
40

Fixed Point Semantics

for

Parallel Logic Programming Languages

EtsuyaShibayama(柴山悦哉）
Department of Information Science, Tokyo Institute of Technology,

Oh-Okayama, Meguro-Ku,
Tokyo, Japan, 152

Abstract

A semantics description scheme is presented for parallel logic programming languages.
This scheme consists of two parts: description of the semantics of unffication and that of goal
reduction strategies. For the former, we define a semantic domain each of whose elements
naturally represents a variable binding environment, and, for the latter, we employ the power
domain technique. As application examples of this scheme, we describe the semantics of
Guarded Horn Clauses (GHC) and Concurrent Prolog (CP).

1 Introduction

One of the most significant features of logic programming languages is their semantic clear-
ness. Especially, the semantics of pure-Prolog can be described in an elegant manner using
a (complete) Herbrand base [Emden76], [Apt82], [Lloyd84].

However, most parallel logic programming languages employ mechanisms which are
not based on logic. For instance, Parlog [Clark86], Concurrent Prolog (CP) [Shapiro83a],
[Shapiro83b], Guarded Horn Clauses (GHC) [Ueda85], [Ueda86], and similar other languages
employ a guard mechanism for the synchronization purpose. During execution of a program
in such alanguage, a unification may be suspended until some variable(s) are bound to more
specffic term(s). This kind of mechanism is hard to be expressed in terms of Herbrand bases
since they consist of just variable free terms.

In Section 2, we propose a new semantic domain each of whose elements represents some
variable binding environment. This domain is constructed from not only variable free terms
but also terms in which variables occur. The semantic domain introduced in Section 2 is
powerful enough to represent an infinite sequence of unification processes based on either
the Robinson’s original unffication [Robinson65] algorithm or its occur-check-free version.

1

数理解析研究所講究録
第 618巻 1987年 40-58

$q\perp$

The important problem is that the set of the (possible infinite) terms constituted by infinite
number of symbols is not compact under the ordinary topology, and thus this space does
not share several elegant properties of complete Herbrand bases.

In Section 3, in order to demonstrate the expressive power of this semantic domain, we
describe the semantics of the guard mechanism which GHC employs. Also, with the power
domain technique developed by [Clinger81], we construct a fixed point semantics of GHC.
In Section 4, we describe the semantics of CP in the similar manner.

2 Semantic Domain of Variable Binding Environments

In this section, we define a semantic domain each of whose elements represents some variable
binding environment. Each element of this domain is an equivalence relation on finite terms.
We consider that a sequence of unifications defines an equivalence relation on terms. Also
we show several significant features of this domain.

Definition 2.1. P is a finite set of horn clauses.. F is the set of the functor symbols in P .
\bullet For $f\in F,$ $ar(f)$ is the arity of f .. V is a countable set of variables.
$\circ Term_{F,V}$ is the set of the finite terms which are formed out of the symbols in F and

V. \square

In order to avoid the situations where all the elements of F are constants, we assume that
the binary functor. (dot) always belongs to F . In this paper, $t_{1}.t_{2}$. $\cdots.t_{n}$ is abbreviated
as $\langle t_{1},t_{2}, \cdots,t_{n}\rangle$.

Definition 2.2 $E\subseteq 2^{Tcrm_{F,V}xTerm_{P,V}}$ is the set of the binary relations each of which, say
e , satisfies the following conditions.

. e is an equivalence relation.
\bullet For all $t_{1},$ $\ldots,t_{n},$ $t_{1}^{t},$ $\ldots,t_{n}’$ in $Term_{F,V}$ and f in F such that $ar(f)=n$,

$\{(tt’)\}_{1}^{n_{=1}}\subseteq e$ if and only if $(f(t_{1}, \ldots,t_{n}), f(t_{1}’, \ldots,t_{n}’))\in e$ \square

Definition 2.3 Suppose that e and $e’$ belong to E. A partial order relation \subseteq on E is
defined as follows:

$e\subseteq e’\Leftrightarrow e\subseteq e’d\epsilon f$
\square

In the sequel, we show that the domain E (with \subseteq) is a complete lattice and appropriate
a8 a semantic domain of variable binding environments.

2

Lemma 2.4 Let I be an index set of arbitra ry cardinahty. Suppose that e_{i} belongs to E

$(\forall i\in I)$. There exists $\cap:\in t^{e_{1}}$, which is equal to $\bigcap_{i\in I}e;$.

Proof: It is sufficient to prove $\bigcap_{i\in I}e_{i}\in E$, that is, to prove $that\cap i\in Ie$; satisfies the
conditions in Definition 2.2. \square

Definition 2.5 Suppose that r is a subset of $Term_{F,V}\cross Term_{F,V}$.

$r^{c}\Leftrightarrow n\{e\in E|r\subseteq e\}def$
\square

Obviously, r^{c} belongs to E. r^{c} is the least element of E among those which include f .

Theorem 2.6 (E, \subseteq) is a complete lattice.

Proof: Suppose that I is an index set of arbitrary cardinality and that e_{i} belongs to E

$(\forall i\in I)$. We prove that $(\cup e)^{c}$ is the least upper bound of $\{e_{i}\}:\in I$ in (E, \subseteq) .
By Definition 2.5, $(\cup:\in Ie_{1})^{c}\supseteq\cup:\in Ie_{1}$. Therefo$re,$ $(\bigcup_{*\in I}e_{1})^{c}$ is an upper bound of $\{e_{i}\}_{i\in I}$.
On the other hand, suppose that $e^{/}$ is an upper bound of $\{e_{i}\}_{i\in I}$ in E. $e’\in\{e\in$

$E|\cup t\in Ie;\subseteq e\}$ is satisfied and thus $e \supseteq\cap\{e\in E|\bigcup_{1\in I}e:\subseteq e\}=(\bigcup_{i\in I}e_{1})^{c}$.
Consequently, $(\bigcup_{i\in I}e_{i})^{c}$ is the least upper bound of $\{e_{i}\}_{i\in I}$ in E. \square

The following lemmas and theorem suggest that, for each $t_{1},$ $\ldots,t_{n},$ $t_{1}^{t},$ $\ldots,t_{n}^{/}\in Termp\gamma$,
after completing a sequence of unifications: $t_{1}=t_{1}^{1},$ $t_{2}=t_{2},$

$\ldots,$
$t_{n}=t_{n}’$ successfully, the

variable binding environment will be represented by $\{(t_{1},t_{1}^{t}), \ldots, (t_{n},t_{n}^{t})\}^{c}$.

Lemma 2.7 Let e be $\{(t_{1},t_{1}’), \ldots, (t_{n}, t_{n}’)\}^{c}$. Suppose that $\langle t_{1}, \cdots , t_{n}\rangle$ and \langle $t_{1}’,$ \cdots,t_{n}^{t} } are
unifiable and that the most general unifier of them is $\theta=\{s_{1}/v_{1}, \ldots, s_{m}/v_{m}\}$. It is satisfied
that $\{(v_{1}, s_{1}), \ldots, (v_{m}, s_{m})\}\subseteq e$.

Proof: This lemma can be proven by induction on the total steps necessary to unify
{ $t_{1},$ $\cdots,t_{n}\rangle$ and { $t_{1}’,$ \cdots , $t_{n}’\rangle$ using the Robinson’s unification algorithm. \square

Lemma 2.8 Let r be a subset of $Term_{F,Y}\cross Term_{F,V}$.

$r^{c}=\{(t,t^{t})|\exists ns.t. t\Rightarrow^{nr}t’\}$

is satisfied, where the relation \Rightarrow^{nr} is defined as follows:

1. $t\Rightarrow^{0r}t(t\in Term_{F,V})$.

2. $t\Rightarrow^{\prime 0}t’$ if $(t,t’)\in r$.

3

4 S

3. $t\mathscr{J}_{r}^{k}t’$ if $t’\Rightarrow^{kr}t$.

4. $tk\#_{r}^{1}t’’$ if there exists t^{t} such that $t\Rightarrow^{kr}t^{t}$ and $t’\pm_{r}t’’$.

5. $t_{i}\mathscr{J}_{r}^{k}t_{:}^{t}(1\leq i\leq n)$ if there exist two terms $f(t_{1}, \ldots, t_{n})$ and $f(t_{1}’, \ldots,t_{n}’)$ such that

$f(t_{1}, \ldots,t_{n})\Rightarrow^{kr}f(t_{1}’, \ldots,t_{n}’)$.

θ . $f(t_{1}, \ldots,t_{n})1+krightarrow_{r}^{++k_{n}}f(t_{1}’, \ldots,t_{n}’)$ if $t_{i}\Rightarrow^{kr^{.}}t_{*}i(1\leq i\leq n)$.

Proof: Let r^{*} be the set $\{(t,t’)|\exists ns.t. t\Rightarrow^{nr}t^{t}\}$. Obviously, r^{*} is an upper bound of r

and belongs to E. This means that $r^{*}\supseteq r^{c}$. On the other hand, $r^{c}\supseteq\{(t, t^{t})|t\Rightarrow^{nr}t\}$ can

be proven by induction on n . Therefore, $r^{*}=r^{c}$. \square

Theorem 2.9 Let e be $\{(t_{1}, t_{1}’), \ldots, (t_{n}, t_{n}’)\}^{c}$. Suppose that $\{t_{1}, \cdots, t_{n}\}$ and { $t_{1}’,$ $\cdots,t_{n}^{l}\rangle$ are
unifiable and their most general unifier is θ . For all t and $t’$ which belong to $Term_{F,V}$, the
following is satisfied.

$(t,t’)\in e$ if and only if $t\theta=t’\theta$

Proof: Let r be $\{(t_{1},t_{1}^{t}), \ldots, (t_{n}, t_{n}^{t})\}$. For all k, the following can be proven by induction
on k .

$t\Rightarrow^{kr}t’$ implies $t\theta=t’\theta$

Thus, if $(t,t^{t})\in e=r^{c}$ is satisfied, $t\theta=t’\theta$ is also satisfied. On the other hand, if $t\theta=t^{t}\theta$ is
satisfied, they must have the most general unifier $\sigma=\{s_{1}/v_{1}, \ldots,s_{m}/v_{m}\}$ such that $t\sigma=t’\sigma$

and $\{(s_{1}, v_{1}), \ldots, (s_{m}, v_{m})\}\subseteq e$. In this case, $(t,t’)\in e$ can be proven by induction on the
height of $tand/ort’$. \square

Definition 2.10 Suppose $e\in E$ and $t\in Term_{F,V}$.

1. $[t]_{e|v\equiv^{f}}^{de}$ { $t^{t}|(t,t^{t})\in e$ and $\exists\theta,\theta^{-1}s.t$. $t\theta=t’,t^{t}\theta^{-1}=t$}

p . $[t]_{e}\equiv\{[t’]_{e|V}|(t,t’)\in e\}de[$

S. $[t_{1}]_{e|V}\subseteq[t_{2}]_{e|V}\Leftrightarrow\exists\theta de[s$. t. $t_{1}\theta=t_{2}$ \square

Obviously, the elements in $[t]_{e|V}$ (for each t) are invariants. Notice that the relation \subseteq

defined above is just a pre-order in $\{[t]_{e|V}|t\in Term_{F,V}\}$.

Lemma 2.11 The $relation\subseteq$ defined in Definition 2.10 is a partial order relation on each
$[t]_{e}(t\in Term_{F,V})$.

4

44

Proof: First, we show $that\subseteq is$ a well-defined relation. Assume that $t_{1}’\in[t_{1}]_{\epsilon|V}$ and
$t_{2}’\in[t_{2}]_{e|V}$. In this case, by the definition, there exist θ_{1} and θ_{2} such that $t_{1}\theta_{1}=t_{1}^{t}$,
$t_{1}’\theta_{1}^{-1}=t_{1},$ $t_{2}\theta_{2}=t_{2}’$, and $t_{2}’\theta_{2}^{-1}=t_{2}$. If $t_{1}\theta=t_{2}$ is satisfied for some $\theta,$ $t_{1}’\theta_{1}^{-1}\theta=t_{2}’\theta_{2}^{-1}$

and thus $t_{1}^{t}\theta_{1}^{-1}\theta\theta_{2}=t_{2}’$ is also satisfied. Therefo $re,$ $\subseteq is$ well-defined.
Next, we prove $that\subseteq is$ a partial ordered relation on $[t]_{e}$. Suppose that $[t’]_{e|V},$ $[t_{1}]_{e|}v$,

$[t_{2}]_{e|V}$, and $[t_{3}]_{e|V}$ are arbitrary elements of $[t]_{e}$.

\bullet For a null substitution $\lambda,$ $t’\lambda=t’$ is satisfied. Therefore, $[t’]_{e|V}\subseteq[t’]_{e|V}$.
\bullet Suppose that both $[t_{1}]_{e|V}\subseteq[t_{2}]_{e|V}$ and $[t_{2}]_{e|V}\subseteq[t_{3}]_{e|V}$ are satisfied. There exist θ_{1} and

θ_{2} such that $t_{1}\theta_{1}=t_{2}$ and $t_{2}\theta_{2}=t_{3}$. In this case, $[t_{1}]_{e|V}\subseteq[t_{3}]_{e|V}$ is satisfied since
$t_{1}\theta_{1}\theta_{2}=t_{3}$.

$\bullet\theta uchthatt\theta=t_{2}andt_{2}\theta_{2}=tIn^{2}thiscaseS_{2}up_{S}posethatb_{1}ot_{1}h[t_{1}]_{e|V}\subseteq[t_{2}]_{e|V}a_{1}n.d[t]_{e|V}\subseteq[t_{1}]_{e}|_{t]_{e|V}=[t_{2}]_{e|V}byDefinitionZ}^{\gamma_{1}}aresatisfied.Thereexist\theta_{1}a_{1}n_{0}d$

\square

Example: Suppose that $e=\{(X, f(Y)), (Y,Z)\}^{C}$ where f is a functor and $X,$ Y , and
Z are variables. If g is a binary functor:

$[g(f(Y), f(Y))]_{e|V}=[g(f(Z), f(Z))]_{e|V}\neq\supset[g(f(Y), f(Z)]_{e|V}\neq\supset[g(X, f(Z))]_{e|V}$.

The following theorem shows that it can be described in terms of the semantic domain
E whether or not given two terms are unifiable.

Theorem 2.12 Let e be $\{(t_{1}, t_{1}^{l}), \ldots, (t_{n}, t_{n}’)\}^{c}$. $\langle t_{1}, \cdots,t_{n}\rangle$ and $\langle t_{1}^{l}, \cdots,t_{n}’\rangle$ are unifiable if
and only if, for all $t\in Term_{F,V}$, the greatest element in $[t]_{e}$ exists.

Proof: Suppose first that $\langle t_{1}, \cdots,t_{n}\rangle$ and { $t_{1}’,$ \cdots , $t_{n}’\rangle$ are unifiable and their most general
unifier is θ . By Theorem 2.9, for each element $[t’]_{e|V}$ in $[t]_{e},$ $t’\theta=t\theta$ is satisfied. Therefore,
$[t’]_{e|V}\subseteq[t\theta]_{e|V}\in[t]_{e}$ for all $t’s.t$. $[t’]_{e|V}\in[t]_{e}$. This implies that $[t\theta]_{e|V}$ is the greatest
element in $[t]_{e}$.

Next, suppose that { $t_{1},$ $\cdots,t_{n}\rangle$ and $\{t_{1}’, \cdots,t_{n}’\}$ are not unifiable. There are two cases.
That is, during apphcation of the Robinson’s unification algorithm, either:

1. some variable v and a term $t^{t}(v)$ in which v occurs, or

2. two terms $t’$ and $t”$ whose principal functo rs are different
are attempted to be unified. In the former case, $(v,t’(v))\in e$ can be proven similarly to
Theorem 2.9. Therefore, $[v]_{e|V},$ $[t’(v)]_{e|V},$ $[t^{t}(t’(v))]_{\epsilon|Y},$ \ldots belong to the same component $[v]_{e}$.
As a result, $[v]_{e}$ does not have its greatest element. In the latter case, it can be proven
that $(t’, t”)\in e$. Therefo$re,$ $[t^{l}]_{e|V}$ and $[t^{1t}]_{e|V}$ belong to the same component $[t^{t}]_{e}=[t^{\prime t}]_{e}$.
However, no element in the component can be greater than or equal to both $[t^{t}]_{\epsilon|V}$ and
$[t^{t}]_{e|V}$. Consequently, $[t^{t}]_{e}=[t^{tt}]_{e}$ does not have its greatest element. \square

5

45

Example: Let f and g be unary and binary functors, respectively. Also let $X,$ Y , and
Z be variables.

1. Suppose that $e=\{(X, f(Y)), (Y, Z)\}^{C}$.
The greatest element of $[g(X, X)]_{e}$ is $[g(f(Y), f(Y))]_{e|V}=[g(f(Z), f(Z))]_{e|V}$.

2. Suppose that $e=\{X, f(X)\}^{c}$.
[X], contains infinitely many elements $[X]_{e|V},$ $[f(X)]_{e|V},$ $[f(f(X))]_{e|V},$ $\ldots,[f(f(f(\ldots(X)$

$)))]_{e|V},$ \ldots and there is no greatest element.

3. Suppose that $e=\{f(X),g(Y, Z)\}^{c}$.
$[f(X)]_{e}$ contains $[f(X)]_{e|V}$ and $[g(Y, Z)]_{e|V}$ and there is no element that is greater
than both of them. \square

By Theorem 2.9 and 2.12, it is shown that the semantics of a finite sequence of uni-
fications can be described in terms of the semantic domain E . In order to describe the
semantics of a possibly infinite sequence of unifications, we have to introduce infinite terms.
For this purpose, first, we consider the completion of $Term_{F,V}$.

Definition 2.13

1. $Term_{p\gamma}^{*}$ is the set of the possibly infinite terms which are fo rmed out of the symbols
in F and V .

2. For all $t,$ $t^{t}\in Term_{F,V}^{*},$ $d(t, t^{t})$ is defined as follows:
(a) if $t=t^{t},$ $d(t,t’)=0$

(b) if $t\neq t^{t},$ $d(t,$ $t’)=2^{-\inf\{n|t}$ and $t’$ differ at depth n}

\square

Note that the function d defined in Definition 2.13 satisfies the axioms of metric. How-
ever, $Term_{F,V}^{*}$ is not a compact space under this metric since there are countably many
variables in V and, for each pair of them v and $v’(v\neq v’),$ $d(v, v’)=1$. We consider the
depth of a variable/constant is 0

In the sequel, we allow substitutions to substitute countably many variables.

Definition 2.14 $Let\theta$ be $\{s_{1}/v_{1}, \ldots, s_{n}/v_{n}, \ldots\}$ and θ_{n} be $\{s_{1}/v_{1}, \ldots,s_{n}/v_{n}\}(n\in N)$.

$t \theta^{de}\equiv^{f}\lim_{narrow\infty}t\theta_{n}$ \square

Of course, such limits in $Term_{F,V}^{*}$ are defined according to the metric d .

Definition 2.15

1. Suppose that $e\in E,t\in Term_{F,V}^{*}$.

$[t]_{e|V}^{*}=\{t’|\exists\theta\{v_{1/_{v,v_{1}’\cdot)\}_{i\in I}\subseteq e,t\theta=t’a^{1}ndt\theta^{-1}=t}}!I\subseteq^{=}N,\{(:^{1}v\cdot\}_{1\in I}and\theta^{-1}=\{v_{*!^{v\cdot\}_{1\in I}suchthat}}$

.
$\}$

6

46

2. Suppose that $t\in Term_{F,V}$.

$[t]_{e}^{*}=\{[t’]_{e|V}^{*}|(t,t^{t})\in e\}\cup$ { $[t’]_{e|V}^{*}|\exists\{(t,t_{i})\}_{i\in N}\subseteq e$ s.t. $\lim_{:arrow\infty}t;=t^{t}$}

S. Let $t,t’\in Term_{F,V}^{*}$.
$[t]_{e|V}^{*}\subseteq[t^{t}]_{e|V}^{*}\Leftrightarrow\exists\theta def$ s.t. $t\theta=t’$ \square

Note that, for each $t\in Term_{F,V},$ $[t]_{e|V}^{*}=[t]_{e|V}$. Note also that we do not define $[t]_{e}^{*}$ for
an infinite term t since we are only interested in such components of the terms which occur
in a program or an initial goal. We implicitly assume that each program does not contain
any infinite term.

Also, in this case, $\subseteq is$ just a pre-order on $\{[t]_{e|V}^{*}|t\in Term_{F,V}^{*}\}$

Definition 2.16

$d_{e}([t_{1}]_{e|V}^{*}, [t_{2}]_{e|V}^{*})= \min\{d(t_{1}’,t_{2}’)|t_{1}’de[\in[t_{1}]_{e|V}^{*}, t_{2}’\in[t_{2}]_{e|V}^{*}\}$ \square

The function d_{e} also satisfies the axioms of metric. In the sequel, we regard the set
$\{[t]_{e|V}^{*}|t\in Term_{F,V}^{*}\}$ as a metric space.

Lemma 2.17 Let $t\in Term_{F,V}$ and $\{[t_{i}]_{\epsilon|V}^{*}\}_{i\in N}\subseteq[t]_{\epsilon}^{*}$. Suppose that

$[t_{1}]_{e|V}^{*}\subseteq[t_{2}]_{e|V}^{*}\subseteq$ $\subseteq[t_{i}]_{e|V}^{*}\subseteq\ldots$

The hmit element $u_{1=1}^{\infty}[t_{1}]_{e|V}^{*}$ exists in $[t]_{e}^{*}$.

Proof: We first define the truncation of $t’(\in Term_{F,V}^{*})$ at depth d, say trunc$(t’, d)$, as
follows:

1. If t^{t} is a variable or a constant, trunc $(t^{t}, d)=t^{t}$.
2. Otherwise, suppose that $t’=f(t_{1}’, \ldots,t_{n}’)$.

$(a)trunc(t’,0)F\cup V.=f(\Omega, \ldots,\Omega)$
where Ω is a special symbol which is not an elment of

$(b)trunc(t’, d+1)=f(trunc(t_{1}^{l},d),$ $\ldots,trunc(t_{n}’, d))$.
Furthermore, we define the truncation of $[t^{t}]_{e|V}^{*}$ at depth d, say trunc $([t^{t}]_{\epsilon|V}^{*}, d)$, to be
$[$trunc$(t’,$ $d)]_{e|V}^{*}1$. We can easily prove that, for all $d,$ $\{trunc([t’]_{e|V}^{*}, d)|[t’]_{e|V}^{*}\in[t]_{e}^{*}\}$ is a

finite set by induction on d . This implies $\forall d\exists is.t$. $trunc([t_{i}]_{e|V}^{*}, d)=trunc([t_{i+1}]_{e|V}^{*}, d)=$

$trunc([t_{i+2}]_{e|V}^{*}, d)=\ldots$. That is, $d_{e}([t:]_{\epsilon|V}^{*}, [t_{i+j}]_{e|V}^{*})\leq 2^{-d}$ (for all j). Therefore, by Defi-
nition 2.15, $\lim_{:arrow\infty}[t_{i}]_{e|V}^{*}$ exists and belongs to $[t]_{e|V}^{*}$ It is easy to prove $\lim_{narrow\infty}[t_{i}]_{e|V}^{*}=u^{\infty_{=1}}|[t_{i}]_{e|V}^{*}$

\square

1In this situation, the set of the functor symbols is not F but $F\cup\{\Omega\}$. Thus, precisely speaking, we must
say $[$trunc $(t^{t},$ $d)]_{(e\cup\{(\Omega,\Omega)\})^{c}|V}^{*}$. However, for simplicity, we consider that e means $(e\cup\{(\Omega, \Omega)\})^{c}$ in such
situations.

7

47

Definition 2.18 Let $t_{:},$ $t_{:}’\in Term_{F,V}(i\in N)$. Two infinite lists $\{t_{1}, t_{2}, \cdots,t_{i}, \cdots\}$ and
$\{t_{1}’,t_{2}^{l}, \cdots t_{:}’, \cdots\}$ are unifiable if and only if, for all $n\in N,$ \langle $t_{1},$ $t_{2},$ $\cdots,$

t_{n} } and $\langle t_{1}^{l},$ $t_{2}’,$ \cdots , t_{n}^{t} }
are unifiable. \square

Theorem 2.19 Let e be $\{(t_{1)}t_{1}’), \ldots, (t_{n}, t_{n}^{t}), \ldots\}^{c}(t:, t_{1}’\cdot\in Term_{F,V}, i\in N)$. Suppose two
infinite lists $\{t_{1}, t_{2}, \cdots , t_{n}, \cdots\}$ and $\{t_{1}’, t_{2}’, \cdots,t_{n}’, \cdots\}$ are unifiable. For every $t\in Term_{F,V}$,
there exists the greatest element in $[t]e$

Proof: Let e_{n} be $\{(t_{1},t_{1}’), \ldots, (t_{n}, t_{n}^{t})\}^{c}$. For all $n,$ $[t]_{e}$. contains its greatest element,
say $[t^{n}]_{e_{n}|V}$. Obviously, $[t^{1}]_{\epsilon|\gamma}^{*}\subseteq[t^{2}]_{e|V}^{*}\subseteq\ldots\subseteq[t^{n}]_{e|V}^{*}\subseteq\ldots$. Therefore, their limit point
$\lim_{narrow\infty}[t^{n}]_{e|V}^{*}=u_{n=1}^{\infty}[t^{n}]_{e|\gamma}^{*}$ exists in $[t]_{e}^{*}$. Since $u_{n=1}^{\infty}e_{n}=\bigcup_{n=1}^{\infty}e_{n}$, for all $t’\in Term_{F,V}^{*}$, if
$[t^{t}]_{e|V}^{*}\in[t]_{e}^{*}$, there exists n such that $[t^{l}]_{e_{n}|V}^{*}\in[t]_{e_{n}}^{*}$ and so $[t’]_{e|V}^{*}\subseteq[t^{n}]_{e|V}^{*}$. Consequently,
$\lim_{narrow\infty}[t^{n}]_{e|V}^{*}$ is the greatest element in $[t]_{e}^{*}$. \square

In this case, even if two terms t and $t’$ which cannot be unified, $[t^{it}]_{\{(t,t’)\}^{\epsilon}}(\forall t\in Term_{F,V})$

may have the greatest element in it.
Example: $f(X)$ and X cannot be unified but, for every t in $Term_{F,V},$ $[t]_{\{(f(X),X)\}^{e}}^{*}$

contains its greatest element. For instance, the greatest element of $[X]_{\{(f(X),X)\}^{e}}^{*}$ is

ω

$[f(f(f\cdots)))]_{\{(f(X),X)\}^{e}|V}\sim$
\square

Usually, practical implementations of Prolog lack the occur check mechanism for the
efficiency. Sometimes they are useful since we can construct infinite terms, called rational
trees [Colmerauer82], by using the occur-check-free unification mechanism.

Suppose that $t(v)$ is a term in which a variable v occurs. Essentially, $\{(v,t(v))\}^{C}$ and
$\{(v,t(v_{1})\},$

$\ldots,$
$(v_{n}, t(v_{n+1})),$ $\ldots\}^{c}$ are equivalent in the sense that, for each term $t’$ in which

any of the variables $v_{1},$ $\ldots,v_{n},$ \ldots . does not occur, the greatest element in $[t’]_{\{(v,t(v))\}^{\iota}}$ is equal
to that of $[t’]_{\{(v,t(v_{1})),\ldots,(v_{n},t(v_{n+1})),\ldots\}^{e}}$. This implies that, even if two terms t and t^{l} are not
unifiable by the original unification algorithm, $[t^{li}]_{\{(t,t)\}^{e}}(\forall t\in Term_{F,V})$ has the greatest
element in it under the condition that they are unifiable by an occur-check-free unification
algorithm.

In contrast, if two terms t and $t’$ are not unifiable even by an occur-check-free unification

$a1o_{Asaresu1t,inthissection,weh^{t_{a^{*}ve}}1e^{t}d^{*}a(i\}}t,t_{deve^{--}ope^{c}notationa1form^{\sim}a1ismofunifications}’$.
By using the latter half of the formalism, we can naturally express an infinite sequence
of unifications. According to whether the former or the latter half of the formalism is
used as failure detection, we can express either the Robinson’s original algorithm or its
occur-check-free version.

Definition 2.20 Let e be an element of E. If, for every $t(\in Term_{F,V})$, the greatest
element in $[t]_{\epsilon}^{*}$ exists, e is called a successful environment. Otherwise it is called a failure
environment. \square

8

48

The formalism in this section has an advantage on representing a distributed binding
environment faithfully. For instance, suppose that each of n individual processors has its
own binding environment and that the global environment is defined as their union. If
the binding environnent of the i-th processor is represented as $e_{i}(1\leq i\leq n)$, the global
environment is represented as $u_{\dot{\iota}=1}^{n}e:$.

3 A Fixed Point Semantics of GHC

In this section, we describe the semantics of the goal reduction strategy which GHC employs.
The most significant problem is how to describe the guard mechanism. We show that it can
be described in terms of the semantic domain E . In the rest of the description, we use the
power domain technique, which is based on the work of [Clinger81].

Definition 3.1 A GHC program is a finite set of guarded program clauses. \square

The operational semantics of GHC can be found in [Ueda86].

Definition 3.2 For a node N of some tree, we define as follows:. depth$(N)=the$ depth of N. We assume that the depth of the root is 0 .
\bullet parent(N) is the parent of \acute{N} if it is not the root.
\bullet child(N, i) is the i-th child of N if it exists. Otherwise, child(N,i) is undefined.

A labeled tree is a tree each of whose nodes is attached to a label. If N is a node of a labeled
tree T :

\bullet $l(N)$ is the label attached to the node N.
\bullet remove(T, N) is the labeled tree which is obtained by removing the subtree whose root

is N from T .
\bullet If N is a leaf of $T,$ $add(T, N, l_{1}, \ldots,l_{n})$ is the labeled tree which is obtained by adding

n children to the node N ofT and attaching the labels $l_{1},$ \ldots,l_{n} to the children one by
one in this order.. replace(T, $N,$ $N_{1},$

$\ldots,$
N_{n}) is the labeled tree obtained by removing the subtree whose root

is N from T and then letting the nodes $N_{1},$
$\ldots,$

N_{n} be children of parent(N) of T .

If $N_{1},$
$\ldots,$

N_{n} are distinct nodes of a labeled tree $T,$ $T[N_{1}/l_{1}, \ldots, N_{n}/l_{n}]$ is the labeled tree
which is obtained by replacing $l(N_{k})$ ofT by $l_{n}(1\leq k\leq n)$. \square

Execution status of a GHC program is represented as an element of E introduced in the
previous section 2 and a labeled tree. The former, called an environment, represents the

2Since GHC is a single environment language, a single element of E is sufficient to represent the current
binding environment. However, when we describe the semantics of multiple environment languages such
as CP, more than one element of E is necessary (See Section 4).

9

49

Figure 1: The Initial Execution Tree

Figure 2: The Second Stage

current binding environment, whereas the latter, called an execution tree, represents how
far the computation proceeds and which goals remain.

First, we illustrate the representation scheme of execution trees by an example. Assume
that the initial goals are $G_{1},$ G_{2} . The initial execution tree is the labeled tree in Figure 1.
In general, nothing (or, if necessary, a dummy symbol) is attached to the root node. At the
initial stage, the environment $is\perp_{E}=\{(t,t)|t\in Term_{F,V}\}$.

Next, we assume that the goal G_{1} has two candidate clauses:

$H_{2}^{1}:-c_{2,1}^{1.11_{G_{2,2}^{1,2}}^{G.’ G_{1,3}}}H:-G$

.

and they are invoked by G_{1} . In this case, the execution tree becomes as in Figure 2.
Precisely speaking, the literals except G_{1} and G_{2} are variants of those in the above clauses.
From now on, we implicitly assume the existence of a systematic variable renaming strategy
for avoiding name conflicts.

According to this representation scheme, a literal of GHC is attached to each non-root
node. Each literal attached to a node of an odd depth represents a goal, whereas each literal
attached to a node of an even depth represents the head of some candidate clause for the
parent goal. Of course, on the nodes to which $G_{1,1}$ and $G_{2,1}$ are attached, extra information
($illustrated*in$ Figure 2) is stored which specifies these goals are in guard parts.

10

50

Figure 3: The Third Stage

Definition 3.3 When a node contains the extra information mentioned above, we call it
a guard node. In contrast, if a node to which a goal is attached does not contain the
information, we call it a body node. \square

Simultaneously, by unifying G_{1} and $H_{:}(i=1,2)$, the environment is updated. For
instance, supposing that $G_{1}=p(a(X)),$ $H_{1}=p(Y)$, and $H_{2}=p(a(Z))$, the environment
becomes $\{(a(X),Y), (a(X),a(Z))\}^{c}$.

Next, if $G_{1,1}$ immediately succeeds and the clause H_{1} $:-G_{1,1}|G_{1,2},G_{1,3}$. is committed,
the execution tree is transformed into as in Figure 3. That is, the nodes which represent
the clause H_{2} $:-G_{2,1}|G_{2,2}$. is discarded and G_{1} is replaced by $G_{2,1}$ and $G_{2,3}$.

Definition 3.4 An execution tree is a labeled tree which satisfies the following conditions:

1. If depth (N) is odd, $l(N)$ is a goal in either some clause or the initial goal sequence.
Otherwise, if N is not the root, $l(N)$ is a head of some clause.

2. Supposing that l(parent(N)) is a goal literal, $l(N)$ must be the head of some clause
invoked by the goal. Otherwise, that is, l(parent(N)) is a head hteral, $l(N)$ must be a
goal invoked during reduction of the clause whose head is l(parent(N)). We assume
that N contains extra information if $l(N)$ is invoked du ring reduction of the guard
part of the clause. \square

For simplicity, in the sequel, we assume that each argument of a head is a distinct vari-
able. Notice that each clause can be transformed into the form satisfying this assumption.
For instance, a clause:

$p(t_{1}, \ldots,t_{m})$ $:-G_{1},$
$\ldots,$

$G_{i}|B_{1},$
$\ldots,$

B_{j} .

can be transformed into

$p(v_{1}, \ldots, v_{n})$ $:-v_{1}=t_{1},$ $\ldots,v_{n}=t_{n},$ $G_{1},$ $\ldots,G;|B_{1},$
$\ldots,$

B_{j} .

where $v_{1},$ \ldots,v_{m} are variables which do not occur in the former clause. Also we assume that
GHC supports just one built-in predicate $=$.

The following definition describes the semantics of the guard mechanism which GHC
employs in terms of the domain E .

11

51

Definition 3.5 Let N be a leaf of some execution tree. If $l(N)$ is a goal $t=t_{J}’$ it is
determined whether or not the goal is suspended under a successful environment $e(\in E)$ by
the following rule: If parent(N) is the root, it is not suspended. Otherwise, assume that e^{t}

$=eu\{(t,t’)\}^{c}$:. When N is a guard node, suppose that l(parent(N)) is $p(v_{1}, \ldots, v_{n})$ and that the
greatest element of $[\{v_{1}, \cdots, v_{n}\}]_{e}^{*}$ is $[t^{\prime t}]_{e|\gamma}^{*}$. If $[t”]_{e|V}^{*}$ is not the greatest element of
$[\{v_{1}, \cdots, v_{n}\}]_{e}^{*},$, the goal is suspended. Otherwise, it is not suspended.

\circ When N is a body node, let the guard nodes which are brothers of N be $N_{1},$
$\ldots,$

N_{m} .
Also let l(parent(N)) be $p(v_{1}, \ldots, v_{n})$ and $t_{1},$ $\ldots,t_{m’}$ be all the arguments of $l(N_{1}),$

\ldots ,
$l(N_{m})$. Assume that $[t^{lt}]_{e|V}^{*}$ is the greatest element of $[\{v_{1}, \cdots, v_{n},t_{1)}\cdots,t_{m^{j}}\}]_{\epsilon}^{*}$. If
$[t^{tl}]_{e|V}^{*}$ is not the greatest element of $[\{v_{1}, \cdots , v_{n}, t_{1}, \cdots , t_{m^{t}}\rangle]_{e}^{*},$, the goal is suspended.
Otherwise, the goal is not suspended. \square

Definition 3.6 A leaf node N is called ready under the environment e if one of the following
conditions is satisfied.

1. $l(N)$ is $t=t’$ and is not suspended under the environment e .
2. $l(N)$ is $p(\cdots)$ where p is a user defined predicate symbol.

A node to which a head is attached is called ready if the node has no child which is a guard
node. \square

$Eefi_{B}iti_{\Theta}n3.7$ The domain S is defined to be { $(T,$ $e)|T$ is an execution tree, $e\in E$ }. \square

An eiement of S represents the execution status of a GHC program.
The next definition illustrates the goal reduction strategy of GHCc In this paper, for

convenience, we define the semantics of GHC so that each unificatioit process that would
$+^{\mu}\sim aii$ will be suspended. With this definiticn, $ther_{\vee}^{a}$ is no change in the semantics of success
programs. Of course, by modifying 1 of Definition 3.8 slightly, we can obtain the semantics
in which each failure unification actually fails within finite time.
$E\Leftrightarrow a_{n1k^{Q}on}^{\Phi}13\circ 8$ Let T and T “ be execution trees and e be a successful environment. The
relation $\gamma\Rightarrow educe(\in S\cross S)$ is defined as follows:

1. When $T_{\triangleright}has$ a leaf N to which a ready goalt $=t^{l}$ is attached:

$(T, e)^{r}\Rightarrow educe$ (remove(T, N), $eU\{(t,$ $t’)\}^{c}$)

is satisfied if $eU\{(t,t’)\}^{c}$ is a successful environment.
2. Suppose that T has a leaf N to which a goal $p(t_{1}, \ldots,t_{m})$, where p is a user defined

predicate symbol, is attached and there are n clauses:

$p(v_{1,1}, \ldots,v_{1,m})$ $:-G_{1,1},$ $\ldots,G_{1},;_{1}|B_{1,1},$
$\ldots,$

$B_{1,j_{1}}$.

$p(v_{n,1}, \ldots,v_{n,m})$ $:-G_{n,1},$ $\ldots,G_{n,i_{n}}|B_{n,1},$
$\ldots,$

$B_{n,j_{n}}$.

12

52

whose heads contain p^{3} .

$(T, e)^{r}\Rightarrow^{educ\epsilon}(T_{n}, eu\{(\langle t_{1}, \ldots,t_{m}\rangle, \{v_{k,1}, \ldots,v_{k,m}\rangle)\}_{1\leq k\leq n}^{c})$

is satisfied if T_{n} is defined by the following equations:

$T_{k}=add(T_{k-}N_{1},p(v_{1,},\ldots,v_{1,m})_{k,1}..,.p(v\tau^{0_{=add(T’,child^{1}(N,k),G,..,G_{k^{1},:_{k}}^{n1}’,B_{k}^{v_{n_{1},m}).)},B_{k,j_{k}})}},,..$

$(1\leq k\leq n)$

Also extra information must be stored on the guard nodes of T_{n} .

S. When T has a node N to which a head H is attached and which has no guard child
and n body children $(0\leq n)$:

(T,e)
red ce (replace(T, $N,child(N,$ $1),$ $\ldots,child(N,$ $n)$), e)

is satisfied. In this case, if N is a guard node in T, the nodes child$(N, 1),$ \ldots , and
child(N, n) must become guard nodes. \square

Each element of the semantic domain introduced in the next definition represents an
execution history of a GHC program.

Definition 3.9 The domain $S^{*}\subseteq Narrow S$ is the set of the elements, say s^{*} , satisfying the

following conditions:

1. If $s^{*}(n)=\perp s$ for some $n,$ $s^{*}(m)=\perp s(n\leq m)$.
2. If $s^{*}(0)\neq\perp s,$ $s^{*}(O)=(T, \perp_{E})$ such that T consists of the root and its children.

S. If neither $s^{*}(n)$ nor $s^{*}(n+1)$ is equal $to\perp s(0\leq n),$ $s^{*}(n)^{r}\Rightarrow educ\epsilon s^{*}(n+1)$

4. If $s^{*}(n)=(T, e)(0\leq n)$ and T contains a ready node N under e , there exists $m(>n)$

such that $s^{*}(m)$ does not contain N or N in $s^{*}(m)$ is not ready. \square

By the last condition in the above definition, S cannot be a complete domain.

Definition 3.10 Suppose that s_{1}^{*} and s_{2}^{*} are elements of S^{*} . We define a partial order

relation $\subseteq on$ S^{*} such that s_{1}^{*} : s_{2}^{*} is satisfied if and only if:

1. $s_{1}^{*}=s_{2}^{*}$, or

2. $\exists ns$.t. $s_{1}^{*}(m)=s_{2}^{*}(m)$ if $m<n$ and $s_{1}^{*}(m)=\perp s$ otherwise. \square

Intuitively speaking, $s_{1}^{*}\subseteq s_{2}^{*}$ is satisfied if and only if the execution history represented

by s_{1}^{*} is an initial segment of the one represented by s_{2}^{*} .

Definition 3.11 $D\subseteq 2^{S}$ is the set of the elements, say d, which satisfies the following

$\underline{conditions.\cdot}$
3Some of the clauses may not have guards and/or bodies

13

53

1. If s_{1}^{*} is an element of d and $s_{2}^{*}\subseteq s_{1}^{*},$ s_{2}^{*} is also an element ofd .
2. Suppose that $\{s^{*}:\}_{i\in N}\subset d$ and $s_{1}^{*}\subseteq s_{2}^{*}\subseteq\ldots\subseteq s_{1}^{*}\subseteq\ldots.u_{i\in N^{S^{*}}}$: is an element of d if

it exists. \square

Notice that D can be regarded as a power domain. Each element of D represents a set
of possible execution histories.

Definition 3.12 Suppose that $X\subseteq S^{*}$.

$X^{c}\equiv^{f}de$

fi$\{d\in D|X\subseteq d\}$ \square

Theorem 3.13 D is a complete lattice under the set inclusion order.

Proof: Let I be an index set of arbitrary cardinality. Suppose $d_{i}\in D(i\in I)$. We can
easily prove that $\lceil\urcorner_{i\in I:}d=\cap t\in t^{d_{1}}$ and $U_{i\in I}d_{1}=(\cup i\in Id_{1})^{c}$ \square

Next, we define transformation functions. The first one transforns an execution history
to the set of possible execution histories in the next stage.

Definition 3.14 Trans: $S^{*}arrow D$ is defined as follows:
1. If $s^{*}(n)\neq\perp s$ for all $n,$ $Trans(s^{*})=\{s^{*}\}^{c}$.
2. Otherwise, let n be the natural number such that $s^{*}(n)=(T, e)\neq\perp s$ and $s^{*}(n+1)=$

$\perp s$.
(a) If T has a ready node under e,

$Tran\epsilon(s^{*})=\{s_{1}^{*}|s_{1}^{*}(n)\epsilon darrow s^{*}(n+_{>n+^{n}}s_{*}(m)_{r}=s_{c^{1}}^{*}(m_{1})ifm_{1)^{\leq}an_{1}d}s^{*}(m)=\perp^{e_{S}}ifm$ $\}^{c}$

(b) If T does not have any ready node under $e_{J}Trans(s^{*})=\{s^{*}\}^{c}$.

Definition 3.15 Goal is a set of the goal clauses for P. \square

For simplicity, we assume that each functor/predicate symbol occurring in a goal clause
in Goal also appears in P .

Definition 3.16 $Trans^{*}$: $Goalarrow Darrow D$ is defined as follows: For all $g\in Goal,$ $d\in D$,

$Trans^{*}(g)(d)=(u_{\in d}Trans(s^{*}))udu\{s_{g}^{*}\}^{\epsilon}\delta$

where s_{g}^{*} satisfies that:

14

54

1. $s;(O)$ is the pair of the initial execution tree for the goals g and the initial environment
$\perp_{E}=\{(t, t)|t\in Termp\gamma\}$.

2. $s_{g}^{*}(n)=\perp s(n\geq 1)$. \square

Theorem 3.17 $Trans^{*}(g)$ is a continuous function.

Proof: Let X be a subset of D. We prove that $uTrans^{*}(g)(X)=$ Trans’ $(g)(uX)$.
Obviously, $Trans^{*}(g)$ is a monotonic and so $uTrans^{*}(g)(X)\subseteq Trans^{*}(g)(uX)$. On the
other hand,

$\tau_{rans^{*}(g)(UX)=(u_{s^{*}\in ux^{Trans(s^{*}))U(UX)u\{s_{g}^{*}\}^{c}}}}$

$=(u_{s\in M-\cup x^{Trans(s^{*}))u(u_{s\in\cup X}Tran\epsilon(s^{*}))u(ux)u\{s_{g}^{*}\}^{c}}}$

Obviously, $Trans^{*}(g)(uX)\supseteq ux,$ $\{\epsilon_{g}^{*}\}^{c},$ $U_{s\in\cup X}Trans(s^{*})$. Therefore, it is sufficient
for us to prove $Trans^{*}(g)(\coprod X)\supseteq u_{s\in uX-\cup X}Trans(s^{*})$.

We can prove that each element s^{*} of $uX-\cup X$ is a limit element in the sense that
$s^{*}\{n$) $\neq\perp s(0\leq n)$ 4 and thus Trans $(s$ “ $)=\{s^{*}\}^{c}$. This implies $U_{s\in uX-\cup x^{Trans(s^{*})}}=$

$\coprod X-\cup X$, which is obviously less than or equal to $Trans^{*}(g)(uX)$. \square

Since D is a complete lattice and $Trans^{*}(g)$ is a continuous function, $Trans^{*}(g)$ has the
least fixed point fix(Trans’(g)) in D satisfying:

fix$(Trans^{*}(g))=u(Trans^{*}(g))^{n}(\perp D)n=1\infty$

Of course, fix$(Trans^{*}(g))$ is extravagant as the semantics of the initial goal g . We do
not need the possible execution trees but just the possible variable binding environments
concerning the arguments of g .

4 A Fixed Point Semantics of CP

In this section, we develop a fixed point semantics of CP according to the description of
[Shapiro83a]. This semantics is just a modification of the one in Section 3.

The most significant differences of GHC and CP are

1. CP is a multiple environment language, and

2. CP employs the read only annotation ?.

In order to cope with multiple environments, we modify the definition of an execution
tree (i.e. Definition 3.4) so that the pair of a literal and an environment is attached to
each node of an even depth: These literal and environment represent the head of some
program clause and the variable binding environment for reducing the clause, respectively.

4Such an element represents an infinite computation.

15

55

For simplicity, we assume that the pair of a dummy literal and the outer most environment
is attached to the root node.

In order to deal with the read only annotation, we modify the set V such that $V=$
$V’\cup\{v?|v\in V^{t}\}$ where V^{t} is a set of countably many variables. That is, we consider v and
v ? are distinct variables. We call each element in V ‘ an ordinary variable and each element
in $V-V’$ an annotated variable. In this case, the suspension rule defined in Definition 3.5
must be modified as the next one.

Definition 4.1 Let N be a leaf of some execution tree to which a goal $t=t’$ is attached
and which is a guard node or a child of the root. Assume that l(parent(N)) is $\{H, e\}$ where
H is a literal and e is a successful environment. The goal $t=t^{t}$ is suspended if and only if,
for some variable v ? and non-variable term $t^{t\prime},$

$[v?]_{e|V}^{*}$ and $[t^{\mathfrak{l}t}]_{e|V}^{*}$ are the greatest elements
of $[t]_{e}^{*}$ and $[t’]_{e}^{*}$. \square

According to the above definition, each goal in a body part is not executed until the
clause which contains the goal is committed.

Definition 3.6 need just a slight modification. In Definition 3.6, whether or not a node
is ready depends on an environment. However, currently, an execution tree contains the
environment of each process. Therefore, this concept does not depend on an environment.
Also Definition 3.7 should be modified. In this section, the domain S is the set of the
execution trees.

Lastly, we have to modify the reducibility relation (i.e. Definition 3.8) as the next one.

Definition 4.2 Let T be an execution tree. The relation $r\Rightarrow^{educ\epsilon}$ is defined as follows:
1. Suppose that T has leaf N to which a ready goal $t=t’$ is attached. There are three

cases:
\bullet When, for some (ordinary and/or annotated) variables v and $v’,$ $[v]_{\epsilon|V}^{*}$ and $[v’]_{e|V}^{*}$

are the greatest elements of $[t]_{e}^{*}$ and $[t^{\iota}]_{\epsilon}^{*};$

$T^{r}\Rightarrow educe$ remove(T, N) $[N_{1}/\{H_{1}, e_{1}u\{(t,t’)\}^{c}\}, \ldots, N_{n}/\{H_{n}, e_{n}U\{(t,t’)\}^{c}\rangle]$

is satisfied, where $N_{1},$
$\ldots,$

N_{n} are the nodes parent(N) and its offsprings of even
depths, and $l(N_{k})$ is $\{H_{k}, e_{k}\}(1\leq k\leq n)$.. When, for some (ordinary or annotated) variable v and some term $f(t_{1}, \ldots,t_{n})$,
$[v]_{e|V}^{*}$ and $[f(t_{1}, \ldots,t_{n})]_{e|V}^{*}$ are the greatest elements of $[t]_{e}^{*}$ and $[t^{/}]_{\epsilon}^{*}:$

$T^{r}\Rightarrow^{educ\epsilon}remove(T, N)$ [$N_{1}/\{H_{1},$ $e_{1}u\{(t,$ $t^{l})\}^{c}ue^{t}\rangle,$
$\ldots,$

$N_{n}/\langle H_{n},$ e_{n} Ll $\{(t,t^{t})\}^{c}ue^{t}\rangle$]

is $satisfied_{J}$ where $N_{1},$
$\ldots,$

N_{n} are the nodes parent(N) and its offsprings of even
depths, $l(N_{k})$ is $\{H_{k}, e_{k}\}(1\leq k\leq n)$, and $e’$ is:

$\{(v^{/},$ $v’?)|[v^{t}]_{e|V}^{*}$ is the greatest element of $[v]_{e}^{*}\}^{c}$

16

56

$and^{eoote.r}[t^{t}]_{e}^{*}aref(t_{1},.,t_{n})]_{e|V}^{*}and^{n}[f(t_{1}^{t},.,t_{n})]_{e|V^{I}}^{*}t)and..f(t_{t^{1}}’,\ldots$

,. When, for some terms f ($t_{1},$
\ldots , and $t_{n}’$), the greatest elements of $[t]_{e}^{*}$

$T^{r}\Rightarrow educ\epsilon$ replace(T, $N,$ $N_{1},$
$\ldots,$

N_{n})

is satisfied, where $N_{1},$
$\ldots,$

N_{n} are the newly created nodes to which $t_{1}=t_{1z}’\ldots$,
and $t_{n}=t_{n\prime}’respectively_{J}$ are attached.

2. Suppose that T has a leaf N to which a goal $p(t_{1,}t_{m})$, where p is a user defined
predicate symbol, is attached and there are n clauses:

$p(v_{1,1}, \ldots,v_{1,m})$ $:-G_{1,1},$ $\ldots,G_{1,1_{1}}|B_{1,1},$
$\ldots,$

$B_{1,j_{1}}$.

$p(v_{n,1}, \ldots,v_{n,m})$ $:-G_{n,1},$ $\ldots,G_{n,i_{n}}|B_{n,1},$
$\ldots,$

$B_{n,j_{n}}$.

whose heads contain p . Let \langle $H,$ e} be $l(parent(N))$. $Tr\Rightarrow educ\epsilon T_{n}$ is satisfied if T_{n} is
defined by the following equations:

T_{0} $=$ add$(T, N, \langle p(v_{1,1}, \ldots, v_{1,m}),eue_{1}\}, \ldots, \langle p(v_{n,1}, \ldots,v_{n,m}), eUe_{n}\rangle)$

where $e_{k}=\{(t_{k’},v_{k,k’})\}_{1\leq k\leq m}^{c}$ $(1 \leq k\leq n)$

T_{k} $=$ add$(T_{k-1}, child(N, k), G_{k,1}, \ldots,G_{k,i_{k}}, B_{1,k}, \ldots, B_{k,j_{k}})$ $(1 \leq k\leq n)$

Also extra information must be stored on the guard nodes of T_{n} .
S. When T has a node N to which a head-environment pair { $H,$ $e\rangle$ is attached and which

has no guard child and n body children $(0\leq n)$:

$T^{r}\Rightarrow educe$ replace(T, $N,$ $child(N,$ $1),$
$\ldots,$

$child(N,n)$) $[N_{1}/\{H_{1}, eue_{1}\}, \ldots, N_{n}/\{H_{n}, eue_{n}\}]$

is $satisfied_{J}$ where $N_{1},$
$\ldots,$

N_{n} are the nodes which are parent(parent(N)) and its off-
springs of even depths and $l(N_{k})$ is \langle $H_{k},$ e_{k} }. Also, if N is a guard node in T, the
nodes child$(N, 1),$ \ldots , and child(N, n) must become guard nodes. \square

The above definition is almost same as Definition 3.8. However, 1 is more complex
and operational than that in Definition 3.8. The reason is that CP employs the read only
annotation which has no logical foundation.

After that, with the power domain technique, we can develop the fixed point semantics
of CP in the same manner in Section 3.

5 Conclusion

In this paper, we introduce two kinds of semantic domains, one for variable binding envi-
ronments and the other for goal reduction strategies. The former domain (i.e. E) is general
enough to be applicable to the semantics description of almost all logic (or unification based)

17

5?

programming language. In contrast, the latter domains (i.e. S and D in Section 3 and 4)
may be modified when applying to other parallel logic programming languages such as Par-
log. However, even in such cases, the power domain technique employed in this paper can
be effectively used.

Based on the former domain, we have developed the semantics of unification. This
semantics allows us to hide an actual implementation of unification processes behind math-
ematical devices. In this respect, our approach is not operational. However, we describe
goal reduction strategies in an operational manner. Consequently, our approach is a mix-
ture of denotational and operation descriptions. The language features which are based on
logic (or mathematics) are described in a denotational way and the other ones are described
in an operational way.

Comparing our semantics descriptions of GHC and CP, we feel that the introduction
of the read only annotation makes the semantics of CP complicated. On the other hand,
the non-logical features of GHC (i.e. suspension and guard mechanisms) seems simpler and
more logical than the read only annotation.

Acknowledgements

The author would like to thank Prof. Yonezawa for his kind comments and suggestions.

References

[Apt82] K. R. Apt and M. H. Emden: Contributions to Theory of Logic Programming,
Journal of the ACM, Vol. 29, No. 3, pp. 841-862, 1982.

[Beckman86] L. Beckman: Towards a Formal Semantics for Concurrent Logic Programming
Languages, Third International Conference on Logic Programming, Lecture Notes in
Computer Science, Vol. 225, pp. 335-349, Springer-Verlag, 1986.

[Clark86] K. Clark and S. Gregory: PARLOG: Parallel Programming in Logic, A CM Trans.
on Programming Languages and Systems, Vol. 8, No. 1, pp. 1-49, 1986.

[Clinger81] W. D. Clinger: Foundations of Actor Semantics, (Ph.D. thesis), Dept. of Math.,
M.I.T, 1981.

[Colmerauer82] A. Colmerauer: Prolog and Infinite Trees, Logic Programming edited by K.
L. Clark and s.-A. T\"arnlund, Academic Press, 1982.

[Emden76] M. H. Emden and R. A. Kowalski: The Semantics of Predicate Logic as a
Programming Language, Journal of the ACM, Vol. 23, No. 4, pp. 733-742, 1976.

[Lassez84] J.-L. Lassez and M. J. Maher: Closures and Fairness in the Semantics of Pro-
gramming Logic, Theoretical Computer Science, Vol. 29, pp. 167-184, 1984.

18

58

[Lloyd84] J. W. Lloyd: Foundations of Logic Programming, Springer-Verlag, 1984.

[Robinson65] J. A. Robinson: A Machine-Oriented Logic Based on the Resolution Principle,
Journal of the ACM, Vol. 12, No. 1, pp. 23-41, 1965.

[Saraswat85] V. A. Saraswat: Partial Correctness Semantics for CP[\iota ,--,&], Foundations
of Software Technology and Theoretical Computer Science, Lecture Notes in Computer
Science, Vol. 206, pp. 347-368, Springer-Verlag, 1985.

[Shapiro83a] E. Shapiro: A Subset of Concurrent Prolog and Its Interpreter, Technical
Report TR-003, Institute for New Generation Computer Technology, 1983.

[Shapiro83b] E. Shapiro and A. Takeuchi: Object Oriented Programming in Concurrent
Prolog, New Generation Computing, Vol. 1, No. 1 (1983), pp. 25-48

[Ueda85] K. Ueda: Guarded Horn Clauses, Proceedings of the Logic Programming Confer-
ence’85, Tokyo, pp. 225-236, 1985.

19

