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An example of one-dimensional Cohen-Macaulay local
rings that possess only finitely many isomorphism

classes of indecomposable maximal Buchsbaum modules

Shiro Goto (Nihon University)

% & mgp (BX- 3X8)

In our paper [GN] with K. Nishida we proved the following

Theorem 1. Let P = kHXJ,X s an] be a formal power

2’ o o 0
series ring over an algebraically closed field k of «ch k # 2 .

Let R = P/I , where I 1is an ideal of P and suppose dim B =

d

[\%

2 . Then the following two conditions are equivalent.

(1) R 1is a regular local ring.

(2) R 1is a Cohen-Macaulay ring that possesses only finitely many

isomorphism classes of indecomposable maximal Buchsbaum modules.
When this is the case, the syzygy modules of the residue

class field. k of R are the representatives of indecomposable

maximal Buchsbaum modules and so there are exactly d non-iso-

morphic indecomposable maximal Buchsbaum modules over R .

Our contribution in the above theorem is the implication (2) =>
(1). The last assertion and the implication (1) => (2) are due
to [G] (see also [EG, Theorem 3.2]), where some consequences of
the result are discussed too.

I would like to‘note here that the assumption dim R 2z 2
in Theorem 1 is not superfluous. When dim R = 1, maximal Buchs-
baum R-modules M  are characterized by the condition that

. _ 0 _
dim M = 1 and ﬂ-Hﬂ(M) = (0)



(here H;(.) denotes the 1 th local cohomology functor of R

relative to the maximal ideal m of R ). This condition (is of
course not too much weak but) seems not quite strong. Nevertheless
in some sense surprisingly, there exist such Cohen-Macaulay local
rings R of‘ dim R = 1 that are non-regular but possess only
finitely many isomorphism classes of indecomposable maximal Buchs-
baum modules. In my lecture I will explore the typical example

R = k[[t2,t3] .

Now let k be a field and S = k[[t]] a formal power series
ring over k . We put R = kth,t3H . Then R and S are the
only indecomposable maximal Cohen-Macaulay R-modules (cf. [H, Satz

1.6]) and the R-module S has a resolution of the following form

2 2 2

ees > R —> R —> R - s > 0,
£3 ¢4 g3 ¢4
—t2 —t3 —t2 —t3
a
where e([ ]) = a + bt . Therefore we have an embedding
b
2 g3 ¢4
o : S+ R which sends 1 (resp. t ) to [ 2 ] (resp. [ 3] )
-t -t

and makes the diagram

g 2 £
s — R — S
A -t
S — R2 — S
g €
0 -t
commutative, where p = . Let A = (a,.) and B =
-1 0 1]
(b..) be mx m matrices with entries in k and let

1]



2)m N (R2)m

o : (R be the homomorphism defined by
m m
o((x.)) = ( £ a..x. + I b..p(x.)) .
1 5=1 13 3 3=1 1] J
Then we clearly have
.Lemma 2. The diagram
m m
o 2 £ m
s? — (RO)" — S
l A+tB 1 b l A-tB
m (RZ)m gm
o e
is commutative (here o™ and €" respectively denote the direct

sum of m copies of o0 and g€ ).

Let m ( = t28 ) denote the maximal ideal of R and let

N be an R-submodule of S such that m 1is contained in N . We

put M = R2/0(N) . Then

Proposition 3. M is an indecomposable maximal Buchsbaum

R-module with Hg(M) = S/N .

Proof. Considering the exact sequence
0 *S/N>*M>S >0,
we get Hg(M) = S/N as m.(S/N) = (0) and as S 1is Cohen-
Macaulay ;go M is a maximal Buchsbaum R-module. Assume that

M = M.l 0] M2 for some non-zero submodules M and M Then

1 2 -

Mi's are cyclic, since M is generated by two elements. If

~

dimRMi =1 for i =1, 2, the isomorphisms S = M/Hg(M) =

0 0 . .
M1/Hm‘M1) 0] Mz/Hm(Mz) claim that S is decomposable. Hence



dimRMi = 0 for some i , say i =2 . Then M,- is contained in

Hg(M) and so S 1s a homomorphic image of M, —— this is impossible,

1

because M1 is cyclic while S is not. Thus we see M is in-

decomposable.

We define

M, = R%/o(m) , M, = R*/o(R) . and M, = R*/o(tS) .

By Proposition 3 Mi’s are indecomposable maximal Buchsbaum R-

modules and M, b My (i =2, 3), since
.0 _ o
dlmka(Mi) = 2 (i=1),
:1 (i=2,3)-

M, is of homological dimension 1 but M, 1is not;so M, F M

3 3°

The goal of my lecture is the following

Theorem 4. M M M3, S and R are the indecomposable

1’72
maximal Buchsbaum R-modules.
To prove this theorem we need one more lemma 5, the proof

of which is routine (use the induction on the size of matrices C )

and shall be omitted.

(s
Lemma 5. Let C be an m x n matrix with entries in S/t“S
Then there exist an invertible m x m matrix P with entries in
S/t?S and an invertible n x n matrix Q with entries in k

such that PCQ has the following form



1 ’ . !tv. | ,
. | | T
. . _ml ______ e
S 0 | 0 | 0
/) | -
""""" '"T?”“—'i'_“ ‘“i“"_ mod t2s .
0 i S o | 0
_______ T N
| | |
0 I 0 | o 0
| | |

Proof of Theorem 4.

Let M be an indecomposable maximal Buchsbaum R-module such

that M # R . Let V = HI?I(M) . Then mV = (0) .
Claim. V is conta;ned in mM and M/V = S™ for some mz 1.
For let W be the intersection of V and mM and write
V=W®&WwW . Then W?f\ gﬁ = (0) and ‘we have an embedding
W' > M > M/mM , which naturally splits. Hence W' =’(b) as M

is indecomposable and thus V is contained in mM . Since M/V

is Cohen-Macaulay, the second assertion is clear.

By the above claim we get a commutative diagram

0
¥
v
¥
2.m : .
0 — ¥ — (R7) —_ s M — 0
; ]
]
0 — & 5 @®)™ 5 s 5 o0
m ‘ m l
o] €
0



with exact rows and columns. Here we consider N to be an R-

submodule of S™ and the homomorphism i : N -+ s™ to be the
inclusion map. Hence m.Sm is contained in N , as V = Sm/N .
Let 1 : s™ » Sm/msm = (S/tZS)m denote the canonical epimorphism.
We put U = T(N) and n = dimkU . If n=0, then N = gSm
and so M = (Rz/o(_n_l))m . Consequently, we get m =1 and M =
M1. |
Now suppose that n z 1 and let Vir Vor «ee 4V be a k-
basis of U . Let us apply Lemma 5 to the m x n matrix C =
(v1,v2, e 'Vn) . Then Lemma 5 asserts that by some automorphism

P of (S/tZS)m , U 1is mapped onto the k-subspace U' which is

spanned by the columns of an m x n matrix of the following form:

1 t )
oo T
U ___t
(#) . 1: 0 : 0 mod t2s .
R e
0 ! - ] o0
T
' |
0 : 0 : 0

Let L be the R-submodule of 8" generated by the columné of

M + L . Then clearly U' =

the above matrix (#) and put N' = mS
T(N') .

We write P = A + tB mod tzs with m x m matrices A



and B with entries in k . Then since the following diagram

m T 2.,
S —  (S/t"8)
l A+tB |
s ——  (s/t%s)"
T
is commutative and since U' = T(N') , we get that N' = (A+tB)N .

Let us now recall the diagram in Lemma 2:

Om 2 Em m
0 » s™% @®HM™ S ™ 5 o
+ A+tB Yy ¢ + A-tB
0 » s™ » (R2)m O L) .
m m
o] €

Then as the rows of this diagram are exact and as both the matrices
A + +#B and A - tB are invertible, the middle ¢ has to be an
isomorphism whence, via ¢ , we find that

M

(R%)™/ o™ ()

(RZ)™/5™(N") .

n

Consequently we may assume that N = N' . The condition that M
is indecomposable now causes a very tight restriction on the form
of the matrix (#) above. We readily see that m = 1 and the

matrix (#) must be one of

(1 t), (1) and (t) .
Thus M = RZ/O(S) (=S8S), M= R2/0(R) ( = M2 ) , or M =
R2/o(tS) ( = M3 ) as claimed. This completes the proof of

Theorem 4.
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