gooooogogoo
0 6250 1987i] 18-131
1%

BUEH LB ITATINIZ-S Y OREY RO
On the power of alfernafions m space - bounded comgq‘fcd?ons

EHFHeEarie f’-"iﬂiﬁ’iZﬁ}] (Seinosuke Toda)

Abstract

One of the most important questions in the theorv of
computational coﬁplexity.is whether nondeterministic space-
bounded complexity classes are closed under complement. In the
case of linear space bound, this can be viewed as a second
version of a famous gquestion known as the LBA problem in
Kuroda[3], and is a longstanding open question. Futhermore,
scince the concept called "alternation" was introduced in
Chandra, Xozen and Stockmeyer[l] as a generalization of
nondeterminism the same many questions as the above one have
arised. A typical one in those questions is whether the linear
space-bounded complexity class defined by alternating Turing
machines allowing with one alternation is closed under
complement. We can view this as a third vérsion of the LBA
problem. In this paper, we answer this question, that is, we
show that EESPACE(n) is closed under complement, where
ZkSPACE(m denotes a class of languages accepted by linear space-
bounded alternating Turing machines whose initial state 1is
existential and which make at most k-1 alternations, for each
k>0. As an immediate consequence, the alternation linear-space
hierarchy collapses to the second level, i.e., 2Z,SPACE(n) =
ZkSPACE(n) for any k32. By using a usual translational method,
these results can be extended to any space bound greater that

linear.

11§

1° Preliminaries

We assume that the readers are familiar with the basic
concepts from the theories of automata, computability and formal

languages. We outline the necessary concepts .in this paper.

Let T dencte an aporopriate finite alphabet. For a word w in
T*, |w| denotes the length of w. The empty word is dencted by A.
For a language AS T, aC denotes its complement(i.e., AS = T*-a).

For a class C of languages, coC denote the class of languages

whose complement is in C.

Our models of computation are variations of one-tape Turing

machines (see [2]). A one-tape Turing machine (TM for short)

has a two-way read-write tape used as both input tape and work tape,
and the distinguished three states called the initial, the .

accepting and the rejecting. An instantaneous description (ID

for short) of a TM M on input x is a pair (g, ufv), where g
indicates a state of M, its tape contains a wecrd uv, and the tape
head currently reads the leftmost‘symbol of v. An ID is initial
(accépting and rejecting) iff the state of the ID is initial (
accepting and rejecting, respectively). For any ID I and J, if M
moves from I to J in one step, then this movement is abbriviated

by I} J. A computation path of M on x is a sequence of IDs I;,

Tps eees T

m Such that I, |} I, for each 1gigm.

An Alternating Turing machine (ATM for short) is a

120

generalization of ordinarv TMs, described‘informally as follows.
The states of an ATM M are classified into two distinct states

_called universal states and existential states, respectively. We

can view a computation cf M on input x as a tree whose nodes are

labeled with IDs of M on x. A computation tree of M on x is a -
tree such that any internal node labeled with a universal
(existential) ID is followed by all (resp., one) of successors of

that ID, where an ID is universal (existential) if the state

of the ID is universal (resp., existential). An accepting

computation tree of M on x is a computation tree such that its

root node is labeled with the initial ID and each of its leaves
is labeled with an accepting ID. M accepts x iff there is an

accepting computation tree of M on x.

An ATM is said to be deterministic (abbriviated by DTM) iff

its transition function is one-valued. An ATM is said to be

nondterministic (abbriviated by NTM) iff its states are all

existential.

Let I and J be any IDs of an ATM M on input x. A move I+ J

of M cn x is called an alternation move iff either 1 is universal

and J is existential, or I is existential and J is universal,
Let k be any positive integer. An ATM M is said to be k

alternation-bounded iff for each input x, M makes at most k-1

alternation moves in each computation path. A ¢, TM is a k

alternation-bounded ATM whose initial state is existential. A

121

w®.TM is a k alternation-bounded ATM whose initial state is
N

universal. We note that a 1™ is an NTM.

Let £ be a function on positive integers. An ATM is‘f(n)

space-bounded iff for each input x, M uUses at most f(]|x]|) tape

cells. Let S be any space bounds greater than or equal to linear.
DSPACE(S(n)) denotes a class of languages accepted by 0(S{n))
space-bounded DTMs. 'NSPACE(S(n)) denotes a class of languages
accepted by 0(S(n)) space-bounded NTMs. For any positive integer
k, ZkSPACE(S(n)) cdenotes a class of languages acceptéd by
0(S(n)) space-bounded ¢ TMs, and TTkSPACE(S(nH denotes a class
of languages accepted by 0(S(n)) space-bounded TC, TMs. We note
that NSPACE(S(n))= lePACE(S(n)) and coNSPACE(S(n))=

T[{SPACE(S(n)) by definitions.

A function S on natural numbers is called space-constructible

if for input 17, 15(R) can be constructed by an S(n) space-

bounded DTM.

Through the whole of this paper, we assume the following
constraints on an ATM M. Without loss of generality, we can

assume so.

(1) The input alphabet of M is {0,1}. Hence we consider only
languages on [0,1}*. The tape alphabet of M may contains any
finite number of symbols and includes {0,1,B}, where B denotes

the blank symbol contained initially in each tape cell except

122

input.

(2) Let S(n)3n be any space-constructible function and let M be
S(n) space-bounded. Then, for each input ®x, M first constructs
x#SUX[)=1%| 54 its tape and M begins its substential computation
after this construction. Futhermore, at any time of the
substential computation, the length of contents of its tape is
always S(|[x|) (i.e., M never uses another tape éell except thé

cells x#SUxP-%x]| i5 written initially and M never writes the

blank symbol).
Although the assumption (2) is technical one, it is essential
in the proof of main theorem. The assumption (1) is a

conventional one.

At the end of this section, we state some basic properties

about the above classes without the proof.

Proposition 1.

(1) For any k>0, if T['kSPACE(n) < ZkSPACE(n), then the equality
holds.
(2) If ZkSPACE(n) = T['kSPACE(n) for some k>0, then ZkSPACE(n)

= ziSPACE(n) for any i}k.

(3) For any k,i>0, if ZkSPACE(n) = Z;SPACE(n), then
2 SPACE(S(n)) = Z;SPACE(S(n)) for each space-constructible
S(n)»n.

EZ Main results
o

Our main theorem in this paper is as follows.

Main Theorem. T,SPACE(n) & Z,SPACE(n).

Our technique to prove main theorem is based on an idea due to
Mahaney[4] and some new ideas. At the beginning of proving main
theorem, we define some notions and show several basic lemmas

about those notions.

Let <-,-> denotes a pairing function on {0,1}* satisfying the
conditions that <x,y> is computable within space O(|x|+]|y]|) for
each x,y €1{0,1}%, its inverse functions (both left and right)
is computable within space O({<x,y>{), and there is a constant
c31l such that for each x,y’é{o,l}*, |<x,y>| is bounded above by
c([x]+[y|). In this sectioh, both 10 and 00 denote the empty

word conventionally.

Definition 1. For a nonnegative integer k, bin(k) denotes the
ordinary binary notation of k. For a language A € {0,1}*;
ex(A) (called the extension of A) and pc(A) (called the pseudo-
complement of A) are defined as follows: ex(a)=1"0 U { x1 | x is

in A}, and pc(a) = { 1™0<x,bin(k)> | x in {0;1}*, k,n30, |x]gn,
there are XK{reeerXy such that each xi's are paifwise distinct‘and

for 1gigk, |x;]¢n, x;4x and x; is in A }. Intuitively speaking,

17%0<x,bin(k)> is in pc(A) iff | x|¢n and we can choose k distinct

124

words of length at most n from A-{x}. Furthermore, the census

of A, dencted by CA' is a function on natural numbers defined as

Ca(m)=]{ x in A | |x|gn}]| for each n}0.

Lemma 1. LetZ\S{O,l}* be a language in NSPACE(n). Then,
both ex(A) and pc(A) are in NSPACE(n).
proof. It is obvious that ex(A) is in NSPACE(n). We prove only
that pc(A) is in ﬁSPACE(n). Let M be a linear space-bounded NTM
whicﬁ accepts A. Then, we construct a linear space-bounded NTM

as follows.

input 170<x,bin(k)> ;
if |x|>n or k)Zn+1 then rejecf and halt ;
else if k=0 then accept and halt ;
ki <-0; y<-@ ;
while k;<k
do guess a y' such that [y'lsn and yLCy' ;
if y'=x then reject and halt ;
simulate M on y' ;
if M reaches the accepting‘state
then vy <- y' ; kl <=~ k1+l ;
else reject and halt,}
od ;
-accept and halt.
In the above, L denotes a suitable linear ordering on {0,1}* u

(@} satisfying that @LC x for any x€{0,1}". The proof of the

7

correctness of the above machine is left to the readers.

Lemma 2. For any A € {0,1}", each k,n30 and each x in
{0,1}* satisfying |x|¢n, the followings hold.

(1) 170<x,bin(k)> & pc(A) if k‘>CA(n),

(2) 1P%0<x,bin(k)> € pc(A) if k<Cp(n), and

(3) 170<x,bin(k)> € PC(A) <=> x &€ A if k=Cp(n).

roof. (1) Assume that k>CA(n). Then, we cannot choose k

'O

distinct words of length at most n from A. Hence, 1n0<x,bin(k)>
is not in pc(A).

(2) Assume that k<CA(n). Then, we can choose k distinct words
of length at most n from A-{x}. Hence, 1P0<x,bin(k)> is in
pc(3).

(3) Assume that k=CA(n). If x is not in A, then we can choose k
distinct words of length at most n from A (=A-{x}), and hence
1%0<x,bin(k)> is in pc(A).v If x is in A, then we cannot choose
k distinct words of length at most n from A-{x} (such‘a choice

must always contains x), and hence 170<x,bin(k)> is not in pc(A).

Lemma 3. For any A & {0,1}" and each n20, Cgyqa)(ntl) =

CA(n)+n+1.

proof Obvious from Definition 1.

Lemma 4. For any AS{0,1}", k,n30, k=Cn(n) if and only if
1"*10<170,bin(k+n+1)> € pc(ex(n)) and 17*10<1P0,bin(k+n)> €

pc(ex(A)).

126

proof. In the proof of this 1emma, we apply Lemma 2 for
ex(A) instead of A.
(=>) Assume k=Cp(n). Since 170 is in ex(A) and k+n+l
=Ceyx(a)(n+l) from Lemma 3,1“410<1n0,bin(k+n+1)>='
1n+10<1n0,51n(cex(A)(n+1))> is not in pc(ex(A)) from Lemma 2(3).
On the other hahd, since k+n<Cgy (p)(n+l), 1n+10<ln0,bin(k+n)>v
is in pc(ex(A)) from Lemma 2(2).
(<=). Assume that the right hand héldé and kaA(nj. Then, we
consider three cases below.

Case 1: k<CA(n). In this case, k+n+l<Cex(A)(n+l). Hence,

17*10¢100,bin(k+n+1)> is in pc(ex(A)) from Lemma 2(2).

Case 2: k-l)CA(n). In this case; n+k>Cex(A)(n+l). Hence,
17*1g<1M0,bin(k+n)> is not in pc(ex(A)) from Lemma 2(1l).

Ca;e 3: k—l=CA(n). In this case, k+n=Cex(A)(n+l), and also,
170 is in ex(A). Hence, 1%*lo<1P0,bin(k+n)> is not in

pc{ex(a)) from Lemma 2(3).

In each cases, a contradiction occurs. Hence, k=CA(n) if

the right hand holds.

From Lemma 4, we can construct an efficient algorithm for

computing the census of each language in NSPACE(n).

n
—~—

Definition 2. For a language AS{O,I}*, define cen(A)

170bin(k) | n,k30, k=Cp(n) }.

127

Lemma 5. For any?\g{o,l}*, if A is in NSPACE(n) then cen(a)

is in Z,SPACE(n).

proof. From Lemma 1, pc(ex(A)) is in NSPACE(n). Let M, be an
0(n) space+~bounded NTM which accepts pc(ex(a)), and let Mé be an
0(n) spacé-bounded'1tlTM which accepts pc(ex(A))®. Then, we

construct an algorithm as follows.

input 1%0bin(k), where n,k}0 ;
if k;2m'l then reject and halt ;
kl <- k+n ;
k2 <- k+n+l ;
simulate M; on input l“+10<1n0,bin(kl)> ;
if M; reaches the accepting state
then simulate M, on input ln+10<ln0,bin(k2)> ;
if Mé reaches the accepting state

then accept else reject

else reject.

It is obvious that the above algorithm can be realized by an
O(n) space-bounded ¢,TM. Also, it is easy to see that from

Lemma 4, the above algorithm accepts 1%0bin (k) iff k=Cp(n).

Now, we show the main theorem in this paper.

Proof of Main Theorem. Let M be an O(n) space-bounded T,TM.

We suppose that M's tépe alphabet is {al,u.,as} and M is cn+c

128

space-bounded, where c¢ is a positive constanf depending cnly on
M. We also suppose that M has r states, denoteé by {ql,.",qr}.
Let I be an ID of M on input of length n. Then, we encode I inte
a binary word I" as follows. I¥ = §q...§ hyxq.chpx
(m<c|x|4c), where I¥ satisfies the following conditions.

(1) Each §; is in {0,1}, each h; is in {0,1}, and each x; is in

{ ol10S-i-1 | ogigs-1 }.

(2) If the state of I is 95 then qj=1 ané the others are all.o.
(3) Each h; indicates the position of M's tape head as follows.
If hi = 1, then M's tape head scans the i-th tape cell;
otherwise, the head does not scan this cell. Futhermore, the

only one of each h;j's is one and the others are all zero.

(4) Each x: indicates a content of the i-th tape cell as follows.

1

If the j-th bit of X3 is 1, then the content of the i-th cell is

We note that the form of each x; is restricted in (1).

az i

je
(5) |1¥|>r and |1*|-r=0 (mod (s+l1)).

If a binary word I* satisfies the above conditions, then we
call 1% a valid encoding of an ID I of M. We define a language
L<M>={ 1% [I# is a valid encoding of an existential ID I of M,
and there is a computation path of M from I to an accepting ID whose
internal IDs are all existential and the length of each encoding
word of whose internal IDs is egual to {I#l }. Obvicusly, L<KM> is
in NSPACE(n)(actually, we construct an 0(n) space-bounded NTM from M
which accepts L<M>). Then, the following facts hold from the

definition of L<M> and Lemma 2(3) (also, recall the assumptions

for alternating Turing machines in section 2).

129

~ Fact 1. Let exID(M,x) be the set of'existential'IDsbof M on
input x and let I, denote the initial ID of M on x. Then, M
accepts x if and only if for each I in exID(M,x) such that there
is a computation path from I0 to I whose inte:nal IDs are

all universal, I# is in L<MD.

Fact 2. Let IT be a valid encoding of an existential ID of M cn
.input of length n. Then, I% is in L<M> if and only if

1m0<I#,bin(CL<M>(m))> is not in pc(L<M>), where m=(s+l) (cn+c)+r.

From the fact L<M> is in NSPACE(n) and Lemma 1, the above
fact 2 tells us that given a correct census of L<M>, we can

construct an O(n) space-bounded n&TM which accepts L<M>.

Now, we construct an algorithm which accepts the same language
as M. Intuitively speaking, the algorithm bperates as foliows.
Given an input of length n, it first guesses a census of L<M> up
to length m=(s+l)(cn+c)+r. MNext, it checks the correctness of
the guessed census as in Lemma 5. If the census is correct, then
it begins to simulate M until an existential ID occurs. Finally,
if an existential ID occurs, then it decides whether that ID is

in LKM> by simulating a T TM in Fact 2.

Let MﬁE be an 0(n) space-bounded T TM which accepts

pc(L<M>)€, and let M be an 0(n) space-bounded ¢,TM which

cen

accepts cen(L<M>). Since L<KM> is in NSPACE(n), such machines

| 2

130

exist from Lemma 1 and Lemma 5. Then, a desired algorithm is as

follows.

input x ;
m <=~ (s+1)(c|x{+c)+r ;
guess a binary word bin(k) such that |bin(k)|gm+1 ;

on input 1M0bin(k) ;

simulate Mcen

if M.opn does not reach the accepting state

n
then reject
else simulate M on input x until an existential ID I occurs ;
if no existential ID occur
then if M reaches the accepting state
then accept else reject
else simulate M== on input 1m0<I#,bin(k)> ;

PC

if MEE reaches the accepting state

then accept else reject.

It is easy to see that the above algorithm can be realized by
an O0(n) space-bounded 6,TM. We show the correctness of the
algorithm below. Assume the algorithm accepts an input x. Then,
there is a nonegative integer k such that Moen accepts 1™0bin (k)
and for each I in exID(M,x), if there is a computation path from
Io'to I whose internal IDs are all universal, then MﬁE accepts
1m0<I#,bin(k)>, where m=(s+1)(c|x|+c)+r and I, denotes the
initial ID of M on x. Since k=Cp¢m>(m) from the fact M., accepés
1™0bin(k), for each I in exID(M,x), if there is a computation

path from I0 to I whose internal IDs are all universal, then M§E

13

131

accepts lm0<I#,bin(CL<M>(m))>, and hence, I is in L<M> from Fact
2. Thus, M accepts x from Fact 1l. The inverse direction is

similar. This complete the proof.

Corollary 1. Z,SPACE(n) TT,SPACE(n) .

Corollary 2. Z,SPACE(n) Z, SPACE(n) for any k2.
Corollary 3. 3X,SPACE(S(n)) = 2 SPACE(S(n)) for any space-

constructible S(n))n.

References

1. A.K. Chandra, D.C. Kozen, and L.J. Stéckmeyer, Alternation, J.
Assoc. Computf Mach. 28(1981), 114-133.

2. J.E. Hopcroft and J.D. Ullman, introduction to Automata
Thecry, Languages, and Ccmputation, Acddiscon-Weslay,
Readinas(1979).

3. S.Y. Kuroda, Classes cf languages anéd linear bounded
automata, Informaticn and Control 7(1964), 207-223.

4. S. Mahaney, Sparse complete sets for NP: solution of a
ccnjecture of Berman and Hartmanis, J. Comput. System Sci. 25(1982),
130-143.

5. L.J. Stockmeyer, The Polynomial-time Hierarchy, Theor. Comput.

Sci. 3(1976), 1-22.

