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Configuration Space and Unitary Representations

of the Group‘of Diffeomorphisms

by Nobuaki OBATA (Nagoya Univ.)

B x® A B (L2 )

Introduction

Let X be a connected C -manifold and DiffC(X) the group of
all diffeomorphisms of X which are identical outside a compact set.
The group Diffc(X), furnished with a natural topology ( see 8§4 ),
becomes an infinite dimensional lLie group. Unitary representations of
Diff (X> have been studied by many authors [1]-[12]. In this note, we
shall consider them from measure—theoretical point of view.

Let © be a measurable space on which the group Diffc(X)
acts as measurable iransformations and # a o—finite measure on £
quasi—invariant under Diffc(X). Then, the triple (Q,p,DiffC(X))
(sometimes abbreviated to Q,m) is called a dynamical system after
Kirillov [15]. Given a dynamical system (Q,#), we form a unitary

representation U of DiffC(X):

. -1 _ :
W) £ @) = [94“—(5-—“’) Alg, o f(g to)

172
du (w) ]

where f is a square—integrable (w.r.t. @) function on § with values
in a separable Hilbert space H and A(g,®) a l-cocycle with values in
the group of all unitary operators on H. Among many candidates‘for a
dynamical system (§, #), the configuratién space (for definition,
see §1) seems very interesting In connection with theory of random
fields, statistical models Ce.g. [16],[18] > and representations of
the infinite symmetrié group.

In §81-3, we shall develop a general theory of the

"configuration space and probability measures on it. In 8§§4-6, unitary
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reprsentations of Diffc(X) associated with the configuration space
will be considered mainly after [12]. Finally, 8§87 contains a few

remarks on another dynamical systems.

§1. Configuration space

Let X be a second countable locally compact space (always
assumed Hausdorff). A locally finite subset of X is called a
configuration in X. The set of all configurations in X will be

denoted by Q = QX . For any Borel subset B of X, we put

Qp={eoe; lonB°| =0}
and for each integer n =0,1,2,--,
Q"® ={weQ; lonB°l =0 and lo n Bl =n },
where |:| denotes the cardinality. Note that %@ = {#t, where ¢ is

the empty configuration. We set

Q.(B) = Q" (B

f

ncs

n=0
If B has a compact closure, obviously Qf(B) = QB . For each intesger

n=1,2,-+-, put
B[n] = §{ x= (Xq,***,X. ) € B ; x. = x, if i = i}
1’ ’ n ’ i J :
The symmetric group 6n acts on B[n] as coordinate permutations:

X = (x1,~-~, xn) — X0 = (xo(l)’ sy, xa(n)) ,

where x € B[n] and ¢ € Gn . We tacitly understand B[0]= {¢} and

60 = {e}. The quotient space B[n]/ 6n is identified with Q" (B) in an

obvious way. We denote by pg the canonical projection B[n] — o"m.
We now recall that a subset Y of X becomes a locally

compact space with respect to the relative topology if and only if it

is locally closed. If Y € X is locally closed, Qf(Y) becomes a second
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countable locally compact space in a natural manner. Furnished with
the topological o-field, Qf(Y) becomes a standard measurable space.

Lemma 1.1. The o-field of Q,.CY), Y being a locally closed

f
subset of X, is generated by all sets of the form { o € Qf(Y);
le@ Mn B} = n }, where B runs over all Borel sets of Y and n all

non—negative integers.

Lemma 1.2, Let Y and Y’ be two locally closed subsets of X
such that Y « Y’. Then the natural projection nYY':igf(Y’) —_— Qf(Y)

defined by ﬂYy,(m) = o N Y.is measurable.

These results are not hard to prove. Unless X is a discrete
space, the natural projection ﬂYY’ is not continuous in general.
Identifyving Q@ with the projective limit measurable space lig Qf(Y),
we introduce a o—field in © . The measurable space §2 will be called
the configuration space. The following properties can be shown with

the help of general theory of measurable spaces, e.g. [13}],[20].

‘Proposition 1.3. The o-field of © is generated by all sets
of the form { @ € Q ; I@ N Bl = n }, where B runs over all Borel
subsets with compact closﬁres and n all non—negative integers.
Moreover, the set { w €  ; |lea "n B} = n } is measurable for any Borel

set B ¢ X.

It follows from Lemma 1.3 that Qg = { @ € @ ; lo n B°| =0
is measurable for any Borel subset B c X. We introduce the relative
c—field in it. If Y « X is a locally closed get with éompact closure,
two o—~fields of Qf(Y), i.e. the topological o—field and the relative

o—field, coincide by Lemma 1.1 and Proposition 1.3.
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A partition {Bj} of X, Bj being a Borel subset of X, is
called locally finite if for any compact set C « X, the number of j’s
such that Bjn C is not empty is finite. The following result means

that the configuration space Q is infinitely divisible.

Proposition 1.4. Let B ,By, - be mutually disjoint Borel
subsets of X and put B = U Bj' 1f {Bj}U{BC} is a locally finite

partition of X, QB is Borel isomorphic to the product space Il QB .
Jj

This implies that the canonical projection pRs * QB, —_— QB

is measurable for any two Borel subsets B ¢ B < X.

Proposition 1.5, The configuration space § is Borel
isomorphic to the projective limit lim QB , where B runs over all
Borel subsets.of X with compact closures., If Blc B2c +++ c X be a
sequence of Borel subsets with compact closures such that X = U Bj s

then @ is also Borel isomorphic to lim QBj.

Proposition 1.6. If B c X is a Borel subset with compact

closure, QB is a standard measurable space.
§2. Construction of measures

As is well known, every probability measure on the
configuration space Q = ;im QB is uniquely determined by a consistent
family of probability measiures {FB}, where tp is a probability
measure on QB satisfying nBB’#B’ = #p for all B ¢ B’.

In this note, by a measure on X we always mean a Borel

measure m, possibly m(X) = « , such that (i) m is non—atomic;
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(i) m(C) < « for any compact subset C « X. For any Borel set B ¢ X,

4o B[n] We note that

we denote by mg the festriction of m
mn(Bn-B[n]) = 0. If Bec X is a Borel subset with compact closure, a

probability measure exp(mB) on QB is defined by the.formula:

-m (B) E 1 n

- n
exp(mB) = g 0 T PR Mg

iy
according to the decomposition QB = U Q" @B).

We are interested in probability measures g = Lim £p having
the property:

A ) is absolutely continuous with respect tb exp(mB)

for any Borel set B ¢ X with compact closure.
This looks rather strong but quite natural for our purpose, (see §4).
Given a probability measure # on ©Q with the condition (A), we have a
family of density functions {pg } defined by the formula:

= 3 kv oh (of o)

n=0

The following properties are satisfied:

(p—=1> pg is a non-negative function on g" .
— n “ .. ‘= n ‘ » e
(p=-2> PB(xl, ,xn) pB(xo(l), y xa(n)) , 0 €6,

ey s L n -
(p=3) zo L j PR Xy, oy X)) dmGxp) - dm(x ) = 1,

n gn
(p-4> if B e B , PE(xys taxy) =
=5 1 £+n
_n§0 T . pB, (xl,‘ s XgsXgiqs ,x£+n) dm(x£+l) dm(xz+n).
- (B’ -B)

The converse is also true, i.e. {Pg } satisfying the above conditions
(Pp—1)—(p—4) forms a probability measure g on Q with (A,

Every-probability measure # on Q is uniquely determined if
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the values gl € @ ; la N ij = kj , 1 £ < N) are given, where
Bl,-'-, BN < X are mutually disjoint Borel subsetis with compact

closures and kl,-',kN non—-negative integers.

Proposition 2.1. Let # be a probability measure on §

satisfying (A). Then, for any mutually disjoint Borel subsets Bl’.;"

BN c X with compact closures and for any non—negetive integers kl’
‘s kN 3
p[ w €0 ; lon Bj] = kj , 1 €£3j <N ] =
=1 I pk(x s, X, ) dm(x,) s cdmix, D
kit k! k k B "1’ * Tk 1 k }
1 N 1 N
B1 x...xBN

where B = U Bj and k = 2 kj

Generally speaking, it seems difficult to find an explicit
description of a family of density functions {Pg}. A particular case

will be considered in the next section.
§3. A characterization of certain probability measures
In this section we shall consider the case when every

density function p% reduces a constant function, say c% . The

conditions (P—1)-(p—4) become simpler as follows:

_ n
(c—1) cB>0,
n
< °B n
(¢c=2) 2 —= m®@)" =1,
“~“, n!
n=0
_ g+n
< °B n I3
(c-3) 2 3 (m(B’-B))" = Cg for B ¢ B’
n=g 0!

We shall find a lucid expression of {cg}.
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We define a holomorphic function hB(t) by the formula:

ho(t) = 3 o, [t] < m(B)

B n=0

n'!

The conditions (c—1)-(c—3) are replaced with the following

(n)

¢th~-1> hB () >0, n €N,

th—-2> hB(m(B)) =1,

(h=3) hé?)(m(B’—B)) = hén)(O) . whenever B ¢ B’.

We note that cg = hén)(O). It follows from (h—3) that

n
B’
0 n!

(n
hB q0)

0 n!

h m (B’ B3>

(t-m (B’ =B = (t-m (B’ =By "

n

N8

This implies that hB,(t+m(B’))—= hB(t+m(B)). Thus, by analytic

continuation, we get a holomorphic function H(t) in D &« € such that
H(t) = hB(t+m(B)) if [tvm®B)| < m@®B.

Here D = { [t+mX |< mD} or { Re(t)<0 } according as mX) < = or

mX) = « . The following assertion is then direct.

Lemma 3.1. The function HCt) has the following conditions:
(H-1> H(t) is holomorphic in D,

m-2) M

(¢ 20 if —mX) < t<0,
(H-3> HW = 1.
Conversely, if a function H(t)>enjoys the conditions H-1)-H-3

above, { cg = H(n)(—m(B)) } satisfies the conditions (c=1)-(c—3).

Thus, if we are given a measure m on X and a function H({L)
with the condition (D, where (H) stands for the conditions (H-1)>-

(H-3), a probability measure on Q is cons tructed and denoted by P 1
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Summing up the above results, we have

Theorem 3.2. Let # be a probability measure on § which
satisfies the condition (A). Then, every density function pg reduces
a constant function if and only if p# = Ko H for some function H(LD

(nd

with the condition (H). In this case pg = H (-m(B)).

Example. As is easily verified, H(t) = et satisfies the
condition (H). In other words, {exp(mB)} is a consistent family of
probability measures. The probability measure #m,H = }1m exp(mB) is

called the Poisson measure on Q and denoted by exp (md.

Remark. Even if a probability measure # on § satisfies the
condition (A), it is nrot necessarily absolutely continuous with

respect to the Poisson measure exp (m).

The following result means that the Poisson measure is

infinitely divisible. The proof is easy and omitted.

Proposition 3.3. Let {Bj}‘be a locally finite partition of
X and ”j the image measure of the Poisson measure exp (m) under the

canonical projection  — QB . Then, exp@m = II pj according to

Q=19, .
B;

We shall now give a decomposition of the measures T If
]
the measure m on X is finite, i.e. m{X) < «=, the polynomial Hn(t)

given by

1}
—
famry

=]
~|c+
>
s
| S—
=
p=]

]
(=]
[e—y
N

H
n
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also satisfies the condition (H). The corresponding probability

measure is denoted by Eon for simplicity. Then we have the following

Proposition 3.4. The measure p_ is concentrated on Q"0

(c @ ). Moreover, the restriction of P n‘to QM (X) coincides with the
H]

image measure of m&)> ™ m" under the canonical projection

ok xIM o,

Obviously, H((t> = eCt., ¢ 2 0, satisfies the condition H

and that the corresponding probability measure Po H is the Poisson
3

measure exp(ecm). Here we included a Dirac measure concentrated at ¢

(the empty configuration) as a Poisson measure exp(0). With these

preparations, we can now state the following

Theorem 3.5. Let P H be a probability measure on @
corresponding to a measure m .on X and a function H(t) with (.

(1> If m({X> < <, there exists a unique sequence 10,11,"~ =z 0

0 ln ”m,n :

118

with 2 A,o=1 su;h that p, =

n=0 n

‘(2) If m(X> = «» , there exists a unique Borel probability

measure 4 on [0, «) such that P H = I exp (cm) dAa(c)
: ’ [0,

Proof. It follows from (H-2) that HU) is»a totally
monotonic function on the interval (-m(X>,0). Then, by virtue of the
Bernstein’s theorem ( e.g. [14]), we have

(1> If m{X) < «, there exists a unique sequence 10,11,~-' 2 0
with 2 41_ =1 such that g =3 1 p
n=0 n m, H n=

(2) If m) = o , there exists a unique Borel probability
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ct

measure 4 on {[{0,%) such that H(t) = e di ()

IIO.w)
Here we consider only (2) in order to avoid repeating almost the same

argument twice. Put

w o= j exp (em) dA (c)
[0, <
We have only to show that KB » ='nB #m,H for any Borel subset B ¢ X

with compact closure. In fact,

Ty # = Ty, exp (cm) di(c)
S P * |
oo -¢m(B) n
= f{b ; ZO 2———HT—~Q— pg mg di (ed
s ®) n=
_ < 1 —cm(B) n n _n
- nzo L [ I[o e ¢™ di (o) ] pp mp
- s 1 m _ n .n _
= nzo = H —m B pg Mg = ﬁB Hm,H .

This completes the proof. Q. E.D.

Remark. If m(X) < «, the Poisson measure exp(m) itself is

decomposed as follows:

S n
e mX> mXD #

exp (m) = 20 2T Hmon

n

Lemma 3.6. Let Bl,-'-,BN be mutually disjoint Borel subsets

of X with compact closures and k1,~-~,kN non—negative integers. Then

“m,H( w €Q ; lon Bj[ = kj , 1 £ 3 <N ] =

N m@B.DO¥;

C_m(B)) 'H k- ! )
i=1 J

S

where B = U Bj and k = 2 kj
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This is immediate from Proposition 2.1. Then we have the

following result.

Proposition 3.7. Let B € X be an arbitrary Borel subset

and n a non—negative integer. Then

n
1 EM em@y BB i n®) < -
P [ © €0 ; lon Bl =n ] = ' o
’ ; . 0 , othewise
In particular, if m(X> = «, the Poisson measure exp (m) is

concentrated on the set of all infinite configurations, namely,

exp (m) (Q~-Q

f(X)) # 1.

§4. Quasi-invariant measures on the configuration space

From this section on, X denotes a connected érientable (for
technical simplicity) Cw—ménifold with a C*=volume form m. We always
define a measure on X by the volume form and denote it by the same
symbol. Let Diffc(X) the gfoup of all diffeomorphisms of X which are
identical outside a compact set (depending on g € Diffc(X) ). Ve
introduce a topology in Diffc(X) as follows: The convergence of
g, — 8 (as n —— «) signifies that g and all g are identical
outside a fixed compact set and ﬁhat gn(x) — g(x> with all the
derivatives uniformly in X. The group Diffc(X) becomes a topological
group Cactually infinite dimensional Lie group). We denote by
Diffc(X,m) the subgroup of all diffeomorphisms in Diffc(X) which
preserve the volume form m. | 7

The group DiffC(X) acts on the configuration space @ by

means of the maps:
o = {XI’XZ’ vl b g = {g(xl), g(xz), cer}l , @ € Q.

Obviously, each Q" (X) is stable under this action.



140

Recall that every non—zero o—finite Borel measure on R"
which is quasi~invariant under translations is equivalent to the

Lebesgue measure Ce.g.[20]). Then we can prove the following

Proposition 4.,1. Every non—zero o—finite Borel measure on
Q" (X> which is quas i—invariant under Diffc(X) is equivalent to the
image measure p% m" , Where p§ : X[n] —— Q" (X) is the canonical

projection.

Proposition 4.2, If a probability measure ¢ on Q is quasi-
invariant under the action of DiffC(X), it enjoys the property (A,
namely, for any Borel subset B ¢ X with compact closure, ) is
absolutely continuous with respect to exp(mB).

Proof. Fix a sequence of open sets with compact closures

X, ¢ X, € -+ such that X = U Xj . It follows from Proposition 1.5

1 2
that Q@ = Lim QX . Suppose that we are given a quasi—-invariant
J

measure ¢ on . We write ”j = By for brevity. We define a measure ﬂ?
J
on Q"X by

- 1l n : = it n
P, = ~ ”j , according as ij ngo Q (Xj)

J

8

n=0
By assumption we see that ﬂ? is quasi—invariant under Diffc(Xj). It
follows from Proposition 4.1 that there exists a measurable function

n e« 9 o
pxj(xl, ,xn) such that

1]
o
-

(i) p§ (x4, **yx ) >0  or
Jj

i n . — n . e e
(i) pxj(xa(l), ’xa(n)) pxj(xl, s xn) for any ¢ € Gn ,
- n _ n n n
(m) I’lj - an[ pX. mX’ ]
J J J

For any Borel subset B « X with compact closure, we define pé by
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the formula (p—4) in §2 (taking B’ = Xj)' Then,
1 gz

- ¢ ¢
B go0 €7 °B B ™

Hence rg is absolutely continuous with respect to exp(mB). Q. E.D.

The following result is a direct consequence of a general

theory ({20 D).

Proposition 4.3. Let X e X2c -+ be a sequence of open
subsets with compact closures.such that X = U Xj . A probability
measure # on £ is quasi—inyariant under Diffc(X) if and only if
i) gﬁj is absolutely continuous with respect to Hj for any
g € Diffc(Xj) and j = 1,2, +++; (i) the Radon Nikodym derivatives

d(g,u.j)/d,uj converges in Ll(#). (Here we write ﬂj‘= #x D
: J

Applying this result to the measuré ﬂm H » we obtain
A,

Proposition 4.4. The probability measure T where H is
a function with the property (H), is quasi-invariant under Diffc(X)

and invariant under Diffc(X,m). Furthermore, we have

_1 _
Vi, u® @ _ o dmg o
dﬁm’H(m) X€® dm O :

Finally, we can prove the following assertions, c.f. [12].

Proposition 4.5. (1) If mX) = « , the Poisson measure
exp(m) is ergodic under Diffc(X).
(2) If m(X) = « and if dim X > 1 , the Poisson measure exp (m) is

ergodic under DiffC(X,m).
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(3 If m&> < «», the probability measure P n is ergodic under

Diffc(X) for all n = 0,1,2, -
§5. Unitary representations associated with finite configurations

We consider the finite configuration space Q" (X). There is
a (essentially) unique measure.ﬂn which is quasi-invariant under
Diffc(X)-(Proposition 4. 1>, A map o : Diffc(X)xQ _— Sn is called a
I-cocycle (of Diffc(X) with values in the group of maps Qn(X5 —_— Gn)

if it satisfies
- -1
a(glg2 ,y @) = J(gl,m) 6(g2, g, @ .

Two l1—-cocycles o and ¢* are said to be cbhomologuous if there exists
a map 00 Qg — Gn such that

¢’ (g,0) = Go(m) (g, ) tro(g—-lm)—1

Let (p,Wp) be a unitary representation of 6n . We form a

unitary representation np’J of Diffc(X) by the formula:

plo(g,w) f(g "o ,

P, 0 _
n (g) B ((g) = [ d‘un(“ﬁ

f € L2(Q,ﬁn)® Wp , i.e. a square integrable function on @ with

values in WP,

In what follows, we shall restrict ourselves to a
particular case when a l-cocycle ¢ comes from a meaéuraﬁle cross
section. Fix a measurable cross section s for the canonical
projection p% : X' —— Q" (X). For each g € Diff_(X> and o € Q
there exists a unique permutation o0(g,®) such that

-1

st o) = g s @) oCg,@.

Clearly, o(g,©) becomes a l-cocycle. We note that two l-cocycles
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constructed from cross sections are cohomologuous. If ¢ is such a
‘1-cocycle, the representation ﬁp,g will be denoted by 7P .

P are realized ‘in a slightly different

The representations =
way as follows. The group Diffc(X) and the symmetric group 6n acts on

X{n] by means of the maps:

x
Il

(xl, T Xy ) ——— gX (g(xl), N g(xn)), g € G.

g E B

X o (1>’ --~,x0(n)) ’ n ’

(xl, Tt Xy ) —m x0 = (X

[n]

Since we always assume that X is equpped with a measure mn, where

m is a C —volume form on X, we have L2(Xn) = L2(X[n]). For any

unitary representation (p,Wp) of 6n we put

He = { fel2x™m™me WP ; fxod) = p lfm, x e XM, o € &, }.

Then the unitary representation np is realized on Hp:
o n dm(g_lxk) 17z -1 p
(" (g) ) (x> = kEl —'TmTk-)— f(g x) , f e H".

The following result was proved in [8] and [12].

Theorem 5.1. If dim X > 1, the representations f of
Diffc(X) are irreducible and mutually»inequivalent;

P

The representations ' arise quite naturally. We now

introduce a unitary representation Un of Diffc(X) by the formula:

n dm(g_lxk) 172 -1 9 n
(Un(g) i) (x)~_\— kgl —dr—n_(-i;()_ f(g x) , f e LX)

2

If ¢ € 6 , we define a unitary operator V_(¢) on L ™ by
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V(GO = fxo) , f € L2 x™

dbviously, Un(g) and Vn(c) commute each other. The following érgument
is similar to the representation theory of general linear group.

We denote by 62 the set of all equivalence classes of irreducible
unitary representations of Sn' For each equivalence class of 62 we

fix a representation matrix P = (pij)1<i,j< dim p ° We put

P _ dim p -1 . . . A
Pij 056 pij(“ )Vn(o) , 1 < i,j €£dimp, p € &, .
n

Obviously, these operators commute with Un(g), for all g € Diff X>.

The following relations are easily verified.

PP. PP =0 if p = p’

ij k¢

PSP _ p
Pi; Pxe = %5k Pig

P X _ P
®f % = Pl
dim p P

2. 2 PY; = 1

pe@n i=1

Then we have the following

Lemma 5.2. Pgi is a non—zero projection.’ P€j is a pariial
isometry with initial projection P?j and final projection P?i.

Proof. For proving Pi? = 0, we let f(xl,---,xn) be the
indicator function of Glx-(-x@n, where @1,‘~',On are mutually
disjoint open sets of X with compact closures. Then we can show that

dim P p

> =0 .
11

i=1
Since P?i , 1 <€ i < dim p, are mutually equivalent projections, we

have P?i x 0, The rest of the assertion is immediate from the



145

relations given above. Q. E.D.

The following assertion is easy to see.

Proposition 5.3. The unitary representation Un is

decomposed into a sum of unitary representations ﬁp:
u >~ 3 dim P =z°
pe6n

according as

P

dim .
2" = 3 3 PPl ™)
; L& ii
pPeEE’ i=1
n
Remark. In case when dim X = 1, i.e. X = S1 (circled or

1 (real line), the decomposition given in Proposition 5.3 is

P

X =R
also valid. In these cases, however, the representation m° 1is further

deéomposed. We omit a detailed discussion here.

Remark. Further detailed arguments were done in [8], where

P

the representations ' were obtained in a frame work of orbit method.

§6. Unitary representations associated with infinite configurations

Let ¢# be a probabiiity measure on © which is quasi~—
invariant under Diffc(X). In this section we always assume that p is
concentrated on the set of all infinite Configurations, i.e. ‘
H(Q—Qf(X)) = 1. For instance, the Poisson measure exp(m)>is such a
measure if m(X) = «» (see Proposition 3.7). We agree %o understand

that @ consists of infinite configurations.

The infinite symmetric group is the discrete group of all
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finite permutations of N = {1,2,-:-} and denoted by §_ . A map
o Diffc(X)xQ —_— 6m is called a 7-cocycle (of DiffC(X) with

values in the group of maps Q — 6,2 if it satisfies
T(g 8, ,0) = (g, @) 0(g,, gzlm) , p-a.e. o .

Two l—-cocycles ¢ and ¢’ are said to be cohomologuous if there exists
a map 00 : Q@ — 6_ such that

o’ (g,0) = 045 0(g, 0 Go(g—lm)—l , p-a.e.

We associate with each unitary representation (ﬁ,Hn) of &_,

a unitary fepresentation U‘M’R”(r of Diffc(X):

-1
, P, 0 - dp (g "o
k) U (g) £ (@) { FYACY)

1

(o (g, 0)) f(g

172
) w) ,

where f € L2(Q,ﬂ)® Hn, i.e. a square—integrable function on § with
values in H®. For unitary representations of 6, , see [17] and its
references. A complete classification of the unitary representations
U7 % has not been obtained yet. In what follows, we shali mention
several particular cases.

If T is the trivial representation,‘we write UFv= Uﬂ’ﬁ’a

for simplicity. Then

-1

® , f e LW .

-1
W 1) @ = _[Qﬁiﬂ——ﬂl f (g

172
da (wd )

The following result was proved in [12].

Theorem 6.1. The unitary representation U¥ is irreducible

if and only if # is ergodic under Diffc(X).

We have discussed in 83, a class of quasi—invariant
probability measures Eo H Recall that “o H is concentrated on the
b4 E] . X )
set of infinite configurations if mX) = «, For simplicity we write

I T We shall consider the corresponding representation U” of
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Diffc(X). Let # be a closed subspace of L2(Q,#) spanned by { UH(g)l 5
g € Diff (X> }, where 1(@ = 1. We denote by U the restriction of U”
on the space ¥, which becomes a cyclic representation of Diffé(X)

with a cyclic vector 1.

Lemma 6.2. We have
w’e1, O =H [j [[Qﬂiﬁ:iil}l/z -1 ] dm(x)} € Diff O
g1, P lglamGo . c

Proof. It follows from Proposition 4.4 that

-1
w1, 1>,=f I [i‘ﬂf—i——’i)— (@)

]1/2
0 x€w dm (xD

d‘#m,H

Take a Borel subset B ¢ X with compact closure such that supp g < B.

Then the last integral becomes

~1_491/2 o
f 1 [Q§£%_7§l} d [ 5 L™ en@d pf o} ](m)
QB XE max : n=0 ™°
w ' -1 ,11/2 n
= 3 Lg®™ nay [I [Qﬁii——ﬁl] dm ) ]
n=0 n! B dm (xD
o ~1_,41/2 n
= 3 L u™ nen [J [[9%%%;751] - l]dm(x) + m(B) ]
n=0 ° B

~1 1,2
- dm(g —x) -
= H(IX[[ am GO ] 1 ] dm (x) ] ,

as desired. Q.E.D.

Viewing Proposition 4.5 and Lemma 6.2 we have
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Theorem 6.3. Assume that dim X > 1 and m(X) = = . Then the
exp (m)

unitary representation U is of class one with respect to the
subgroup Diffc(X,m), namely, (i) it is irreducible; (i) there exists
a unique non—zero vector 1 (up to constant factor) which is fixed

under Diffc(X,m). The spherical function is given by

-1 172
exp (m) - [ [{dm(g x)] _ ] ]
In particular, if ¢ = ¢’ (c,c’ > 0 ), two representations USXP¢cm

»
and Uexp(c m) are not equivalent,

Remark. The representation Uexp(m)

is also realized on
Lz(ﬁ’(X),v), where v is the standard Gaussian measure on the space

P* (X) of distributions on X, (see [12]).

With the help of Proposition 6.3 and Theorem 3.5, we obtain

the following

Proposition 6.4. The cyclic representation (U, %, DD,
k=R is decomposed into a sum of irreducible representations:

]

u# ~ I gexp (em 43 ¢y

[0,

1
The unitary representation nn =g " ., where 1n is the

trivial representation of Sn , is called an n-particle representétion
after [2]. Let X, < X, © -+ © X be connected open submanifolds with
compact closures such that X = U Xn . Choose a sequence of »
C®~functions an(x) on X such that

(i) 0 < mn(x) <1,

(i)kan(x) =1 if x € Xn s
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(i) f @ (x) dm(x) < + o,
x o ,

Define a new volume form m, = an(x)m , n=1,2,+-+, Obviously,
mn(X) < + « and m is equivalent to m. For each n = 0,1,2, -+ we
form nn us ing the volumé form m, - Then it becomes of class one with

respect to Diffc(X,mn). As a normalized fixed vector under

Diff (X,m. > we take f_(x) y /2
C n n

(mn(X) The spherical function is

given by

vn(g) (nn(g)fn,fn)

dm_ (g 1x) y1/2 n
=__1__._.Jl{__.l‘______] dm (XD
m_ (XD dm_ (x) n
n X n

The following assertion suggests that the irreducible representation

Uexp(m) could be considered as a 1imit of n—particle representations.

Proposition 6.5. If lim —foc = ¢ (>0), we have
lim = 5%

lim v (g = (UeXPm (59 1)
n—e 0

Proof. For each g € Diffc(X), we take a sufficiently large
'n such that supp g < Xn . Then, by definition we have

dmn(g_lx) 172
dm_ GO -1

[dm(g_lx)]l/2

dm (x) -1 it x € Xn ’

= 0 , otherwise.

Viewing this, we have

-1 11/2 n
_ 1 dm (g x)] _ ] ]
Va8 = [ LY g Jx [[ am GO 1} dm(x)

-1 172
dm (g x)} - ] ] o
———f—ﬁ exp[cJX {[ am 6O 1] dm x> as n — .
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The assertion is now immediate from Theorem 6. 3. Q. E.D.

Finally we consider unitary representations of DiffC(X) of

the form (k). We consider

[] _ — . w e .
X = { x = (xl,xz, > € X X, = X if i =31,

furnished with the relative o-field. (X is furnished with the usual
product o0—field.) An injective map s :  —— X[m] ,
s (@ = (sl(w), sz(m), +++- ), is called an indexing [12]> if

(i) o = { sl(m), s2(m), «++} 5 (i) s is a Borel isomorphism between
and s (. For each g € Diffc(X) and o € Q, there exists a unique
automorphism o0(g,w) of N such that

-1 -1

s(g 0w = ¢ (s (@) o(g,wd

If every o(g,w) belongs to ©_ , the indexing s is called correct. In
this case, 0(g,®) is called a correct I-cocycle.

The finite symmetric groups 6n are naturally regarded as
subgroups of 6 . We denote by Gm_n the subgroup of all finite
permutations leaving n+l1,n+2, .- fixed. If p is an irreducible

&

representation of 6n , we write p¥1 = Ind & :6 px1 , where 1 is
n’~ “e—n

~the trivial representation of & Then we can prove the following

Proposition 6.6, Let ¢ be a correct l-cocycle. Then the

exp (m), PX1l, 0 peUexp(m)

unitary representation U is equivalent to =
For irreducibility we have the following result ([12]).
Theorem 6.7. Assume that dim X > 1. The tensor product

ﬂp@U” ijs irreducible if and only if # is ergodic under DiffC(X) and p

is an irreducible representation of Gn .
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§7. Concluding remarks

In [3] and {4], a probability measure is introduced on the
space of all closed subsets of X, X being a compact manifold, and
cdrresponding unitary representations are discussed. In particular,
an example of a probability measure on the space of all convergent
sequénces in X is given.

Probability measures can be constructed on the group I of
~all homeomorphisms of the circle which is quasi—-invariant under
Diff(Sl). (The action of Diff(Sl) is defined by ¥ +——> gy, ¥ € TI.D
For example, see [19]. This suggests a possibility to consider a

1

regular representation of Diff(S7).
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