goooboooogn
0O 6180 19870 130-149

130

Coupled context free grammars
and

a programming language based on then

Yoshiyuki YAMASHITA and Ikuo NAKATA,
'~ #&4T THES

Institute of Information Sciences and Electronics,

BFERLTER

University of Tsukuba,

REKRZ

Abstract

A formal grammar: Coupled Context Free Grammar(CCFG) and its
interpretation as a programming language are introduced. Context free
grammars (CFGs) can be regarded as the representations of data structures.
CFGs can be coupled by coupling their production rules intor n-tuples of
rules in a CCFG. These couplings can be regarded as the representation of
the relation between the data structures expressed by component CFGs.
Therefore a CCFG can be regarded as a program. The denotational semantics of
the program is defined as a set of n-tuples of terminal strings derived by
the grammar. It is easily understood that logic programs and CCFG programs
stand on the same mathematical background, and it can be shown that there
exists a simple program transformation of logic programs into CCFG progranms.

The above topics are discussed with some examples of programs.

/

131

1 Introduction

Context free grammars and their variations are often regarded as the
tools for representing data structures. For example, Backus-Naur Form is
used for the definitions of the syntax of programming languages, the
diagrams in Jackson method [1], which have the similar feature and
~the expressive power to those of regular expressions, subsets of context
free grammars, define input/output data structures of programs, and so
on[2].

Our purpose 1is to construct a data structure directed programming
system using such context free grammars.

The first idea of our system is to regard a scheme of syntax directed
translation[4] as the representations of the relation between input/output
data structures. The scheme is usually interpreted as the representation of
the mapping from input data to output data, but can be naturally re-
interpreted as that of the relation.

The second idea 1is to represent an indirect relation of data
structures by connecting nonterminal symbols in such schemes. A nevw nmeta
symbol = is introduced as a glue. The expressive power of schemes of the
syntax directed translations is not sufficient for a practical progranming
system. It is shown that it becomes recursively-enumerable if we use the
meta symbol =.

The formal grammar which these two ideas lead into is called Coupled
Context Free Grammar (CCFG), the theorical basis of our programming system.
In our system, a program is a CCFG (called a CCFG program) and programming
is to define a CCFG (called CCFG programming). The denotational semantics of
a CCFG program is the formal language generated by the program, a set of n-

tuples of terminal strings. The intuitive meanings of a meta symbol = are a

2

132

communication channel between programs, a conditional rule when applying a
rewriting rule, and sb on.

As vell known, logic programs can represent the relation of objects[3]
and we expect that the mathematical background of logic programs is similar
to that of CCFG programs. In order to show that, we can give tﬁe simple
program transformation of logic prograﬁs into CCFG progranms.

In section two, CCFG and its interpretation as a érogramming language
are informally introduced with some simple examples. In seqtionrthree. the
relation between logic programs and CCFG programs is described with a
program transformation preserving the equivalence. In section four, = the
programming techniques in CCFG programs are shown with some interesting

exanmples.

2 Basic Ideas
In this section some examples of Coupled Context Free Grammars (CCFG)

are presented. These are informal introductions of CCFG programming.

2.1 Direct Relations ,

In syntax directed translations[4], the translation scheme for string

inversion are given as follows.

Input Rules Action Rules
X> e Yi=¢
X->aX Y:=Ya
X->bX Y:=Yb

wvhere a and b are terminal symbols, X and Y nonterminal symbols, and € a

2

N

133

null string. When an input rule is applied, the corresponding action rule in
the same line must be simultaniously applied. One example of the derivations

by the above scheme is given as follows when the input string is "abb™:

X=>aX Y=Ya
= abX =Yba
= abbX ‘= Ybba
= abb =bba

In syntax directed translations this derivation means a translation of
the input string "abb"” into the output string "bba”. -

In CCFG programming we re-interpret the above scheme as coupling of two
context free grammars and the resolvent, a couple of the derived strings
("abb","bba"™) as one of the denotation of the relation between the start
symbols X and Y. The above scheme is rewritten as the following CCFG
progranm:

G;=(N,T,S,P)
N={X,Y}
T={a,b}
S=(X,Y)
P={{X> e, Yo €},
. {X->aX, Y-Va),
{X->bX, Y=>Yb}},

vhere N is the set of nonterminal symbols, T the set of terminal symbols, S
the couple of start symbols, and P the set of "rule-sets”, each of which is
the set of context free rules. The rule-sets are regarded as the body of the
program, and the others are the declarations. The denotation D(X,Y) of the

relation between two start symbols X and Y is the set of couples of terminal

s

134

strings derived by program 61:
D(X,VY)={(e,e€),(a,a), (b,b), (ab,ba), (ba,ab), -}

This is also the semantics of progranm Gl,

Another remarkable example of syntax directed translations is the
translation of the infix notation of fomulae into the prefix notation. In
CCFG programming this translation scheme is also fevritten as the followiné

program Gz which represents the relation between the infix notation and the

prefix notation of formulae:

Go=(N,T,S,P)

N={E{,Ep.T;. Tp.Fy.Fp, 1d}
T={a,b,c,+,%,(,)} |
S=(E;,Ep)

P={{E;>E;+T;, Ep—>+EpTy),
{E;»T;, Ep>Tp 1
{T;>Ti*F;, Tp>*TpFpl,
{Ti;>F;, Tp=F 3
{Fi=>(E}), Fpo>E, 1},
{(F;>1d, F,>Id },
{Id->a},

{Id->b},

{1d=>c}}.
For example, one derivation by program Gz'is presented as follows:

(Ey, Ep)=(Ty, Tp)

135

= (Ti*(Ej), *TpEp)
> (Fix(Ey), #FEp)
= (1d#(E;), #1dEp)

= (ax (E;), *aEp)

> (% (By+Tp), #a+E,pTp)
= (a*(E{+F;), #a+EpFy)
= (a% (B;+1d), #a+E,1d)
= (a%(Ej+c), *a+Epe)
= (ax(Ti+c), *a+Tpe)
= (a*(Fy+c), *a+Fpe)
= (ax(Id+c), #*a+ldc)

= (a%(b+c), xa+be) .

The resolvent ("a%(b+c)","*a+bc") is a courle of formulae in the infix
notation and the prefix notation. The denotation D(Ei,Ep) of the relation

between the nonterminal symbols Ei and Ep is the following set:

D(E;,Ep)={(a,a), (b,b),", (a+b,+ab), -, (a* (b+c) , ¥a+bec) , ' }.

Context free grammars is often used 2s the tools for representing data
structures. In a similar way, context free grammars embedded in a CCFG
program are also regarded as the representations of data structures in the
program. For example, the following context free grammar embedded in progran
Gqy:

X2 e
X->aX,
X->bX,

is regarded as the representation of the data structure specified by the

4

136

start symbol X, and its corresponding data domain Dy is the language {a,b}*
- generated by the above context free grammar. In the same way the following
context free grammar:

Y- e,

Y- Ya,

Y->Yb,

is regarded as the data structure specified by the start symbol Y and its
corresponding data domain Dy is also {a,b}*. The semantics of the program is
represented by a subset of Cartesion product of the above two domains. In

program G5 the semantics D(X,Y) is surely the subset of DyXDy.

2.2.Multiple Data Structures

Next we introduce "multiple” data structures, using a new meta symbol
=~. This 1is important not only for the expressive power of CCFG to be
equivalent to -that of phrase structure grammars[5], but also for CCFG
programming paradigms.

An example is presented as follows:

Gg=(N,T,S,P)
N={Q.R,X,Y,Z}
T={a,b}
S=(Q,R)
P={ {Q->Z=X, R=Y} - (1),
{Z>e } -(@2), {X>e, Y€} 1),
{Z->abZ} - (3), {X—>aX, Y->Ya} - (5),
{X->bX, Y>Yb} - (6)}.

Here we find that program G is embedded in program G3 as a subprogram

/

127

(program Gy contains rule-sets (4),(5) and (6)). A meta symbol = appears in

rule-set (1). One derivation by brogram G3 is given‘as follows:

Q, R=>Z=X, V) by rule-set (1),
% (abab=X, Y) by rule—seté (3),(3) and (2), n
% (abab=abab, baba) by rule-sets (5), (6), (5), (6) and (4).

Here because the both sides of the string "abab=abab" are equal to each
other, we say that this derivation is successful and that the couple of
terminal strings ("abab"”, "baba") is derived by the couple of start symbols

(Q,R). On the other hand, a non-successfull derivation is given as follows:

Q, B=>0@Z=X, Y) by rule-set (1),
% (abab=xX, Y) by rule-sets (3),(3) and (2),
% (abab=~abb, bba) by rule-sets (5), (8),(8) and (4).

Here we say ﬂhat this derivation is failed and that nothing is derived,
because the both sides of the string "abab=abb" are nof equal to each
other.

As described in the above two examples, a new rule for a derivation is
proposed that the derivation is successful if both hand sides of each
derived terminal strings which contain = are equal to each other. Otherwise
‘it is failed. The denotation of the relation between start symbols is the

set of couples of terminal strings successfully derived by start symbols. In

the case of program (g3, the denotation D(Q,R) is given as the following set:

D@,R)={(a,B) QRSB (ax~a,B)}
={((ab)?, (ba)?) In=0}.

Therefore considering the data structure embedded in the above program

s

138

G3, the data structure specified by the start symbol Q is given as the

following context free grammar containing a meta symbol =:

A->Z=X,

A > e,

Z->abl, X-aX,
- X->bX.

Because of the above derivation rule for meta symbol =, the dorain
derived by the start symbol Q is obtained as the intersection of the domains
derived by the symbols Z and X. Therefore we call these two data strucfure

specified by Q "multiple”.

2.3.Indirect Relations

CCFG programs represent the relations between some data structures.
Particularly in the examples described above, the relations between two data
structures specified by start symbols are directly represented in rule-
sets. In this subsection indirect relations are proposed by the
intermediation of meta symbol =.

Suppose that one program G; represents the relation between the start
symbols P and Q, and that another program Gj represents the relation between
the start symbols Q and R. Then the indirect relation between symbols P and
R can be represented in a nev program Gy using the programs G; and G as the
subprograms of Gj.

For example, suppose that the following program which is an extension

of G3 is given:

G4=(N,T,S,P)

N={P,Q,R,¥V,X,Y,Z} 139

T={a,b,c}

S=(P,Q,R)

P={ {P->¥, Q->Z=X, R->Y} - (1),
fie, Z2>e } (2, {X>e, Ye} - (4),
{U->c¥, Z>abZ} - (3), {X->aX, Y>Ya} - (5),

{X->bX, Y=>Yb} ---(6)}.

This program represents the relation between the start symbols P, Q and R.
The denotation D(P,Q,R) of program Gy is the set of triples of terminal
strings which are successfully derived by the triple of start symbols

(P,Q,R) as follows:

D(P,QA,R)={(x,y,2) | (P,Q,R)® (x,yxy.,2)}
={(ch, (ab) ", (ba)P) In=0}.

If we discard the symbol Q and think about only the relation between the
start symbols P and R, the denotation of the relation can be given as the
following set:
D(P,R)={(x,2) | (P,Q,R)® (x,y=y,2)}
={(cM, (ba)D) In20}.

This is the denotation of the indirect relation between P and R, using the
intermediate symbol Q as a channel which connects the relation between P and
Q with the relation between Q and R. If we have no interest in the terminal
strings defived by Q, we may omit the left;hand side of the production rule

Q—>Z=X in rule-set (1). Then the program is revised as follows:

Gs= (N’T,Stp)
N={P1R.H’XlY’Z}

/o

140

T={a,b,c}
S=(P,R)
p={ PV, Z=X, R>Y) (1),
(e, Ioe } ~ @), (e, ¥>e} @),
(V>cW, ZabZ) ~(3), {X>aX, Y>Ya) = (5),
{X—->bX, Y->Yb} ---(6)},

wvhere rule-sets (2),-"-(8) are same as those in program G4, but the second
production rule in rule-set (1) is composed of only the right-hand side of
the original production rule. Z=X is interpreted as a bi-directional

channel between two subprogranms.

‘All the important concepts in CCFG programming have been introduced
informally. The denotational semantics of CCFG‘programs can be defined with
both formal languages and fixedpoint, and theloperational semantics can be
defined with a non-deterministic interpreter. The details of such formal

discussions will be given in other papers.

3. Transformations from Logic Programs into CCFG Programs

CCFG programs have some similar properties to thoee of logic
progrems[3][5]. Both represent the relations of input/output data, both
expressive powers are equivalent to that of phrase structure '8rammars[6],
both interpreters are regarded as rewriting systems, and the executions ofv
both interpreter are non-deterhinistie. Therefore it is expected that the
CCFG programs are formally related with logic programs. Here we show the
program transformation of logic programs to CCFG programs without proving

“that it preserves the equivalence.

7/

141

Such program transformation T translates a definite Horn clause:

p(sl’szi..”si) :;q(t19t2‘.."tj) "o',r(ul’uz,'.‘iuk)l ’

into the following rule-sets:

{P1—>§1,IP2—>§2.“',P1—>§i. =%, Q=ta,,Q5=t;, -,
Rlzal ’ Rzzl-iz' o ijzﬁk}]

X1=#}, (Xo>%}, -, {(Xg=> %},

if the definite Horn clause contains variables X;,Xo,-",Xy. Here # s
anonymous nonterminal symbol which can derive any terminal string, i.e.
57T The translated stringéigl,"',ﬁk are the strings corresponding to the
terms sq,--,ui, substituting nonterminal symbols into the corresponding
variables in the terms and terminal symbols into the corresponding constants
and functors.

Some typical examples of program translations are discussed as follows.

First of all we consider the definite Horn clausé in which a Qariable

apbears once in the head and more than once in the body as follbws:
p(X):-q(X),r(X).

Here the variable X is shared with the predicate symbols p,q and r. This is
translated inﬁo | |

{P1=X, ;1=X, R1=X},

{X->x}.

Eliminating the variable X, the above rule-sets can be easily transformed

into

{Pl-éﬂl'&"kl} .

/2

142

We find that the nonterminal symbol Py has a multiple data structure.

In this way, if a ;ariable appears once in the head of an original
definite clause and more than once in the body, the translated rule-set
contains a multiple data structure.

Next we consider the following definite clause:
p(X):-a(X,¥V),r(Y).,
which contains the internal variable Y in its body. This is translated into

{P1=>X, Q1=X, Q@=Y, R1=V},
{X>=%}, {Y>x].

Eliminating the variables” X and Y , the above rule-sets are easily
translated into

In the original clause, the internal variable Y indicates that the second
argument of predicate q and the first argument of predicate r are resolved
as same ground terms. In the translated rule-éet, the production rule Uo=Ry
also indicates that nonterminal symbols Uy and Ry are resolved as same
terminal strings.

In this way, if there exist internal variables in an original definite
clause, there exist production rules which contains meta symbol = and does
not have its left-hand side nonterminal symbol in the translated rule-set.

As described above, we find that the interpretations of logic programs
are similar to that of CCFG programs. Using above transformation, we may .
find new relations between some concepts in logic progréns and in CCFG'

programs.

143

4 .Programming Examples

In this section some programming techniques are discussed with some
examples. First 1in subsection 4.1 the programs to parse and translate
strinsé are given. In subsection 4.2 the program to process streams of

integers is given.

4.1.Parsing Strings

The first application 1is to generate a parser Jjust like a syntax
directed translator. Because the origin of CCFG is a syntax directed
translator, we can straightforwardly construct it in CCFG progranms.

One example of such programs is program Gy in section 2.1, which
represents the relation between the formula E; in infix notation and the
formula E; in prefix notation. Using this program, the program to parse the
input string "ax(b+c)"” in infix notation and translate it into the output

string "#a+bc" in prefix notation, is given as follows:

PARSE=(N',T,S',P")
N'={0ut)} UN,
S’ =0ut,
P'={Main'}UP,

Main'={a*(b+c)=E;, Out->Ep},

where N, T and P have been already defined in program GZ in section 2.1.
Program PARSE can obtain the fofmula "sa+be” in prefix notation
corresponding to the formula "a%(b+c)" in infix notation. One successful

derivation by this program is as follows:

[F

144

Out=> (E,, a*(b+c)=Ej)

X (%xa+bc, a%x(b+c)=ax(b+c)).

Here the derivation in the second 1ine is same as the derivation in
subsection 2.1. Since the string "a*(b+c)<E;" means that E; must derive the
terminal string "a*(b+c)", the string represents the parsing of "a% (b+c) " by
E;.

Another example 1is to concurrently parse both imcomplete formulae in
infix and prefix notations and to obtain the complete ones. We suppose that
the formula in infix notation is given as "a%*[0J+c)" and that the formula

in prefix notation is given as "*OJ0Ob(1", where each [J means one terminal

symbol. The program to obtain the complete formulae is given as follows:

PARSE2=(N",T,S",P")

N"={S;,8p,01,09,, 05} UN,

$"={8;,5,}

P"={Main"}UPU DO

Main"={S;>a*0010g+c)=E;, Sp->*03004bO5~Ep},

O={{01>a},{01=b}, {O01>c}, {01~>+},{01>%},
{04 0.{01)),.{O5~>a}, {0O5>b}, {Og>cl,
{Og>+3}, {Og>%1],

where N, T and P have been already defined in progran Gz in section 2.1.
Nonterminal symbols []i (i=1,-+,5) are used in place of [s because each [J;
may derive a terminal string different from each other. Program PARSE2 has

one solution and a successful derivation is given as follows:

(8;,8p) = (ax010g+c)=E;, *0304b05=Ep)
% (ax00109+c)=a% (b+c), *0304b05= *a+bc)

/&

-

145
5 (ax(b+c)=a%x(b+c), *a+be= %a+bc).

Though effective strategies to derive the solution are not discussed in this
paper, we can effectively compute the above derivation by using the
LL(k) (Left to right Leftmost derivation) or RR(k) (Right to left Rightmost
derivation) parsing techniques.

As described above, 5 string x =X represents the parsing of a terminal
string x by X. Extending the concept of such parsing, we can assume that a
string a=pB, where a and B are strings of terminal symbols and
nonterminal symbols, also represents an extended parsing. Therofore the
implementations of a CCFG intepreter is to develop such extended parsers to

effectively compute above derivations.

4.2.Processing Streams

Stream is an important data structure to naturally express data flows.
Here we simulate the streams and their processings in CCFG programming
system.

’Let us consider the calculation to obtain the sum of squared 'integer
streams. For example, if the input stream is ,<1’2>’ the corresponding
calculation result is five, because 12+22 = 5. This computation is designed
as follows:

<1,2> = [SR] = <1,4> = [SUM] = 5,

vhere the program SQR consumes a stream of integers and produces the stream
of the squared integers, and the program SUM consumes it and calculates the
sum of all its elements.

The CCFG program which executes the above computation is given. First

the declaration parts and main program are as follows:

/¢

148

SUMSQR=(N,T,S,P)
N={Result, SqrStI, SqrSt0, SumStI, Sum0}
T={%, |}
S=Result
P={Main} U Number U SQR U SUM U HUL
Main={+ |¥¢ ¥ [=SqrStI, SarSt0=~SumStI, Result->Sum0},

vhere the output nonterminal symbol "Result” derives the computation result,
the nonterminal symbols SqrStI and SqrSt0 are the input/output nonterminal
symbols of subprogram SQR and the nonterminal symbols SumStI and Sum0 are
the input/output nonterminal symbols of subprogranm SUM.\ Since in CCFG
programming system the primitive objects which represent integers are not
prepared, integers are expressed with the strings of the terminal symbol %%,
wvhich value as an integer is its length. Namely‘the data structure of

integers are the following rule-sets:
Number={{Num—> € }, {Num—> vxNum}}.

A stream of integers are expressed as a string of integers in the following
rule-sets:

{NumSt—= € }, {NuaSt— Num|NumSt},
wvhere symbol "|" is a delimiter between integers. So the string "Wwild¥& %"
means a stream of integer <1,2>.

The subprogram SQR is the following rule-sets:

SQR={{SqrStI-> ¢, SqrSt0- €},
{SqrStI->SarIlSqrStI, SqrSt0->Sqr0{SqrsSt0},
{ SqarI=>MI1=M2, Sqr0->MR}},

vhere the rule-set in the first line means that if the input stream SarStl

’Yy

147

of SQOR is empty, then the output stream SqrSt0 of SQR is also empty. The
rule-set in“the second line means that if the input stream SaqrStl is the
concatenation of a integer Sarl and its following input strean, then the

output stream SqrSt0 is the concatenation of integer Sqr0 and its follovwing

output stream. The rule-set in the third line means that Sar0 is the result

MR of a multiplier MUL where its two input arguments M1 and M2 are both equal
to Sarl.

The multiplier is given as the following rule- sets:

MUL={{M1> &, M2->Num, MR €},
{M1>¥¢ M1, M2-5M2, MR—->M2 MR}}.

The rule-set in the first line means that the result MR is zero where the
input argument M1 is zero. The rule-set in the second line means that if the
input argument M1 is 1+M1 then the result MR is M2+MR for any multiplicand
M2. This is the recursive definition of triples (M1,M2,MR). Because an
integer is expressed by the number of ¥rs, the concatenation of two integers
M2 and MR means the sum M2+MR.

The subprogram SUM is given as the following rule-sets:

SUK={{SumStI-> ¢, | Sum0-> € },
{SumStI->Num|SumStI, Sum0->Num Sum0}},

vhere the concatenation of two integers Num and Sum0 in the second line
means the sum Num+Sum0.

One example of computation by this program is the following successfull

derivations:

Result= (¥¢ |¥¢ ¥ |=SarStI, SqrSt0=SumStI, Sum0)

148

= (& | %% | =SarI|SarSt1, Sar0|SarSt0~SusStI, Sum0)
= (% %% |=M11SarStI=M2|SqrStI, | MR|SqrSt0=SumStI, Sum0)
= (% 1% % | =M1 ISarStI=M2|SqrStI, M2MR|SqrSt0=SumStI, Sur0)
= (% 3% % =¥ ISarStI=Num|SarStI, Num|SqrStO=SumStI, Sum0)
59(i?li?i?l=3i%|8qr8t12=¢?lSqutI, ¥ ISarSt0=SunStI, Sum0)

The tuple of sentential forms in the last line is equivalent to the

following one:
(% | ¥ 1=¥ I1SarStI, ¥r1SqrStO0=~SumStI, Sum0) .
Then we can use this tuple and go on with the calculation:

5 Griddi=diddl, %%k =Sumstl, Sum0)
5 (K %k =%], % i & 1o | SumSt I, ¥¢ Sum0)
BOrINdi=didskl, Shrdddi=dRddskl, Fdstik).

At last, the start symbol Result has derived interger five, 1i.e.
Result® Jr¥r¥ryvrsy.

In this way, processing streams can be simulated in CCFG programming
system. We first made subprograms to process streams, and connected them by

e

the intermediation of meta:symbols =.

5.Discussion

In this paper Coupled Context Free Grammars and its interpretation as a
programming languages are informally introduced. Here the strict definitions
on them are not given. Such definitions and formal discussions will be
described in other papers.

The following problems remain.

143

(1) to devise effective parsing methods for CCFG.

(2) to design a practical programming language based on CCFG and implement
such language.

(3) to compare CCFG programs with logic programs and clarify the properties ;

of CCFG.

References

[1]1Jackson,M.A. :"Principles of Program Design”, Academic Press(1975).

[2]Abramson,H. :Definite Clause Translation Grammars and the Logical
Specification of Data Types as Unambiguous Context Free Grammars,
Proceedings of the International Conference on Fifth Generation
Computer System(1984).

[3]Kowalski,R.:Predicate Logic as Programming Language, Information

Processing 74 (1974).
[4]Aho,A.V. and Ullman,J.D.:"The Theory of Parsing, Translation and

Compiling Voll:Parsing”, Prentice Hall (1972).

[5]Yamashita,Y. and Nakata,I.:The Extenstion of Context Free Grammars and
the Programming Language Based on Coupled Grammars, IPSJ Working Group
of Software Foundation 15-5(1985), in Japanese.

[6]Tarnlund,S-A. :Horn Clause Computability, BIT 17(1977),pp.215

[7]Nakata,I. and Yamashita,Y.:Program Transformation in Coupled Context Free
Grammars, IPSJ Working Group of Software Foundation 17-3(1986),

in Japanese.

