_{\to \infty} \Omega_{B_j}$.

Proposition 1.6. If B \subset X is a Borel subset with compact closure, $\Omega_{\hbox{\footnotesize B}}$ is a standard measurable space.

§2. Construction of measures

As is well known, every probability measure on the configuration space $\Omega = \varprojlim \Omega_{\rm B}$ is uniquely determined by a consistent family of probability measures $\{\mu_{\rm B}\}$, where $\mu_{\rm B}$ is a probability measure on $\Omega_{\rm B}$ satisfying $\pi_{\rm BB}$, $\mu_{\rm B}$, $= \mu_{\rm B}$ for all B \subset B'.

In this note, by a measure on X we always mean a Borel measure m, possibly $m(X) = \infty$, such that (i) m is non-atomic;

(ii) m(C) < ∞ for any compact subset C \subset X. For any Borel set B \subset X, we denote by m_B^n the restriction of m^n to $B^{[n]}$. We note that $m^n(B^n-B^{[n]})=0$. If B \subset X is a Borel subset with compact closure, a probability measure $\exp(m_B)$ on Ω_B is defined by the formula:

$$\exp(m_B) = e^{-m(B)} \sum_{n=0}^{\infty} \frac{1}{n!} p_B^n m_B^n$$
,

according to the decomposition $\Omega_{R} = U \Omega^{R}$ (B).

We are interested in probability measures $\mu = \varprojlim \mu_{B}$ having the property:

(A) μ_B is absolutely continuous with respect to exp(m_B) for any Borel set B \subset X with compact closure.

This looks rather strong but quite natural for our purpose, (see §4). Given a probability measure μ on Ω with the condition (A), we have a family of density functions $\{\rho^n_B\}$ defined by the formula:

$$\mu_{\rm B} = \sum_{n=0}^{\infty} \frac{1}{n!} p_{\rm B}^{n} \left(\rho_{\rm B}^{n} m_{\rm B}^{n} \right)$$

The following properties are satisfied:

(ρ -1) ρ_B^n is a non-negative function on B^n ,

$$(\rho-2) \quad \rho_B^n(x_1, \dots, x_n) = \rho_B^n(x_{\sigma(1)}, \dots, x_{\sigma(n)}) , \sigma \in \mathfrak{S}_n ,$$

$$(\rho-3) \sum_{n=0}^{\infty} \frac{1}{n!} \int_{B^n} \rho_B^n(x_1, \dots, x_n) dm(x_1) \dots dm(x_n) = 1 ,$$

$$(\rho-4)$$
 if B \subset B', $\rho_B^{\ell}(x_1, \dots, x_{\ell}) =$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \int_{(B'-B)^n} \rho_{B'}^{\ell+n}(x_1, \dots, x_{\ell}, x_{\ell+1}, \dots, x_{\ell+n}) \operatorname{dm}(x_{\ell+1}) \cdots \operatorname{dm}(x_{\ell+n}).$$

The converse is also true, i.e. $\{\rho_B^n\}$ satisfying the above conditions $(\rho-1)-(\rho-4)$ forms a probability measure μ on Ω with (A).

Every probability measure μ on Ω is uniquely determined if

the values $\mu(\omega \in \Omega ; |\omega \cap B_j| = k_j$, $1 \le j \le N$) are given, where $B_1, \cdots, B_N \subset X$ are mutually disjoint Borel subsets with compact closures and k_1, \cdots, k_N non-negative integers.

Proposition 2.1. Let μ be a probability measure on Ω satisfying (A). Then, for any mutually disjoint Borel subsets $B_1,\cdots,$ $B_N\subset X$ with compact closures and for any non-negetive integers $k_1,$ $\cdots,$ k_N ,

$$\begin{split} & \mu \Big[\ \omega \in \Omega \ ; \ |\omega \cap B_j| \ = \ k_j \ , \ 1 \leqslant j \leqslant N \ \Big] = \\ & = \frac{1}{k_1! \cdots k_N!} \int_{B_1}^{k_1} \sum_{k = 1}^{k_N} \rho_B^k(x_1, \cdots, x_k) \ dm(x_1) \cdots dm(x_k) \ , \end{split}$$

where $B = U B_j$ and $k = \sum k_j$.

Generally speaking, it seems difficult to find an explicit description of a family of density functions $\{\rho_B^n\}$. A particular case will be considered in the next section.

§3. A characterization of certain probability measures

In this section we shall consider the case when every density function ρ_B^n reduces a constant function, say c_B^n . The conditions $(\rho-1)-(\rho-4)$ become simpler as follows:

$$(c-1) c_{B}^{n} \ge 0 ,$$

$$(c-2) \sum_{n=0}^{\infty} \frac{c_{B}^{n}}{n!} (m(B))^{n} = 1 ,$$

$$(c-3) \sum_{n=0}^{\infty} \frac{c_{B}^{\ell+n}}{n!} (m(B'-B))^{n} = c_{B}^{\ell} \text{ for } B \subset B' .$$

We shall find a lucid expression of $\{c_R^n\}$.

We define a holomorphic function $h_{\mbox{\footnotesize{B}}}(t)$ by the formula:

$$h_B(t) = \sum_{n=0}^{\infty} \frac{c_B^n}{n!} t^n$$
 , $|t| < m(B)$.

The conditions (c-1)-(c-3) are replaced with the following

$$(h-1) h_B^{(n)}(0) \ge 0 , n \in \mathbb{N} ,$$

$$(h-2) h_B(m(B)) = 1$$
,

$$(h-3) h_{B'}^{(n)} (m(B'-B)) = h_{B}^{(n)} (0)$$
, whenever B \subset B'.

We note that $c_B^n = h_B^{(n)}$ (0). It follows from (h-3) that

$$\sum_{n=0}^{\infty} \frac{h_{B'}^{(n)}(m(B'-B))}{n!} (t-m(B'-B))^n = \sum_{n=0}^{\infty} \frac{h_{B}^{(n)}(0)}{n!} (t-m(B'-B))^n .$$

This implies that h_B , $(t+m(B')) = h_B(t+m(B))$. Thus, by analytic continuation, we get a holomorphic function H(t) in $D \subset \mathbb{C}$ such that

$$H(t) = h_{R}(t+m(B))$$
 if $|t+m(B)| < m(B)$.

Here D = { |t+m(X)| < m(X)} or { Re(t) < 0 } according as m(X) < ∞ or m(X) = ∞ . The following assertion is then direct.

Lemma 3.1. The function H(t) has the following conditions:

(H-1) H(t) is holomorphic in D,

$$(H-2) H^{(n)}(t) \ge 0 \text{ if } -m(X) < t < 0,$$

$$(H-3) H(0) = 1.$$

Conversely, if a function H(t) enjoys the conditions (H-1)-(H-3) above, { $c_B^n = H^{(n)}(-m(B))$ } satisfies the conditions (c-1)-(c-3).

Thus, if we are given a measure m on X and a function H(t) with the condition (H), where (H) stands for the conditions (H-1)- (H-3), a probability measure on Ω is constructed and denoted by $\mu_{\rm m,\,H}$.

Summing up the above results, we have

Theorem 3.2. Let μ be a probability measure on Ω which satisfies the condition (A). Then, every density function ρ_B^n reduces a constant function if and only if $\mu=\mu_{m,H}$ for some function H(t) with the condition (H). In this case $\rho_B^n\equiv H^{(n)}$ (-m(B)).

Example. As is easily verified, $H(t) = e^t$ satisfies the condition (H). In other words, $\{\exp(m_B)\}$ is a consistent family of probability measures. The probability measure $\mu_{m,H} = \varprojlim \exp(m_B)$ is called the *Poisson measure* on Ω and denoted by $\exp(m)$.

Remark. Even if a probability measure μ on Ω satisfies the condition (A), it is *not* necessarily absolutely continuous with respect to the Poisson measure $\exp(m)$.

The following result means that the Poisson measure is infinitely divisible. The proof is easy and omitted.

Proposition 3.3. Let $\{B_j\}$ be a locally finite partition of X and μ_j the image measure of the Poisson measure $\exp(m)$ under the canonical projection $\Omega \longrightarrow \Omega_{B_j}$. Then, $\exp(m) = \Pi \ \mu_j$ according to $\Omega = \Pi \ \Omega_{B_j}$.

We shall now give a decomposition of the measures $\mu_{\rm m,\,H}.$ If the measure m on X is finite, i.e. m(X) < ∞ , the polynomial ${\rm H_n}$ (t) given by

$$H_n(t) = \left[1 + \frac{t}{m(X)}\right]^n$$
, $n = 0, 1, 2, \cdots$

also satisfies the condition (H). The corresponding probability measure is denoted by $\mu_{\rm m,\,n}$ for simplicity. Then we have the following

Proposition 3.4. The measure $\mu_{m,n}$ is concentrated on $\Omega^n(X)$ ($\subset \Omega$). Moreover, the restriction of $\mu_{m,n}$ to $\Omega^n(X)$ coincides with the image measure of $(m(X))^{-n}$ m^n under the canonical projection $p_X^n: X^{[n]} \longrightarrow \Omega^n(X)$.

Obviously, $H(t)=e^{c\,t}$, $c\geqslant 0$, satisfies the condition (H) and that the corresponding probability measure $\mu_{m,\,H}$ is the Poisson measure exp(cm). Here we included a Dirac measure concentrated at ϕ (the empty configuration) as a Poisson measure exp(0). With these preparations, we can now state the following

Theorem 3.5. Let $\mu_{m,\,H}$ be a probability measure on Ω corresponding to a measure m on X and a function H(t) with (H).

- (1) If m(X) $< \infty$, there exists a unique sequence $\lambda_0, \lambda_1, \dots > 0$ with $\sum_{n=0}^{\infty} \lambda_n = 1$ such that $\mu_{m,H} = \sum_{n=0}^{\infty} \lambda_n \mu_{m,n}$.
- (2) If m(X) = ∞ , there exists a unique Borel probability measure λ on [0, ∞) such that $\mu_{\rm m,\,H}=\int_{[0,\,\infty)}\exp{\rm(cm)}\;{\rm d}\lambda{\rm(c)}$.

Proof. It follows from (H-2) that H(t) is a totally monotonic function on the interval (-m(X), 0). Then, by virtue of the Bernstein's theorem (e.g. [14]), we have

- (1) If m(X) < ∞ , there exists a unique sequence $\lambda_0, \lambda_1, \dots \ge 0$ with $\sum_{n=0}^{\infty} \lambda_n = 1$ such that $\mu_{m,H} = \sum_{n=0}^{\infty} \lambda_n \mu_{m,n}$.
 - (2) If $m(X) = \infty$, there exists a unique Borel probability

measure λ on $[0,\infty)$ such that $H(t) = \int_{[0,\infty)} e^{ct} d\lambda(c)$.

Here we consider only (2) in order to avoid repeating almost the same argument twice. Put

$$\mu' = \int_{[0,\infty)} \exp(cm) \, d\lambda(c) .$$

We have only to show that π_B $\mu' = \pi_B$ $\mu_{m,H}$ for any Borel subset B \subset X with compact closure. In fact,

$$\pi_{B} \mu' = \int_{[0,\infty)} \pi_{B} \exp(cm) d\lambda(c)$$

$$= \int_{[0,\infty)} \sum_{n=0}^{\infty} \frac{e^{-cm(B)} c^{n}}{n!} p_{B}^{n} m_{B}^{n} d\lambda(c)$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \left[\int_{[0,\infty)} e^{-cm(B)} c^{n} d\lambda(c) \right] p_{B}^{n} m_{B}^{n}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} H^{(n)} (-m(B)) p_{B}^{n} m_{B}^{n} = \pi_{B} \mu_{m,H}.$$

This completes the proof. Q. E. D.

Remark. If $m(X) < \infty$, the Poisson measure $\exp(m)$ itself is decomposed as follows:

$$\exp (m) = \sum_{n=0}^{\infty} e^{-m(X)} \frac{m(X)^n}{n!} \mu_{m,n}$$

Lemma 3.6. Let B_1,\cdots,B_N be mutually disjoint Borel subsets of X with compact closures and k_1,\cdots,k_N non-negative integers. Then

$$\mu_{m, H} \Big[\omega \in \Omega ; |\omega \cap B_{j}| = k_{j}, 1 \leq j \leq N \Big] =$$

$$= H^{(k)} (-m(B)) \prod_{j=1}^{N} \frac{m(B_{j})^{k} j}{k_{j}!},$$

where $B = U B_i$ and $k = \sum k_i$.

This is immediate from Proposition 2.1. Then we have the following result.

Proposition 3.7. Let $B\subset X$ be an arbitrary Borel subset and n a non-negative integer. Then

$$\mu_{m,H} \left[\omega \in \Omega ; |\omega \cap B| = n \right] = \left\{ \begin{array}{l} H^{(n)} \left(-m(B) \right) \frac{m(B)^n}{n!} , & \text{if } m(B) < \infty, \\ 0 & , & \text{othewise} \end{array} \right.$$

In particular, if m(X) = ∞ , the Poisson measure exp(m) is concentrated on the set of all infinite configurations, namely, $\exp\left(m\right)\left(\Omega-\Omega_{f}\left(X\right)\right) = 1.$

§4. Quasi-invariant measures on the configuration space

From this section on, X denotes a connected orientable (for technical simplicity) C^{∞} -manifold with a C^{∞} -volume form m. We always define a measure on X by the volume form and denote it by the same symbol. Let $\mathrm{Diff}_{\mathbf{C}}(X)$ the group of all diffeomorphisms of X which are identical outside a compact set (depending on $\mathbf{g} \in \mathrm{Diff}_{\mathbf{C}}(X)$). We introduce a topology in $\mathrm{Diff}_{\mathbf{C}}(X)$ as follows: The convergence of $\mathbf{g}_n \longrightarrow \mathbf{g}$ (as $n \longrightarrow \infty$) signifies that \mathbf{g} and all \mathbf{g}_n are identical outside a fixed compact set and that $\mathbf{g}_n(\mathbf{x}) \longrightarrow \mathbf{g}(\mathbf{x})$ with all the derivatives uniformly in X. The group $\mathrm{Diff}_{\mathbf{C}}(X)$ becomes a topological group (actually infinite dimensional Lie group). We denote by $\mathrm{Diff}_{\mathbf{C}}(X,\mathbf{m})$ the subgroup of all diffeomorphisms in $\mathrm{Diff}_{\mathbf{C}}(X)$ which preserve the volume form m.

The group $\text{Diff}_{\,c}\left(X\right)$ acts on the configuration space Ω by means of the maps:

 $\omega = \{x_1, x_2, \cdots\} \longmapsto g\omega = \{g(x_1), g(x_2), \cdots\}, \omega \in \Omega.$ Obviously, each $\Omega^n(X)$ is stable under this action.

Recall that every non-zero σ -finite Borel measure on \mathbb{R}^n which is quasi-invariant under translations is equivalent to the Lebesgue measure (e.g. [20]). Then we can prove the following

Proposition 4.1. Every non-zero σ -finite Borel measure on $\Omega^n(X)$ which is quasi-invariant under $\mathrm{Diff}_c(X)$ is equivalent to the image measure p_X^n m^n , where $p_X^n: X^{[n]} \longrightarrow \Omega^n(X)$ is the canonical projection.

Proposition 4.2. If a probability measure μ on Ω is quasiinvariant under the action of $\mathrm{Diff}_{\mathbf{C}}(X)$, it enjoys the property (A),
namely, for any Borel subset $\mathbf{B} \subset X$ with compact closure, $\mu_{\mathbf{B}}$ is
absolutely continuous with respect to $\exp\left(\mathbf{m}_{\mathbf{R}}\right)$.

Proof. Fix a sequence of open sets with compact closures $X_1\subset X_2\subset \cdots$ such that $X=\bigcup X_j$. It follows from Proposition 1.5 that $\Omega=\varprojlim \Omega_{X_j}$. Suppose that we are given a quasi-invariant measure μ on Ω . We write $\mu_j=\mu_{X_j}$ for brevity. We define a measure μ_j^n on $\Omega^n(X)$ by

$$\mu_{j} = \sum_{n=0}^{\infty} \frac{1}{n!} \mu_{j}^{n}$$
, according as $\Omega_{X_{j}} = \bigcup_{n=0}^{\infty} \Omega^{n}(X_{j})$.

By assumption we see that μ_j^n is quasi-invariant under Diff_c(X_j). It follows from Proposition 4.1 that there exists a measurable function $\rho_{X_i}^n(x_1,\cdots,x_n)$ such that

(i)
$$\rho_{X_{j}}^{n}(x_{1}, \dots, x_{n}) > 0$$
 or $\equiv 0$,

(ii)
$$\rho_{X_j}^n(x_{\sigma(1)}, \dots, x_{\sigma(n)}) = \rho_{X_j}^n(x_1, \dots, x_n)$$
 for any $\sigma \in \mathfrak{S}_n$,

(iii)
$$\mu_{j}^{n} = p_{X_{j}}^{n} \left[\rho_{X_{j}}^{n} m_{X_{j}}^{n} \right]$$

For any Borel subset B \subset X with compact closure, we define $\rho_B^{\boldsymbol\ell}$ by

the formula (ρ -4) in §2 (taking B' = X_i). Then,

$$\mu_{\mathrm{B}} = \sum_{\ell=0}^{\infty} \frac{1}{\ell!} p_{\mathrm{B}}^{\ell} \left[\rho_{\mathrm{B}}^{\ell} m_{\mathrm{B}}^{\ell} \right].$$

Hence μ_{B} is absolutely continuous with respect to $\exp\left(\mathbf{m}_{\mathrm{B}}\right)$. Q. E. D.

The following result is a direct consequence of a general theory ([20]).

Proposition 4.3. Let $X_1 \subset X_2 \subset \cdots$ be a sequence of open subsets with compact closures such that $X = \bigcup X_j$. A probability measure μ on Ω is quasi-invariant under $\mathrm{Diff}_{\mathbb{C}}(X)$ if and only if (i) $\mathrm{g}\mu_j$ is absolutely continuous with respect to μ_j for any $\mathrm{g} \in \mathrm{Diff}_{\mathbb{C}}(X_j)$ and $\mathrm{j} = 1, 2, \cdots$; (ii) the Radon Nikodym derivatives $\mathrm{d}(\mathrm{g}\mu_j)/\mathrm{d}\mu_j$ converges in $\mathrm{L}^1(\mu)$. (Here we write $\mu_j = \mu_{X_j}$.)

Applying this result to the measure $\mu_{ exttt{m.H}}$, we obtain

Proposition 4.4. The probability measure $\mu_{\rm m,\,H}$, where H is a function with the property (H), is quasi-invariant under Diff (X) and invariant under Diff (X,m). Furthermore, we have

$$\frac{\mathrm{d}\mu_{\mathrm{m,H}}(\mathrm{g}^{-1}\omega)}{\mathrm{d}\mu_{\mathrm{m,H}}(\omega)} = \prod_{\mathrm{x}\in\omega} \frac{\mathrm{d}\mathrm{m}(\mathrm{g}^{-1}\mathrm{x})}{\mathrm{d}\mathrm{m}(\mathrm{x})}.$$

Finally, we can prove the following assertions, c.f. [12].

Proposition 4.5. (1) If $m(X) = \infty$, the Poisson measure exp(m) is ergodic under Diff (X).

(2) If $m(X) = \infty$ and if dim X > 1, the Poisson measure $\exp(m)$ is ergodic under Diff (X, m).

(3) If m(X) < ∞ , the probability measure $\mu_{m,n}$ is ergodic under Diff (X) for all n = 0,1,2,...

§5. Unitary representations associated with finite configurations

We consider the finite configuration space $\Omega^n(X)$. There is a (essentially) unique measure μ_n which is quasi-invariant under Diff_c(X) (Proposition 4.1). A map σ : Diff_c(X)× Ω \longrightarrow \mathfrak{S}_n is called a 1-cocycle (of Diff_c(X) with values in the group of maps $\Omega^n(X)$ \longrightarrow \mathfrak{S}_n) if it satisfies

$$\sigma(g_1g_2, \omega) = \sigma(g_1, \omega) \sigma(g_2, g_1^{-1}\omega).$$

Two 1-cocycles σ and σ' are said to be $\it cohomologuous$ if there exists a map $\sigma_0:\Omega \longrightarrow \mathfrak{S}_n$ such that

$$\sigma'(g,\omega) = \sigma_0(\omega) \ \sigma(g,\omega) \ \sigma_0(g^{-1}\omega)^{-1}$$

Let $(
ho, W^
ho)$ be a unitary representation of \mathfrak{S}_n . We form a unitary representation $\pi^{
ho,\,\sigma}$ of ${\rm Diff}_c$ (X) by the formula:

$$(\pi^{\rho, \sigma}(g) f) (\omega) = \left[\frac{d\mu_n(g^{-1}\omega)}{d\mu_n(\omega)} \right]^{1/2} \rho(\sigma(g, \omega)) f(g^{-1}\omega) ,$$

f $\in L^2(\Omega,\mu_n)\otimes W^\rho$, i.e. a square integrable function on Ω with values in $W^\rho.$

In what follows, we shall restrict ourselves to a particular case when a 1-cocycle σ comes from a measurable cross section. Fix a measurable cross section s for the canonical projection $p_X^n: X^{[n]} \longrightarrow \Omega^n(X)$. For each $g \in \mathrm{Diff}_{\mathbb{C}}(X)$ and $\omega \in \Omega$ there exists a unique permutation $\sigma(g,\omega)$ such that

$$s(g^{-1}\omega) = g^{-1}(s(\omega)) \sigma(g,\omega).$$

Clearly, σ(g,ω) becomes a 1-cocycle. We note that two 1-cocycles

constructed from cross sections are cohomologuous. If σ is such a 1-cocycle, the representation $\pi^{
ho,\,\sigma}$ will be denoted by $\pi^{
ho}$.

The representations π^{ρ} are realized in a slightly different way as follows. The group $\operatorname{Diff}_{c}(X)$ and the symmetric group \mathfrak{S}_{n} acts on X^[n] by means of the maps:

$$x = (x_1, \dots, x_n) \longrightarrow gx = (g(x_1), \dots, g(x_n)), g \in G.$$

$$x = (x_1, \dots, x_n) \longrightarrow x\sigma = (x_{\sigma(1)}, \dots, x_{\sigma(n)})$$
, $\sigma \in \mathfrak{S}_n$.

Since we always assume that $X^{[n]}$ is equpped with a measure m^n , where m is a C^{∞} -volume form on X, we have $L^{2}(X^{n}) = L^{2}(X^{[n]})$. For any unitary representation (ρ , W^{ρ}) of \mathfrak{S}_n we put

$$H^\rho = \Big\{ \ f \in L^2(X^n, \mathfrak{m}^n) \otimes \, \mathbb{W}^\rho \ ; \ f(x\sigma) = \rho^{-1}(\sigma) \, f(x) \, , \ x \in X^n \ , \ \sigma \in \mathfrak{S}_n \ \Big\}.$$
 Then the unitary representation π^ρ is realized on H^ρ :

$$(\pi^{\rho}(g) f)(x) = \begin{bmatrix} n & \frac{dm(g^{-1}x_k)}{dm(x_k)} \\ k=1 & \frac{dm(x_k)}{dm(x_k)} \end{bmatrix}^{1/2} f(g^{-1}x), \quad f \in H^{\rho}.$$

The following result was proved in [8] and [12].

Theorem 5.1. If dim X > 1, the representations π^{ρ} of Diff (X) are irreducible and mutually inequivalent.

The representations $\pi^{
ho}$ arise quite naturally. We now introduce a unitary representation \boldsymbol{U}_n of Diff_c (X) by the formula:

$$(U_n(g) f)(x) = \begin{bmatrix} n & \frac{dm(g^{-1}x_k)}{dm(x_k)} \end{bmatrix}^{1/2} f(g^{-1}x), \quad f \in L^2(X^n).$$

If $\sigma \in \mathfrak{S}_n$, we define a unitary operator $V_n(\sigma)$ on $L^2(X^n)$ by

$$(V_n(\sigma)f)(x) = f(x\sigma), f \in L^2(X^n).$$

Obviously, $U_n(g)$ and $V_n(\sigma)$ commute each other. The following argument is similar to the representation theory of general linear group. We denote by \mathfrak{S}_n^{\wedge} the set of all equivalence classes of irreducible unitary representations of \mathfrak{S}_n . For each equivalence class of \mathfrak{S}_n^{\wedge} we fix a representation matrix $\rho = (\rho_{ij})_{1 \leq i,j \leq \dim \rho}$. We put

$$P_{ij}^{\rho} = \frac{\dim \rho}{n!} \sum_{\sigma \in \mathfrak{S}_{n}} \rho_{ij}(\sigma^{-1}) V_{n}(\sigma) , \quad 1 \leq i, j \leq \dim \rho , \quad \rho \in \mathfrak{S}_{n}^{\wedge} .$$

Obviously, these operators commute with $U_n(g)$, for all $g \in \mathrm{Diff}_c(X)$. The following relations are easily verified.

$$P_{ij}^{\rho} P_{k\ell}^{\rho'} = 0 \quad \text{if } \rho = \rho' .$$

$$P_{ij}^{\rho} P_{k\ell}^{\rho} = \delta_{jk} P_{i\ell}^{\rho} .$$

$$(P_{ij}^{\rho})^* = P_{ji}^{\rho} .$$

$$\sum_{\rho \in \mathfrak{S}_{n}^{\wedge}} \sum_{i=1}^{\dim \rho} P_{ii}^{\rho} = 1 .$$

Then we have the following

Lemma 5.2. $P_{i\,i}^{\rho}$ is a non-zero projection. $P_{i\,j}^{\rho}$ is a partial isometry with initial projection $P_{j\,j}^{\rho}$ and final projection $P_{i\,i}^{\rho}$.

Proof. For proving $P_{ii}^{\rho} = 0$, we let $f(x_1, \dots, x_n)$ be the indicator function of $0_1 \times \dots \times 0_n$, where $0_1, \dots, 0_n$ are mutually disjoint open sets of X with compact closures. Then we can show that

$$\begin{array}{ccc} \dim & \rho \\ \sum & P_{i i}^{\rho} & f = 0 \end{array}.$$

Since P_{ii}^{ρ} , $1 \le i \le \dim \rho$, are mutually equivalent projections, we have $P_{ii}^{\rho} \ge 0$. The rest of the assertion is immediate from the

relations given above. Q. E. D.

The following assertion is easy to see.

Proposition 5.3. The unitary representation \mathbf{U}_{n} is decomposed into a sum of unitary representations π^{ρ} :

$$U_n \simeq \sum_{\rho \in \mathfrak{S}_n^{\Lambda}} (\dim \rho) \pi^{\rho}$$
,

according as

$$L^{2}(X^{n}, \mathbf{m}^{n}) = \sum_{\rho \in \mathfrak{S}_{n}^{\wedge}} \sum_{i=1}^{\dim \rho} P_{i,i}^{\rho}(L^{2}(X^{n}, \mathbf{m}^{n})).$$

Remark. In case when dim X = 1, i.e. X = S^1 (circle) or X = \mathbb{R}^1 (real line), the decomposition given in Proposition 5.3 is also valid. In these cases, however, the representation π^ρ is further decomposed. We omit a detailed discussion here.

Remark. Further detailed arguments were done in [8], where the representations π^{ρ} were obtained in a frame work of orbit method.

§6. Unitary representations associated with infinite configurations

Let μ be a probability measure on Ω which is quasi-invariant under Diff_c(X). In this section we always assume that μ is concentrated on the set of all infinite configurations, i.e. $\mu(\Omega-\Omega_{\mathbf{f}}(\mathbf{X})) = 1.$ For instance, the Poisson measure $\exp(\mathbf{m})$ is such a measure if $\mathbf{m}(\mathbf{X}) = \infty$ (see Proposition 3.7). We agree to understand that Ω consists of infinite configurations.

The infinite symmetric group is the discrete group of all

finite permutations of $\mathbb{N}=\{1,2,\cdots\}$ and denoted by \mathfrak{S}_{∞} . A map $\sigma: \operatorname{Diff}_{\mathbf{C}}(X) \times \Omega \longrightarrow \mathfrak{S}_{\infty}$ is called a 1-cocycle (of $\operatorname{Diff}_{\mathbf{C}}(X)$ with values in the group of maps $\Omega \longrightarrow \mathfrak{S}_{\infty}$) if it satisfies

$$\sigma(g_1g_2, \omega) = \sigma(g_1, \omega) \ \sigma(g_2, g_1^{-1}\omega)$$
 , μ -a.e. ω .

Two 1-cocycles σ and σ' are said to be cohomologuous if there exists a map $\sigma_0:\Omega\longrightarrow\mathfrak{S}_\infty$ such that

$$\sigma'(g,\omega) = \sigma_0(\omega) \sigma(g,\omega) \sigma_0(g^{-1}\omega)^{-1}$$
, μ -a.e.

We associate with each unitary representation (π, H^{π}) of \mathfrak{S}_{∞} , a unitary representation $U^{\mu,\,\pi,\,\sigma}$ of Diff (X):

$$(*) \qquad (U^{\mu,\,\pi,\,\sigma}(g)\,f)\,(\omega) \;=\; \left[\frac{\mathrm{d}\,\mu\,(g^{-1}\omega)}{\mathrm{d}\,\mu\,(\omega)}\right]^{1/2} \;\pi\,(\sigma\,(g,\omega)) \;\;f\,(g^{-1}\omega) \;\;,$$

where $f \in L^2(\Omega,\mu) \otimes H^{\pi}$, i.e. a square-integrable function on Ω with values in H^{π} . For unitary representations of \mathfrak{S}_{∞} , see [17] and its references. A complete classification of the unitary representations $U^{\mu,\pi,\sigma}$ has not been obtained yet. In what follows, we shall mention several particular cases.

If π is the trivial representation, we write $U^{\mu}=\,U^{\mu,\,\pi,\,\sigma}$ for simplicity. Then

$$(\operatorname{U}^{\mu}(\mathsf{g})\,\mathsf{f})\,(\omega) \;=\; \left(\frac{\mathrm{d}\,\mu\,(\mathsf{g}^{-1}\omega)}{\mathrm{d}\,\mu\,(\omega)}\right)^{1/2}\;\mathsf{f}\,(\mathsf{g}^{-1}\omega)\quad,\;\;\mathsf{f}\;\in\;\mathsf{L}^2(\Omega,\mu)\,.$$

The following result was proved in [12].

Theorem 6.1. The unitary representation U^{μ} is irreducible if and only if μ is ergodic under Diff $_{c}$ (X).

We have discussed in §3, a class of quasi-invariant probability measures $\mu_{m,H}$. Recall that $\mu_{m,H}$ is concentrated on the set of infinite configurations if $m(X)=\infty$. For simplicity we write $\mu=\mu_{m,H}$. We shall consider the corresponding representation U^{μ} of

Diff_c(X). Let \mathcal{H} be a closed subspace of $L^2(\Omega,\mu)$ spanned by $\{U^{\mu}(g)\mathbf{1}; g \in \mathrm{Diff_c}(X)\}$, where $\mathbf{1}(\omega) \equiv 1$. We denote by U the restriction of U^{μ} on the space \mathcal{H} , which becomes a cyclic representation of $\mathrm{Diff_c}(X)$ with a cyclic vector $\mathbf{1}$.

Lemma 6.2. We have

$$(\operatorname{U}^{\mu}(\mathbf{g}) \, \mathbf{1}, \, \mathbf{1}) \, = \, \operatorname{H} \, \left(\int_{\mathbf{X}} \left[\left(\frac{\operatorname{dm} \, (\mathbf{g}^{-1} \, \mathbf{x})}{\operatorname{dm} \, (\mathbf{x})} \right)^{1/2} \, - \, \mathbf{1} \, \right] \, \operatorname{dm} \, (\mathbf{x}) \, \right) \, , \quad \mathbf{g} \, \in \, \operatorname{Diff}_{\mathbf{c}} \, (X) \, .$$

Proof. It follows from Proposition 4.4 that

$$(U^{\mu}(g) 1, 1) = \int_{Q} \prod_{x \in \omega} \left(\frac{dm(g^{-1}x)}{dm(x)} \right)^{1/2} d\mu_{m, H}(\omega)$$
.

Take a Borel subset $B \subset X$ with compact closure such that supp $g \subset B$. Then the last integral becomes

$$\int_{\Omega_{B}} \prod_{\mathbf{x} \in \omega} \left[\frac{dm(g^{-1}x)}{dm(\mathbf{x})} \right]^{1/2} d \left[\sum_{n=0}^{\infty} \frac{1}{n!} H^{(n)}(-m(B)) p_{B}^{n} m_{B}^{n} \right] (\omega)$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} H^{(n)}(-m(B)) \left[\int_{B} \left[\frac{dm(g^{-1}x)}{dm(\mathbf{x})} \right]^{1/2} dm(\mathbf{x}) \right]^{n}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} H^{(n)}(-m(B)) \left[\int_{B} \left[\left(\frac{dm(g^{-1}x)}{dm(\mathbf{x})} \right)^{1/2} - 1 \right] dm(\mathbf{x}) + m(B) \right]^{n}$$

$$= H \left[\int_{X} \left[\left(\frac{dm(g^{-1}x)}{dm(\mathbf{x})} \right)^{1/2} - 1 \right] dm(\mathbf{x}) \right],$$

as desired. Q. E. D.

Viewing Proposition 4.5 and Lemma 6.2 we have

Theorem 6.3. Assume that dim X>1 and $m(X)=\infty$. Then the unitary representation $U^{\exp(m)}$ is of class one with respect to the subgroup $\operatorname{Diff}_{\mathbb{C}}(X,m)$, namely, (i) it is irreducible; (ii) there exists a unique non-zero vector 1 (up to constant factor) which is fixed under $\operatorname{Diff}_{\mathbb{C}}(X,m)$. The spherical function is given by

$$(U^{e \times p \cdot (m)}(g) 1, 1) = \exp \left[\int_{X} \left[\left(\frac{dm \cdot (g^{-1} x)}{dm \cdot (x)} \right)^{1/2} - 1 \right] dm \cdot (x) \right].$$

In particular, if c = c' (c,c' > 0), two representations $U^{\exp(cm)}$ and $U^{\exp(c'm)}$ are not equivalent.

Remark. The representation $U^{\exp(m)}$ is also realized on $L^2(\mathfrak{D}'(X), \nu)$, where ν is the standard Gaussian measure on the space $\mathfrak{D}'(X)$ of distributions on X, (see [12]).

With the help of Proposition 6.3 and Theorem 3.5, we obtain the following

Proposition 6.4. The cyclic representation (U, \Re , 1), $\mu=\mu_{\rm m,\,H}$, is decomposed into a sum of irreducible representations:

$$U^{\mu} \simeq \int_{[0,\infty)}^{\bigoplus} U^{\exp(cm)} d\lambda(c)$$
.

The unitary representation $\pi_n=\pi^{1}n$, where 1_n is the trivial representation of \mathfrak{S}_n , is called an n-particle representation after [2]. Let $X_1\subset X_2\subset \cdots\subset X$ be connected open submanifolds with compact closures such that $X=\bigcup X_n$. Choose a sequence of C^∞ -functions α_n (x) on X such that

(i)
$$0 < \alpha_n(x) \le 1$$
,

(ii)
$$\alpha_n(x) = 1$$
 if $x \in X_n$,

(iii)
$$\int_X \alpha_n(x) dm(x) < + \infty.$$

Define a new volume form $m_n=\alpha_n(x)m$, $n=1,2,\cdots$. Obviously, $m_n(X)<+\infty$ and m_n is equivalent to m. For each $n=0,1,2,\cdots$ we form π_n using the volume form m_n . Then it becomes of class one with respect to $\mathrm{Diff}_c(X,m_n)$. As a normalized fixed vector under $\mathrm{Diff}_c(X,m_n)$ we take $f_n(x)\equiv (m_n(X))^{-n/2}$. The spherical function is given by

$$v_n(g) = (\pi_n(g) f_n, f_n)$$

$$= \left[\frac{1}{m_n(X)} \int_X \left(\frac{dm_n(g^{-1}x)}{dm_n(x)} \right)^{1/2} dm_n(x) \right]^n.$$

The following assertion suggests that the irreducible representation $U^{\exp{(m)}}$ could be considered as a limit of n-particle representations.

Proposition 6.5. If
$$\lim_{n\to\infty} \frac{n}{m_n(X)} = c$$
 (>0), we have $\lim_{n\to\infty} v_n(g) = (U^{\exp(cm)}(g)1, 1)$.

Proof. For each $g \in Diff_c(X)$, we take a sufficiently large n such that supp $g \subset X_n$. Then, by definition we have

$$\left(\frac{dm_n(g^{-1}x)}{dm_n(x)}\right)^{1/2} - 1 = \left(\frac{dm(g^{-1}x)}{dm(x)}\right)^{1/2} - 1, \quad \text{if } x \in X_n,$$

$$= 0, \quad \text{otherwise.}$$

Viewing this, we have

$$v_{n}(g) = \left[1 + \frac{1}{m_{n}(X)} \int_{X} \left[\left(\frac{dm(g^{-1}x)}{dm(x)}\right)^{1/2} - 1\right] dm(x)\right]^{n}$$

$$\longrightarrow \exp\left[c \int_{X} \left[\left(\frac{dm(g^{-1}x)}{dm(x)}\right)^{1/2} - 1\right] dm(x)\right] \quad \text{as } n \longrightarrow \infty.$$

The assertion is now immediate from Theorem 6.3. Q.E.D.

Finally we consider unitary representations of $\operatorname{Diff}_{c}(X)$ of the form (*). We consider

$$X_{i}^{[\infty]} = \{ x = (x_1, x_2, \dots) \in X^{\infty} ; x_i = x_j \text{ if } i = j \}$$

furnished with the relative σ -field. (X^{∞} is furnished with the usual product σ -field.) An injective map $s:\Omega\longrightarrow X^{[\infty]}$, $s(\omega)=(s_1(\omega),\ s_2(\omega),\ \cdots)$, is called an indexing ([12]) if (i) $\omega=\{s_1(\omega),\ s_2(\omega),\ \cdots\}$; (ii) s is a Borel isomorphism between Ω and $s(\Omega)$. For each $g\in \mathrm{Diff}_c(X)$ and $\omega\in\Omega$, there exists a unique automorphism $\sigma(g,\omega)$ of $\mathbb N$ such that

$$s(g^{-1}\omega) = g^{-1}(s(\omega)) \sigma(g,\omega)$$
.

If every $\sigma(g,\omega)$ belongs to \mathfrak{S}_{∞} , the indexing s is called *correct*. In this case, $\sigma(g,\omega)$ is called a *correct 1-cocycle*.

The finite symmetric groups \mathfrak{S}_n are naturally regarded as subgroups of \mathfrak{S}_{∞} . We denote by $\mathfrak{S}_{\infty-n}$ the subgroup of all finite permutations leaving n+1,n+2,··· fixed. If ρ is an irreducible representation of \mathfrak{S}_n , we write $\rho*1=\operatorname{Ind} \frac{\mathfrak{S}_{\infty}}{\mathfrak{S}_n\times\mathfrak{S}_{\infty-n}}$ $\rho\times1$, where 1 is the trivial representation of $\mathfrak{S}_{\infty-n}$. Then we can prove the following

Proposition 6.6. Let σ be a correct 1-cocycle. Then the unitary representation $U^{\exp{(m)}}$, $\rho*1$, σ is equivalent to $\pi^{\rho}\otimes U^{\exp{(m)}}$.

For irreducibility we have the following result ([12]).

Theorem 6.7. Assume that dim X > 1. The tensor product $\pi^{\rho} \otimes U^{\mu} \text{ is irreducible if and only if } \mu \text{ is ergodic under Diff}_{c} (X) \text{ and } \rho \text{ is an irreducible representation of } \mathfrak{S}_{n} \text{ .}$

§7. Concluding remarks

In [3] and [4], a probability measure is introduced on the space of all closed subsets of X, X being a compact manifold, and corresponding unitary representations are discussed. In particular, an example of a probability measure on the space of all convergent sequences in X is given.

Probability measures can be constructed on the group Γ of all homeomorphisms of the circle which is quasi-invariant under Diff(S¹). (The action of Diff(S¹) is defined by $\gamma \longmapsto g \circ \gamma$, $\gamma \in \Gamma$.) For example, see [19]. This suggests a possibility to consider a regular representation of Diff(S¹).

References

- [1] G. A. Goldin, Nonrelativistic current algebras as unitary representations of groups, J. Math. Phys., 12 (1971), 462-487.
- [2] G. A. Goldin, J. Grodnik, R. T. Powers and D. H. Sharp, Nonrelativistic current algebra in the N/V limit, J. Math. Phys., 15 (1974), 88-100.
- [3] R. S. Ismagilov, Unitary representations of the group of diffeomorphisms of a circle, Funct. Anal. Appl., 5 (1971), 209-210
- [4] R. S. Ismagilov, On unitary representations of the group of the diffeomorphisms of a compact manifold, Math. USSR, Izv., 6 (1972) 181-209.
- [5] R. S. Ismagilov, Unitary representations of group of diffeomorphisms of space \mathbb{R}^n , $n \ge 2$, Funct. Anal. Appl., 9 (1975), 154-155.
- [6] R.S. Ismagilov, Unitary representations of groups of measure-

- preserving diffeomorphisms, Funct. Anal. Appl., 11 (1977), 229-230.
- [7] R. S. Ismagilov, Unitary representations of groups of measure-preserving diffeomorphisms, Funct. Anal. Appl., 12 (1978), 226-227.
- [8] A. A. Kirillov, Unitary representations of the group of diffeomorphisms and some of its subgroups, preprint IPM, No. 82 (1974).
- [9] Yu. A, Neretin, The complementary series of representations of the group of diffeomorphisms of the circle, Russian Math. Surveys, 37-2 (1982), 229-230.
- [10] Yu. A. Neretin, Unitary representations with highest weight of the group of diffeomorphisms of a circle, Funct. Anal. Appl., 17 (1983), 235-237.
- [11] G. Segal, Unitary representations of some infinite dimensional groups, Commun. Math. Phys., 80 (1981), 301-342.
- [12] A. M. Vershik, I. M. Gelfand and M. I. Graev, Representations of the group of diffeomorphisms, Russian Math. Surveys 30-6 (1975), 1-50.
- [13] W. Arveson, An invitation to C*-algebra, Chapter 3, Graduate
 Texts in Math. 39, Springer-Verlag, 1976.
- [14] G. Choquet, Lectures on analysis, Vol. II, Chapter 7, Benjamin, 1969.
- [15] A. A. Kirillov, Dynamical systems, factors and representations of groups, Russian Math. Surveys, 22-5 (1967), 63-75.
- [16] K. Matthes, J. Kerstan and J. Mecke, Infinitely divisible point processes, John Wiley & Sons, 1978.
- [17] N. Obata, Certain unitary representations of the infinite symmetric group I, II, to appear in Nagoya Math. J.
- [18] C. Preston, Random fields, Lecture Notes in Math., 534, Springer-Verlag, 1976.

- [19] E.T. Shavgulidze, An example of a measure quasi-invariant under the action of the diffeomorphism group of the circle, Funct.

 Anal. Appl., 12 (1978), 203-207.
- [20] Y. Yamasaki, Measures on infinite dimensional spaces, Series in Pure Math., 5, World Scientific, 1985.