goooboooogn
0 6180 19870 16-39

16

LOGIC PROGRAMMING WITH NARROWING
Akihiro Yamamoto (lbhA&X =EH&)

Department of Information Systems
Interdisciplinary Graduate -School of Engineering Sciences
Kyushu University
6-1, Kasuga-koen, Kasuga, Fukuoka, 816 JAPAN

Abstract

In this paper we introduce a narrowing procedure into logic
programming in order to treat equational theories. We give a
refutation procedure for a program containing definite clauses,
equations and axioms for equations. The refutation consists of
SLD-resolution and narrowing so that they are treated equally.
We give the fixpoint semantics of the refutation proceduré and
discuss the relation between the fixpoint and the least Herbrand
model. We discuss the completeness of the refutation under SOme
conditions.

1. Introduction

In this paper we introduce a narrowing procedure into logic
programming in order to treat equational theories. The narrow-
ing is the fundamental procedure which is used to enumulate a
complete set of unifiers with respect to an equational theory.

There are many exXxtended PROLOG systems making use of
generalized unification (e.g., Kornfeld [10], Goguen and
Meseguer [3]). Jaffer et al. [7] have given a general framework
of the operational semantics and declarative semantics for
refutation systems. Thus one may consider that we can extend
standard PROLOG system by introducing some equational theories
and replacing the algorithm for mgu by that for complete sets of
unifiers. Even if we’have implemented the extended system with
the same searching strategy as that of standard PROLOG, the
strategy might not halt because the complete set wusually con-



17

tains infinitely many unifiers. The generalized unification
with respect to an equational theory is an inference of the
theory, and thus it should be treated on the same level of SLD-
resolution. The = intended system above cannot reflect this
point. In terms of declarative semantics, this problem cor-
responds to the fact that we can identify a congruence class in
the congruence space of the Herbrand base, but cannot identify a
suitable element of the class. We need to clarify the process
of constructing the congruence classes.

In the present paper, we discuss a system in which both
SLD-resolution and narrowing are treated equally. In the system
a logic program consists of equations and definite clauses. The
definite <clauses in a logic program should be transformed into
their homogeneous forms, and axioms for equations are added to
the program in order to describe the generalized unification. In
van Emden and Lloyd [16], they have shown that the axiom for
-equations after the homogeneous transformation is the identity
axiom for standard PROLOG. Hullot [6] has also shown that if
the set of equations is canonical in the sense of term rewriting
system, the compiete set of unifiers can be enumulated by using
narrowing and the identity axiom. Thus we need not extend the
axioms for equations to introduce, narrowing into SLD-resolution.
Based on this consideration, we define a program which consists
of homogeneous definite clauses, equations, and the identity
axiom. We also give the fixpoint semantics of the program using
Herbrand base, and discuss the completeness of the refutation
procedure. ' |

This paper is organized as folloWs. In the:next section,
we discuss the problem arising when we introduce generalized
unification into logic programming. In Section 3 we explain the
term rewriting system and narrowing. In Section 4, we define a
refutation whose inference rules are narrowing and SLD-
resolution, and show its soundness. In Section 5, we give a
fixpoint semantics using Herbrand base. In Section 6, we dis-
cuss the completeness of refutation when the set of equations in
program are canonical in the sense of a term rewriting system.

In Section 7, we present an example of simple implementation.



18
2. Logic Programming and Generalized Unification

Let L be a first order language. We use the symbols, I,
Y , V to denote the sets of predicate symbols, function symbols,
variable symbols, respectively. The set II' contains the symbol
'='. A(L), and B(L) denote the sets of atoms and ground atoms,
respectively. T(Z v V) and T(Y ) denote the sets of terms and
ground terms, respectively. A word is an atom or a term. The
set of variables occurring in a word t is denoted by V(t). We
adopt the list-notation of DEC-10:PROLOG.

A substitution 6 is a mapping from V into T(X u V) such
that the set {Xe V; X0 # X}, denoted by D{(€6 ), is finite.
D(6 ) is called the domain of 8 . If D(6 )={Xq,...,X,} and xie
=t;, then 6 is denoted by a set {Xy< tq,...,Xp< t,}. The set
[UATLY V(ti) is denoted by I(6 ). I(6 ) is the set of variables
introduced by 6 . Moreover, given a set of wvariables U, we
is Xie U}.

A definite clause is a clause of the form A<~ Bq{,...,B

define a substitution @ ly by {Xi+-t
A
is

n-
is called the head of the clause, and the sequence By,...,B,
called its body. A logic program is a set of definite clauses
in which the symbol '=' does not occur. A goal clause 1is a
clause of the form <Aqp,..., A "An equation is an atom which
has the predicate symbol '='. For the sake of convenience, we
also call a clause of the form s=t< an equation.
In this paper, we define the generalized unification with
respect to an equational theory. We give the inference rules of
the equational theory in a form of a set of definite clauses.
' We call them the equality axioms.
EQ= {Hy: X=X<
U {Eg: Y=X< X=Y}
U {Ep: X=Z< X=Y,Y¥=Z7}
U {Ep: £(Xq,. .. . Xp)=f(Yq,. ... Yp) Xy=Yq, ., Xp=Ys
U {Ep: P(Xy,. . Xp)=X1=Yq, .. . Xp=Yp,p(Yq, ..., Y);
pe I , p# '="}

fe 3}

An equational theory 1is a first order theory where equa;
tions are inferred from a set of equations E with the axioms
EI,ES,ET, and Ef(fe 2 ). An E-unifier for two terms s and t is
a substitution €& such that EU EQF s@ =t6 , where F denotes



19

the - logical implication. E-unification is to find E-unifiers.
An ordinal unifier is a substitution 6 such that EQF s@ =t0
The standard PROLOG system unifies two words in each step

of refutations. The extension of unification in logic program-
ming is to replace the wunifiers by E-unifiers. Logically
speaking, for a given goal clause @-Al,...,Ak, the refutation
of PROLOG computes a substitution €& such that
PUEQhV((AlA...AAk)G),

while the refutation with E-unification computes one such that
PU EU EQF Y ((Agr ...A AL)6 ),

where v (F) is the universal closure of a formula F. The mgu of
two terms is unique up to variants (i.e., renaming variables),
'but‘ the mqst general E-unifiers of two terms are not unique.
Thus when we‘introduce the generalized wunification in logic
programming, we consider a complete set of E—unifiers.

Let U be a set of E-unifiers of two terms, then U is com-
plete if it satisfies the following two conditions:

1) For any element ¢ of U,

D(o )<c (V(s)u V(t)),
I(o )n (V(s)u V(t))=¢ .

2) For each E-unifier 6 of s and t, there exist an

element ¢ of U and a substitution 7 such that
Evu EQF X6 =Xo 7

for each variable X in V(s)U V(t).

Thus, one may imagine that we can implement the extended
refutation by simply replacing the algorithm for mgu by that for
complete set. Some researchers have introduced a congruence
relation of ground atoms, given the fixXpoint semantics of 1cgic
programs and shown the completeness of refutations (Goguen and
Meseguer [3], Jaffer et al. [7]). Their theory is for the sys—
tem that the algorithm for a complete set is a built-in proce-
dure of the refutation procedure. Thus they left the control of
the algorithm for'the complete sets out bf considerations. @ In
implementing a system by using E-unification, we need to control
the searches for the SLD-refutation and for the complete set,
because the complete set may be infinite.

For example, consider the following logic program:
P={ Cy: part([],B,[],[1)< |



20

Co: part([A|D],B,[A]|X],Y)< A >= P,parf(D,P,X,Y)
Cs: part([A|D],B,X,[A|Y])< A < P, part(D,P,X,Y)}.
We choose the set of equations in Example 2.1, replace the mgu
algorithm by the complete set algorithm, and try to refute the
goal clause:
G: < part([3,7,5],5,app(W,[L]).,Z).
We intend that W will be substituted by the 1list which contains
the numbers more than or»equal to 5 and lacks the last element.
At first, the system unifies the body of G and the head of Co.
Consequently, each variables in Cy is substituted by some term,
and the new goalyclause is derived. For example, the following
goal is derived:
Gy: < 3>=5, part([7,5],5,[31,Y).
Then no refutation of G; succeeds, and the system backtracks.
Since +the complete sets of E-unifiers are infinite, the system
may find another E-unifiers of the body of G and the head of C,,
and derive another goal clause. Whatever goal clause may be
derived, no refutation for the goal succeeds because 3>=5 is al-
ways false. Thus we need to control the E-unification so that
the system may unify the body of G and the head of C3. In
standard PROLOG, the following goal clause corresponds to G:
< p([3,7,5]1,5,V,Z),append(W,[L],V).
Thus the system should unify app(W,[L]) and [A|X] after the
refutation for G. ’

Such a refutation cannot obtained simply by replacing mgu's
by complete sets, and so the SLD-resolution and E-unification
are to be treated on the same level. Since EQ and E are Sets of
definite clauses, SLD-resolution can include the inference of E-
unification. Then the next problem is how to treat the clauses
in EQ. In theorem proving, in order to treat equations, the
term rewriting system and the paramoduration are used for
replacing the clauses which may fall into infinitely looping. In
this paper, we use'narrowing, which combines two procedures, and
has been introduced to enumulate the complete set of E-unifiers
(Hullot [61]). In discussionis on such inference rules, E-
interpretations have been used instead of EQ. But 1in this

paper, we use EQ IN order to discuss the fixpoint semantics.



3. Term Rewriting System and Narrowing

In this section we discuss the term rewriting systems and
narrowing according to Hullot [6]. We denote the position of a
subword in a word by a sequence of positive numbers. The posi-
tive numbers in a sequence are separated by periods '.' from
each other. The empty sequence is denoted by A .

Definition 3.1. Let s be a word or a. sequence of words.

The occurrence of a subterm of s is the sequence of positive
numbers defined by the following rules:

1) The occurrence of s is A .

2) If s is a word f(ty,...,ty) and its occurrence is u,
then the occurrence of t; is u.i.

3) If s is a sequence of words tq,...,t, and its occurrence
is u, then the occurrence of t; is u.i.

Suppose each of s and t is a word or a sequence of a word,
s/u denotes the subword of s whose occurrence is u, and s[u< t]
denotes the word or the sequence which is obtained by replacing
subword s/u by t. The symbol Oc(s) denotes the set of occur-
rences of all subterms of s, and 0g(s) denotes the set of oc-
currences of all non-variable subterms of s.

Definition 3.2. A term rewriting system R is a set of
pairs of terms such that each element <a ,B8 > satisfies the fol-
lowing conditions:

1) V(B )c V(a),

2) a ¢ V.

The element of R is called a rewriting rule, and denoted by

a — B .

Definition 3.3. Let R be a term rewriting system. We

define a binary relation —g on T(X v V) by:

| t— gs '
iff there exist ue Oc(t), a > B € R, and a substitution o
such that t/u= a ¢ and s= t{u< B8 o ]. ’

21



22

We call —~R 2 reduction relation on R. The reflexive tran-
sitive closure of relation — p is denoted by % p.

Definition 3.4. Let R be a term rewriting system. R is’

confluent 1if for all t,t; and t, such that t% pt,; and t*% pt,,
there exists a term such that t;% ps and ty% ps. R is confluent
with respect to ground terms if this condition is satisfied in
case t is a ground term.

Definition 3.5. Let R be a term rewriting system. R is

finitely terminating if there exists no infinite derivation
tl—’RtZ"’RtS—’Rf" . R is canonical if it 1is confluent and
finitely terminating.

A term t is in normal form if there exists no term s such
that t—=gs. If R is canonical, each term admits a unique normal
term R(t) such that t%» rR(t). We call R(t) a normal form of t.
Moreover, let 6 be a substitution {X;< ty,...,Xp< ty}. If each
t1,...,t, is in normal form, then 0 1is in normal form. The sub-

stitution {Xq< tq,...,Xp< t )} 1s called a normal form of 6

n
Let E be a set of equations such that each element

a =8 <« satisfies the conditions of Definition 3.2. Then we can

regard E as a term rewriting system: -R(E). In this paper, we

only treat such a set of equations, so we do not distinguish be-

tween E and R(E). Then if E is canonical, for each pair of

terms t and s,

Ev EQF s=t & R(t)= R(s).

Definition 3.6. Let R be a term rewriting system. We

define a binary relation % R on A(L) by:

M4 rN
iff there exist an occurrence u<€ 0g(M) and a rewriting rule
a > B € R such that N= (M[u< B ]1)80 , where variables in a — B

are renamed so that V(M)n V(a )= ¢ .
We call *p a narrowing relation on R.
If E 1is canonical, the complete set of E-unfiers can be

enumulated by iteration of narrowing and resoclution with the

7



identity axiom Ei ([6]).

Narrowing resembles the procedure of SLD-resolution, so it
is easy to add narrowing to PROLOG system 1in order to treat
functional expressions. For this purpose, we need to clarify
the semantics of narrowing by using Herbrand model.

4. Equations and Logic Programming

In this section, we introduce a new refutation system which
consists of narrowing and SLD-resolutions. Since narrowing is
an inference of equational theories that dose not have the in-
ference rules Ep (pe I ), we need some device to treat
predicates. We do not treat negative information here. Thus we
make use of the homogeneous form of definite clauses in van Em-

den and Lloyd [16].

Definition 4.1.

1) A homogeneous definite clause is the definite clause of
the form
P(Xy,...,Xp)<By,...,By

where p is not the symbol '=', m,n2 0, and Xq,..., X

m are dis-

tinct variables.
2) The homogeneous form of a definite clause

p(tl,...,tm)eBl,...,Bn
is the clause :
p(Xl,. . .,Xm)*'X1=t1,. . "Xm=tm’B1’ PN ,Bn
where Xl,...,Xm are distinct -variables not appearing in the

original clause.
3) The homogeneous form of a logic program is the collec-
tion of homogeneous forms of each of its clause.

By transforming a definite clause into its homogeneous
form, we add equations representing unification to the body of

the original clause. The transformation is justified by the
following lemma. Thus we treat only homogeneous definite
clauses.

Lemma 4.1. Let P be a program and P' be the homogeneous

23



24

form of P. Then PU Eu EQ and P'v Eu EQ are logically

equivalent.

Example 4.1. Let
P= { member(X,[X]|Y])«
member (X, [Y|Z] )< member(X,Z) }.
Then the homogeneous form of P is given by the following

program:
{ member(xl,xz)@-X1=X,X2=[X|Y]
member (Xq,X9) < X1=X,Xo=[Y|Z] ,member(X,Z) }.

According to Proposition 1 of [167], EI is the only clause
in EQ that is necessary to treat the program of homogeneous form
in PROLOG, 'while Hullot [6] has shown that Ej is also the only
clause in EQ for E-unification with narrowing. Thus when We
consider a system that has both narrowing and SLD—resolution, we
may choose only EI as far as all the definite clauses except the
equations are homogeneous. In the following sections, we con-
struct an Herbrand model of such a program, and we discuss the
completeness of refutation to show that the above choice is suf-
ficient under some conditions. For the purpose, we first need a
definition of a program consisting of /definite clauses -and
equations. |

Definition 4.2. A program Pr is a set of clauses consgist-
ing of three parts E, P and ({X=X<}, where E is a set of

equations, P 1is a set of homogeneous definite clauses, and
{X=X<} is a singleton set of EI- E(Pr) and P(Pr) denote E and
Pu {X=X< } respectively.

Note that only the clause X=X« 1is the clause in which the
predicate symbol '=' occurs.

Example 4.2. Let

Pr= { app([],X)=X<
app([AlX],Y)=[Alapp(X,Y) ]+
member (Xq,X9)< Xq=X,Xo=[X]|Y]
member(Xl,Xz)é-X1=X,X2=[YIZ],member(X,Z)




X=X« }.
Then
E(Pr)= { app([],X)=X<
app([A]X],Y)=[Alapp(X,Y)]< 1},
P(Pr)= { member(X,,Xy)< X1=X,Xy=[X]|Y]
member (X ,X9)< Xq=X,X9=[Y|Z],member (X, Z)
X=X }. '

Now we define a derivation procedure as an extension of
standard PROLOG, where narrowing and SLD-resolution are treated

eQually.

Definition 4.3. A goal clause is a clause of the form

< Aq, .. A,.
The predicate symbol of A; may possibly be the symbol '='. The
occurrence of the word occurring in the goal clause is that in
the sequence of atoms Al,...,Ak.

From now on, when a variant of a clause C is an element of
a set S, we write Ce S,

Definition 4.4. Let Pr be a program, and G be a goal. A
derivation sequence for Prv {G} 1is a (finite or infinite)
sequence of quadruplets <Gi,9 i,Ci,ui> (i=0,1,2,...) which

satisfies following conditions:

1) G; is a goal clause, 0 j is a substitution, C; 1is a

variant of a clause in Pr, u; is an occurrence in Og(Gi_l), and

i
Gg is G.

2) The variables in Ci is standardized apart, i.e.,

V(Ci)n (U #o (V(<Gj,0 j,C5,uj>))=¢ .

3) In case Gi/ui+l is an atom, Ci+1e P(Pr). If Ci+l is
A*—Bl,...,Bq, Gi is *—Al,...,Ak, and Gi/ui+1= Aj, then @ 1+1
is an mgu of A and AJ, and G1+1 is the goal

*‘(Al,..,Aj_l,Bl,..,Bq,Aj+1,..,Ak)6 i+1-

4) In case Gj/u;,q is a term, Cj,1€ E(Pr). If Ci,q1 1is

@ =8 <, then @ ;,q is an mgu of a and G;/uj,q, and G; is the

goal
(Giluj41= B8 110 5.1.

10

25



26

In the definition above, condition 3) represents resolution
with a clause in P(Pr), and 4) represents narrowing using the
equation in E(Pr). An equation in a goal clause can be resolved
only with the clause X=X« . There are no restrictions at all

for the selection of u;'s. The rule for this selection is

i
called a computation rule, and is important in implementing the
system for the derivation. _

A goal H is derived from Pru {G} if there exists a finite

derivation {<Gi,0 i,Ci,Ui>}£ o for Prv {G} such that Gn: H.

Definition 4.5. A refutation for Pruv {G} 1is a finite

derivation for Pru {G} which derives the empty clause [ .

Example 4.3. Let Pr be the program in Example 4.2. Let G

be the goal clause < member(l, app(X,[2])). Then a refutation(
for Pryv {G} is illustrated by the following figure, where the
underlined words are selected by uy's.

< member (1,app(X,[2]))

| member(Xll,X21)*-X11=X1,X21=[X1|Yl]
< 1=Xp,app(X,[2])=[X11Y1]))

| Xp=Xg*
< app(X,[2])=[11Yq]

| app([Az1Xz].Yz)=[Az|app(Xz,Yz)]<
< [Azlapp(X=z,[2]1)1=[11Yq]

| app([1.X4)=X4<
< [Az.2]=[11¥;]

| Xg=Xg+—

O

We can regard each refutation as a computation, so that its
result is the substitution which is obtained by composing all
the substitutions used in the.refutation.

Definition 4.6. Let Pr be a program, G a goal, and {<Gi,

g i,ri,ui>}£ o be a refutation for Prv {G}. Then a substitution -
6 = (6 O...G n)IV(G) is <called a computed answer substitution
for Prv {G}.

11



Strictly speaking, a refutation for Prv {G} is that for
Pruv EQU {G}, and an answer substitution for Prv {G} is that for
Pruv EQuU {G}.

Example 4.4. The computed answer substitution for the

refutation in Example 4.3 is 6 = {X< [1]Xq]}.

The following theorem guarantees the soundness of the com-
puted answer substitution given by a refutation.

Theorem 4.1. Let Pr be a program and G be a goal clause
< Aq, . LA
Then every computed answer substitution 6 for Pru {G} is a cor-

rect answer substitution, i,e.,

Pru EQF Y ((Aqr ... A An)e ).
Proof. Let {<Gi,6 i»Ci,uy>}ift o be a derivation for Prv
{G}. The theorem is proved by induction on n, the 1length of
refutation. v ‘ ’
Suppose n= 1. Then G is a goal of the form <--Al, and Al

¢ = A6 1 for a unit clause A< . Thus, Pru EQF Y (A0 ;).

Now suppose the theorem holds for n-1, and consider the
case that the length is n. '

In‘caserG/ui is an atom, we can prove that

- Pru EQE VY ((AqAr ...A A)6O 1...6 )
because the first step of the derivation is SLD-resolution.
Then we consider the case that G/ul is a term. Let Cl be the
equation a =8 <, and'Gl/u1= t. Then Gl is the goal

< ((Aq,...,Ap)[uy<= B 1)6 1,
and t is a subterm of Ap. We can put u
Prk V. (a 08 l=ﬁ 6 1), and a 8 l=t6 1
EQF Y (10 1=B 6 {r Ap[v—= 810 1~ A8 ).

ij=m.v where v# A . Since

Thus
Pru EQE V ((AlA e A Ak)e 1...6

n) -
5. Fixpoint Semantics

In this section we’ discuss the fixpoint semantics of

12

27



28

programs defined in the previous section. In general, the fix-
point semantics of a program is given by the least fixpoint of a
function on a complete lattice. In logic programming, the fix-
point coincides with an Herbrand model by selecting the power
set of Herbrand base as the complete lattice. Precisely, suppose

P be a logic program (in the ordinal sense). We define a map-
ping Tp:2B(P)— 2B(P) py
Tp(Il)= {A€ B(L): A< By,...,B, is a ground instance of P
and {Bq,...,Bp}< I}. 7
Then the fixpoint semantics of P is given by the least fixpoint
of TP. Since P is a set of definite clauses, P.has a least
Herbrand model - M(P), which 1is characterized by logical

consequences. That is,

M(P)= {Ae B(L): Pk A}.
The characteristic aspect of logic programming is that the least
fixpoint of Tp coincides with M(P).

Now we turn our discussion to equational theories. As we
have shown in Section 2, the equational axioms are expressed in
the form of definite clauses EQ, and a set of equations E is
also a definite clause. Then EU EQ has its least model M(EU EQ)
and

M(Ev EQ)= {s=t; s,te T(X2 ) and Eu EQF s=t}.

Now we define the same mapping for narrowing as for SLD-
resolution, and investigate the relation between its fixpoint
and M(Eu EQ).

Let E be a set of equations. Then we define a mapping
2B(P)_ oB(P) by
Ne(l)= {p(tq,...,tp) € B(L); p(tqy,...,tp)e I
or t;— gu; and p(tl,..,si,..,tm)e I

NE:

for some argument ti and term ui}.
Lemma 5.1. Ng is continuous.

The proof of the lemma is analogue to that of TP.
We define inductively the set NET k for every positive in-
tegers k as follows:
Ngt 1= Id, where Id= {s=s; se T(Z )},
NET (k+1)= NE(NET k)).

13



Id is the 1least model for ({X=X<} and also is that of EQ.
Moreover we define

Ngt @ = U pc o (Ngt k).
NET w 1is the least of the fixpoints containing Id, and holds
the following property

NET w = {s=t; s,te T(X ) and there exists ue T(Z )

such that s* pu and t% pu} (5.1)
From the property, it holds that s=te NET w 1implies EvV EQF s=t,
that is, Ngt o < M(EV EQ).

Lemma 5.2. NET w = M(EvV EQ) iff E 1is confluent with
respect to ground terms.

Now we are in the position to discuss the fixpoint seman-
tics of a program Pr defined by Definition 4.2. Since Pr is a
set of definite clauses, there exists the least Herbrand model
M(Prv EQ). In the refutation procedure by Definition 4.4, nar-
rowing is the procedure to treat the equations in E(Pr), and
SLD-resolution is that for the definite. clauses in P(Pr). Thus,
to denote the refutation procedure, we can define a mapping
SPF:ZB(P)—>2B(P) by: '

Spr(1)= Ng(pr) (1) Y Tp(pr) (1)
Lemma 5.3. SPr is continuous.

Now we define the set SPPT k for non-negative integers

inductively.
SPPT 0= ¢ ’
Let
_ Sppt @ = U e (Sppt K).
Spr is the least fixpoint of Spn.. For the sake of convenience,

we define the following sets:

E(SPPT w )= {s=t; s=te SPPT w },

P(Sppt @ )= Sppt @ -E(Sppt @ ).
The following lemma justifies the restriction on the definite
clause.

14

29



3n

Lemma 5.4. Let Pr be a program. Suppose E(Sppt @ )=
M(E(Pr)uv EQ). Then p(ty,...,tp)€ P(Sppt @ ) and {ty=sq,...,
tm=Sm} < E(Sppt @ ) implies p(sqy,...,sy)€ P(Sppt w0 ).

Proof. We prove the 1lemma by induction on n such that

P(ty,....ty)e Sppt n.

Suppose first that n= 1. Then p(tl,...,tm)e'SPPT 1 means
that the clause p(X4,...,Xy)< 1is contained by Pr. Because the
predicate symbol 1is not '=' and Xq,...,Xy are distinct
variables, it holds that p(sq,...,sp)€ SppT 1.

Now suppose the lemma holds for n-1, and let p(tl,...,tm)e
SPPT n. By the definition of Sp,., there are two cases to be
considered.

Case 1. p(tl,..,tm)e TP(PI‘)(SPI‘T (n-1)).

There exists a clause

p(Xl,...,Xm)(_Bl,...,Bk
such that
P(Xy, ..., Xp)0 =p(tq,....tg),
{Ble ,...,Bke }c SPPT (n-1)
for some 8 . Let
= {X1<= tq1, .. XpT )
g = {X1<—S1,...,Xm<— Sm}.
Note that 8 = 7 U { for some ground substitution ¢ . Let
Bie =qi(ul,...,umi), ‘
Bi(a U ( )=qi(vl,°-‘vvmi)'
Then ’
{ul=Vl, e .,Umi'—'\]mi}c E(SPPT w ) (5.2)
by the assumption of the lemma. In case aj is '="',
Bi(oc vl )eSp.tw by (56.2). In case q; is not '=', Bj(o U

£ )e SPPT ®w by the induction hypothesis and (5.2). Thus
p(sq1,--.,8p)€ Sppt @ .
Case 2. p(ty,...,ty)e NE(PP)(SPPT (n-1)).
There exists an ground term uj; such that
Y17 EY
p(tl,..,ui,..,tm)e SPP(n—l).
From the assumption of the lemma,
u;=s;€ E(Pr),

which implies

15



. pP(S{,---,8p) € Sppt @
by the induction. hypothesis.

We combine Lemma 5.3 and 5.4 into a corollary:

Corollary 5.1. Let Pr be a program, and let E{(Pr) be con-

fluent with respect to ground terms. Then p(tq,...,tg)€
P(Sppt @) and {ty=s1,....tp=sp}€ E(Sppt @) implies
p(Sl,...,Sm)GP(SPPT ® ).

We can prove the following theorem about the:  relation  be-
tween the fixpoint and least Herbrand model.

Theorem 5.1. Let Pr be a program. If E(Pr) is confluent
with respect to ground terms, then SPPT o = M(Pruv EQ).

Proof. (> ) Since E(Pr) is confluent with respect to ground
terms, SPPT w 1is a model for EQ by the Lemma 5.2 and Corollary
5.5. Thus TP(Pr)(SPrT w )< Sppt 0 implies that Sp.t w is
a model for Pr. :

(¢ ) By Lemma 5.2, t=s€ Sp,.T @ implies Pru EQF s=t.

Next we prove on n that p(tq,...,tp) € SPPT n implies Pru
EQF p(ty,...,ty), where p is not '=".

First suppose n= 1. Then p(ty,...,ty)e SPPT 1 implies
that there exists a clause p(Xl,...,Xm)e- in Pr. Thus Pru EQE
p(tl,...,tm).

Now suppose the theorem holds for n-1 and p(tl,...,tm)e
Spp? n. In case p(ty,...,tp)€ TP(PP)(SPPT (n-1)), -there exist a
clause p(Xq,...,Xp)< By,...,By and a substitution € such that

P(Xy, -, Xp)0 =p(tq,...,Ty),

{B16 ,...,Byb }< SPrT (n-1).
Then Pru EQE p(tl,...,tm) by the induction hypothesis. In case
P(tq,...,ty)€ NE(PP)(SPPT (n-1)), there exists a ground term uj
such that

Yi7 E(Pr)Yi-

p(ty,..,uj,..,tp)€ Sppt (n-1).
Since Pruv EQF tj=uy, Pru EQF p(tqy,...,ty) DY the induction
hypothesis and the axiom Ej and Ep in EQ.

16

31



32

6. Completeness of Refutation

In this section, we show the completeness of the refutation
along the discussions in Lloyd [10].

The success set of a program Pr is the set

{A€ B(L); there exists a refutation for Pruv {< A} }.

We must discuss the soﬁndness and completeness for a refutation
from the three points, 1) answer substitution, 2) unsatis-
fiablity and 3) the success set and the least Herbrand model.

The soundness for computed answer substitution is shown by
Theorem 4.1, and reduces the soundness for unsatisfiablity ,and'
success set by Theorem 5.1.

Lemma 6.1. Let Pr be a program and G be a goal clause.If
there exists a refutation for Prv {G}, then Prv EQU {G} is
unsatisfiable.

Corollary 6.1. The success set for a program Pr is con-
tained by M(Prv EQ).

We discuss the completeness for refutations.: In the
discussion, we need to treat mgu's carefully. In practice, we
assume that mgu's are computed by the Algorithm 1 in Martelli
and Montaneri [12]. Such an mgu & has the property that l

| D(6¢ )n I(6 )= ¢,
D(6 )u I(6 )= V(s)u V(t).

In order to show the completeness of refutations for
programs Pr and goals, we require that E(Pr) is canonical. when
E(Pr) is canonical, each term and substitution admits its normal
form. At first, we prepare a lemma about the relation between a
normal substitution and an mgu. |

Lemma 6.2. Let s and t be two words, and 7 be a ground-
and-normalized substitution such that D(#z# )n V(t)= ¢ . If there
exists an mgu & of sy and t, then there exist an mgu £ of s and
t and a ground-and-normalized substitution { such that

n 6 =ul.

17



.Using the above 1lemma, we can prove the 1lifting lemma,
where 1lifting for narrowing is the same as the "projection of
narrowing" in Kanamori [8]. We put the restriction that each
substitution 7 for lifting is ground since we prové the com-
pleteness of refutation using Herbrand model. Then we can com-
bine lifting for narrowing and SLD-resolution without taking
care of the set I(7n ).

Lemma 6.3.(Lifting lemma, Robinson and Kanamori) Let Pr be
a program such that E(Pr) is canonical, G be a goal clause, and
7 be a ground-and-normalized substitution. If theré is a
refutation for Pryv {Gn }, then there exists a refutation for Pr
u {G}. Furthermore, if 6 and g are the computed answer sub-
stitutions for Pru {Gn } and for Pruv {G}, respectively, then
there exists a substitution 7 such that

n 6 |V(G)= n7 lV(G)’

From the lifting lemma , we can prove the following theorem
about the relation between the success set and the fixpoint
semantics.

Theorem 6.1. Let Pr be a program such that E(Pr) is
canonical. Then SPrT ®w 1is contained by the success set of Pr.

Proof. Suppose s=t € E(SPPT_w ). By the note (5.1) and
the fact that X=X« 1is the only clause that has the symbol '="
in its head, there exists a ground term u such that s* E(Pr)Y:
ts E(Pr)u' Thus there exists a refutation for Prv {< s=t}, by
the condition 1) of Definition 3.2.

To prove that the success set implies'P(SPPT ® ), We prove
the following assertion by the induction on n such that
P(ty,...,ty) € Sppt n. '

, Assertion. If p(tq,...,ty)Spp,? n , then for all ground
terms Sl,...,Sm» such that tl& E(PI‘)Sl""’tmL) E(Pr)sm,
p(sl,...,sm) is an element of success set.

Suppose first that n= 1. Then p(ty,...,ty) implies that Pr

18

33



34

has a clause p(Xq,....Xp)< . Thus the assertion holds for n= 1.
Now suppose the assertion holds for n-1, and p(tl,...,tm)E
SPPT n.

Case 1. p(tqy,....tp)e TP(Pr)(SPrT (n-1)).

There exists a <c¢lause of the form p(Xl,..,Xm)é-Bl,..,Bk
such that
p(ty,. ., tp)=Dp(Xq,...Xp) 0 ,

{B16 ,...By0 }< SPPT (n-1)

for some 6 . We can put 6 = ¢t U ¢ where tv = {(Xq<=tq,..., Xn<
tp}. Let the normal form of each t; be u;, then the normal form
of t© 1is the substitution x = {X;<uq,....Xp< upl. Let » be
the normal form of o . Then since Bie L'E(PP)Bi(” U ) and
Bie € SPPT (n-1), there exists a refutation for Bie . Moreover,
p v g =ypgn, and there exists a refutation for Biu by lifting
lemma. Thus there exists a refutation for <-p(uq,...,uy). Since
u; is also the normal form of s;, there exists a refutation for
*—p(sl,...,sm).

Case 2. p(tqy,...,tp)e NE(PP)(SPrT (n-1)).

There exist ty and a ground term - v. such that ty v and
p(ty,..,v,..,th) e SPPT (n-1). Let uy; be the normal form of tj
for i=1,...,n. Then the normal form of v is uy, and from
the induction hypothesis there exists a refutation for
*—p(ul,..,um). Since uy is the normal form of Si, there exists
a refutation for < p(sqy,....8q4). '

If E(Pr) 1is canonical, it is confluent with respect to
ground terms from the condition 1) of Definition 3.2. Thus, we
combine theorem 5.1 and 6.1 into a theorem to show the complete-
ness on the success set:

Theorem 6.2. Let Pr be a program such that E(Pr) is

canonical. Then the following three sets are identical.
1) M(Prv EQ),
2) SPPT ©,
3) the success set of Pr.

Corollary 6.2. Let Pr be a program such that E(Pr) is
canonical, and G be a goal clause. If Prv EQU {G} 1is

19



unsatisfiable, then there exists a refutation for Pru {G}.

Proof. Let G be the goal <-—Al,...,AK. Since PV EQU {G} is
unsatisfiable, G is false in M(Prv EQ).  Hence some ground in-
stance G6 of G is true in M(Prv EQ). Thus {A10 ,.., A6 }c
M(Pruv EQ). Let 7 be the normalbform of 6 . Then, by'Lemma
5.5, {Aqm ,...,Agn }< M(Prv EQ). By Theorem 6.2, there exists a
refutation from < A;7 for i=1,...,k. Since each A;7 is
ground, we can combine these refutations into a refutation of
Gn . Finally we can apply the lifting lemma and we can get a
refutation of G. '

Let R be a confluent (finitely terminating) term rewriting
system over T(Z U V), and we make the function symbol set X ' by
adding some new constant symbols to X . Then R 1is confluent
(finitely terminating) as a term rewriting system over T(X 'U
V). The terms in normal form are in normal form after the ex-
tension of X . Noting this point, the following theorem jus-
tifies the completeness for computed answer substitution. For
the completeness, we must consider the congruence relation on E
v EQ. Thus strictly speaking, it is E-completenss.

Theorém 6.3. Let Pr bé a program  such that E(Pr) 1is
canonical and G be a goal.Then there exist a computed answer
substitution # and a substitution 7 such that

E(Pr)uv EQF X6 =Xu 7
for each variable X in G.

Proof. Let G be the goal of the form *—Al,...,Ak, and 7 be
the normal form of @ . Since 6 is the correct answer
substitution, 7 is correct, i.e., '

Pru EQF Y ((Agnr ... A Ap)7m ).
Suppose VI(Apr coon Ag)n )V I(n )= {Xq,...,X,}. Then we make
2 ' by adding new constant symbols C1,.--:Cp to ¥ . E(Pr) is
canonical as a term rewriting system over T(Z 'U V). Let © =
{Xle-cl,...,Xn*-cn}. Then

Pru EQF Ajﬂ T,
Pru EQU (v 21 {cy=ci})F Aj” T

20

35



36

for each j=1,...,n. Since 7 t 1is ground-and-normalized, we
can construct a refutation of < (A;,...,Ag)7 T and a refutation
*—Al,...,Ak in the same way as Corollary 6.2. Let o be the

answer substitution of this refutation. Then

7T lvie)T 77 Tlvie-

We can assume that\the variables Xl,...,Xn do not appear in the
refutation and

D(o 7 ")n {Xq,....Xq1= ¢ .
Thus by textually replacing Ci by Xi (i=1,...,n) equation, we

can obtain that

7 v 2 7 lve

7. An Example of Implementation

We can implement the above system by improving standard
PROLOG in the following way.

1) Each definite clause is transformed into its homogeneous
form.

2) The equations in a program are treated as rewriting
rules.

3) The axiom E; always exists in a program.

4) The system can select not only an atom but also a term
from each goal clause.

Since we adopt a computation rule such that the 1left most
atom is always selected, we introduce the 'del' operator in or-
der to change the order of the equations in a goal. We - il-
lustrate the execution of the ‘'del' operator by an example. In
the examples, we use the notation of DEC-10 PROLOG. After fihd—
ing a refutation from a clause, the system returns the instance
of the goal clause by the computed answer subgstitution.

Example 7.1. Let us give the program in Section 2 to the

system.
?-[user].
part([1,P,[1.[1).

part([A|D],P,[A]|X],Y):-A>=P,part(D,P,X,Y).

21



part([AlD],P,X,[AIY]):—A(P,part(D,P,X,Y).
yes

Then the system cannot find the refutation for the following
goal under the above computation rule. ’

?-part([3,7,5],5,app(X,[5]),Y).

Thus we add the operator 'del' to the goal so that the system
can find the refutation under the above computation rule.

?-part([3,7,5],5,del(app(X,[5])).,Y). ’ (7.1)
part([3,7,5],5,del(app([7]1,[5]1)).,[31)
yes

The system derives the following goal after the the third step'
of derivation for (7.1).

?7-eq(del(app(X_14,[51)).[31X_311),eq(Y_14,Y 31),3>5,
part([7,5],5,X _31,Y 31). (7.2)

Then the system transform (7.2) into (7.3).

?-eq(Y_14,Y_31),3>5,part([7,5],5,X_31,Y_31),
eq(app(X_14,[5]),[3]1X_31]). : (7.3)

Thus - the system dose not fall into infinite loops in refuting
the goal (7.1).

8. Conclusion

We have introduced a refutation consisting of narrowing and

SLD-resolution, have given semantics for programs, and have
discussed the completeness of the refutation for programs and

goals. Expressing programs and unification in a flat form

22



38

enables us to introduce the refutation which is the bases of
logic programming.

In the present paper, we have not discussed computation
rules, which is the important point for an implementation. In
fact, to replace the mgu in PROLOG by E-unifiers is to give a
particular restriction for computation rule to the above
refutation. Thus we should have clarified the use of computa-
tion rules.

Comparing our system with the system for conditional equa-
tional theories [8], our system does not require the confluency
for predicates which enables us to discuss the model theoretical
completeness.

It does not seem so difficult to implement the extension of
the system above by introducing conditional equations as
proposed in [3]. However there will be some other problems of
such an implementation. Especially, the finitely terminating
property depends on the restriction of wvariables in rewriting
rules, and 1is the essential to the completeness of narrowing.
Thus we need to remove the restriction of variables in the
rewriting rules, and give a new definition of reduction relation
and terminating property associated with the set of conditional
equations.

We also need to clarify the theoretical foundation of the
negation as failure rule along the discussions in [7]. We con-
Jecture that we can obtain the completions of equality theories
by putting some restrictions on the sets of equations.

Acknowledgments
The author would like to thank Prof. Setsuo Arikawa for his
constructive comments and encouragement. The author also wishes
to express his sincere thanks to Dr. Makoto Haraguchi for many
discussions on the problem of logic programming and equality.

References

[1] Apt, K.R. and van Emden, M.H.(1882): Contributions to the
Theory of Logic Programming, J. ACM, 29, 841-862.

23



[2] Clark, K.L. (1978): Negation as Failure, 1in Logic and
Databases, Gallaire, H. and Minker, J.(eds.), Plenum Press, 293-
322.

[3] Goguen, J. and Meseguer, J. (1984): Equality, Types,
Modules, and (Why not?) Generics for Logic Programming, J. Logic
Programming, 1, 179-210.

[4] Huet, G. and Oppen, D.C. (1980): Equations and Rewrite
Rules, A Survey, 1in Formal Language Theory, Book, R.(eds.),
Academic Press, 349-405.

[6] Huet, G. (1980): Confluent reduction: Abstract Properties
and Applications to Term Rewriting System, J. ACM, 27, 787-821.
[6] Hullot, J.M. (1980): Canonical Forms and Unification, Proc.
5th Conference on Automated Deduction, 318-334.

[7] Jaffer, J., Lassetz, J., and Maher, M.J. (1984): A Theory of
Complete Logic Programs with Equality, J. Logic Programming, 1,
211-223.

[8] Kanamori, T. (1985): Computation by Meta-Unification with
Constructors.

[9] Knuth, D.E. and Bendix, P.G. (1970): Simple Word Problems in
Universal Algebras, in Computational Problems in Abstract
Algebra, Leech, J.(eds.), Pergamon Press, 263-297.

[10] Kornfeld, W.A. (1983): Equality for Prolog, Proc. 8th
IJCAI, 514-519.

[11] Lioyd, J.W. (1984): Foundation of Logic Programming,

Springer-Verlag.

[12] Martelli, A. and Montaneri, U. (1982): An Efficient
Unification Algorithm, "ACM Trans. Prog. Lang. Syst, 4, 258-282
[13] Robinson, G.A. ‘and Wos, L. (1969): Paramodulation and
Theorem Proving in First Order Theories with Equality, Machine
Intelligence 4, 135-150. :

[14] Sato, M.' and Sakurai, T.(1983): Qute: A Prolog/Lisp Type
Language for Logic Programming, Proc. 8th IJCAT, 507—513.>

[15] Siekmann, J. and Szabo, P. (1982): Universal Unification
and a Classification of Equationél Theories, Proc. 6th Conf. on
Automated Deduction, Lecture Notes in Computer Science 138,
Springer-Verlag, 369-389. , '

[16] wvan Emden, M.H. and Lloyd, J.w.(1984): A Logical
Reconstruction of Prologll , J. Logic Programming, 1, 143-149.

24

39



