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Abstract

One of the most important questions in the theorv of
computational coﬁplexity.is whether nondeterministic space-
bounded complexity classes are closed under complement. In the
case of linear space bound, this can be viewed as a second
version of a famous gquestion known as the LBA problem in
Kuroda[3], and is a longstanding open question. Futhermore,
scince the concept called "alternation" was introduced in
Chandra, Xozen and Stockmeyer[l] as a generalization of
nondeterminism the same many questions as the above one have
arised. A typical one in those questions is whether the linear
space-bounded complexity class defined by alternating Turing
machines allowing with one alternation is closed under
complement. We can view this as a third vérsion of the LBA
problem. In this paper, we answer this question, that is, we
show that EESPACE(n) is closed under complement, where
ZkSPACE(m denotes a class of languages accepted by linear space-
bounded alternating Turing machines whose initial state 1is
existential and which make at most k-1 alternations, for each
k>0. As an immediate consequence, the alternation linear-space
hierarchy collapses to the second level, i.e., 2Z,SPACE(n) =
ZkSPACE(n) for any k32. By using a usual translational method,
these results can be extended to any space bound greater that

linear.
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1° Preliminaries

We assume that the readers are familiar with the basic
concepts from the theories of automata, computability and formal

languages. We outline the necessary concepts .in this paper.

Let T dencte an aporopriate finite alphabet. For a word w in
T*, |w| denotes the length of w. The empty word is dencted by A.
For a language AS T, aC denotes its complement(i.e., AS = T*-a).

For a class C of languages, coC denote the class of languages

whose complement is in C.

Our models of computation are variations of one-tape Turing

machines (see [2]). A one-tape Turing machine (TM for short)

has a two-way read-write tape used as both input tape and work tape,
and the distinguished three states called the initial, the .

accepting and the rejecting. An instantaneous description (ID

for short) of a TM M on input x is a pair (g, ufv), where g
indicates a state of M, its tape contains a wecrd uv, and the tape
head currently reads the leftmost‘symbol of v. An ID is initial
(accépting and rejecting) iff the state of the ID is initial (
accepting and rejecting, respectively). For any ID I and J, if M
moves from I to J in one step, then this movement  is abbriviated

by I} J. A computation path of M on x is a sequence of IDs I;,

Tps eees T

m Such that I, |} I, for each 1gigm.

An Alternating Turing machine (ATM for short) is a
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generalization of ordinarv TMs, described‘informally as follows.
The states of an ATM M are classified into two distinct states

_called universal states and existential states, respectively. We

can view a computation cf M on input x as a tree whose nodes are

labeled with IDs of M on x. A computation tree of M on x is a -
tree such that any internal node labeled with a universal
(existential) ID is followed by all (resp., one) of successors of

that ID, where an ID is universal ( existential ) if the state

of the ID is universal (resp., existential). An accepting

computation tree of M on x is a computation tree such that its

root node is labeled with the initial ID and each of its leaves
is labeled with an accepting ID. M accepts x iff there is an

accepting computation tree of M on x.

An ATM is said to be deterministic (abbriviated by DTM) iff

its transition function is one-valued. An ATM is said to be

nondterministic (abbriviated by NTM) iff its states are all

existential.

Let I and J be any IDs of an ATM M on input x. A move I+ J

of M cn x is called an alternation move iff either 1 is universal

and J is existential, or I is existential and J is universal,
Let k be any positive integer. An ATM M is said to be k

alternation-bounded iff for each input x, M makes at most k-1

alternation moves in each computation path. A ¢, TM is a k

alternation-bounded ATM whose initial state is existential. A
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w®.TM is a k alternation-bounded ATM whose initial state is
N

universal. We note that a 1™ is an NTM.

Let £ be a function on positive integers. An ATM is‘f(n)

space-bounded iff for each input x, M uUses at most f(]|x]|) tape

cells. Let S be any space bounds greater than or equal to linear.
DSPACE(S(n)) denotes a class of languages accepted by 0(S{n))
space-bounded DTMs. 'NSPACE(S(n)) denotes a class of languages
accepted by 0(S(n)) space-bounded NTMs. For any positive integer
k, ZkSPACE(S(n)) cdenotes a class of languages acceptéd by
0(S(n)) space-bounded ¢ TMs, and TTkSPACE(S(nH denotes a class
of languages accepted by 0(S(n)) space-bounded TC, TMs. We note
that NSPACE(S(n))= lePACE(S(n)) and coNSPACE(S(n))=

T[{SPACE(S(n)) by definitions.

A function S on natural numbers is called space-constructible

if for input 17, 15(R) can be constructed by an S(n) space-

bounded DTM.

Through the whole of this paper, we assume the following
constraints on an ATM M. Without loss of generality, we can

assume so.

(1) The input alphabet of M is {0,1}. Hence we consider only
languages on [0,1}*. The tape alphabet of M may contains any
finite number of symbols and includes {0,1,B}, where B denotes

the blank symbol contained initially in each tape cell except
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input.

(2) Let S(n)3n be any space-constructible function and let M be
S(n) space-bounded. Then, for each input ®x, M first constructs
x#SUX[)=1%| 54 its tape and M begins its substential computation
after this construction. Futhermore, at any time of the
substential computation, the length of contents of its tape is
always S(|[x|) (i.e., M never uses another tape éell except thé

cells x#SUxP-%x]| i5 written initially and M never writes the

blank symbol).
Although the assumption (2) is technical one, it is essential
in the proof of main theorem. The assumption (1) is a

conventional one.

At the end of this section, we state some basic properties

about the above classes without the proof.

Proposition 1.

(1) For any k>0, if T['kSPACE(n) < ZkSPACE(n), then the equality
holds.
(2) If ZkSPACE(n) = T['kSPACE(n) for some k>0, then ZkSPACE(n)

= ziSPACE(n) for any i}k.

(3) For any k,i>0, if ZkSPACE(n) = Z;SPACE(n), then
2 SPACE(S(n)) =  Z;SPACE(S(n)) for each space-constructible
S(n)»n.



EZ Main results
o

Our main theorem in this paper is as follows.

Main Theorem. T,SPACE(n) & Z,SPACE(n).

Our technique to prove main theorem is based on an idea due to
Mahaney[4] and some new ideas. At the beginning of proving main
theorem, we define some notions and show several basic lemmas

about those notions.

Let <-,-> denotes a pairing function on {0,1}* satisfying the
conditions that <x,y> is computable within space O(|x|+]|y]|) for
each x,y €1{0,1}%, its inverse functions ( both left and right )
is computable within space O({<x,y>{), and there is a constant
c31l such that for each x,y’é{o,l}*, |<x,y>| is bounded above by
c([x]+[y|). In this sectioh, both 10 and 00 denote the empty

word conventionally.

Definition 1. For a nonnegative integer k, bin(k) denotes the
ordinary binary notation of k. For a language A € {0,1}*;
ex(A) (called the extension of A) and pc(A) ( called the pseudo-
complement of A) are defined as follows: ex(a)=1"0 U { x1 | x is

in A}, and pc(a) = { 1™0<x,bin(k)> | x in {0;1}*, k,n30, |x]gn,
there are XK{reeerXy such that each xi's are paifwise distinct‘and

for 1gigk, |x;]¢n, x;4x and x; is in A }. Intuitively speaking,

17%0<x,bin(k)> is in pc(A) iff | x|¢n and we can choose k distinct
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words of length at most n from A-{x}. Furthermore, the census

of A, dencted by CA' is a function on natural numbers defined as

Ca(m)=]{ x in A | |x|gn}]| for each n}0.

Lemma 1. LetZ\S{O,l}* be a language in NSPACE(n). Then,
both ex(A) and pc(A) are in NSPACE(n).
proof. It is obvious that ex(A) is in NSPACE(n). We prove only
that pc(A) is in ﬁSPACE(n). Let M be a linear space-bounded NTM
whicﬁ accepts A. Then, we construct a linear space-bounded NTM

as follows.

input 170<x,bin(k)> ;
if |x|>n or k)Zn+1 then rejecf and halt ;
else if k=0 then accept and halt ;
ki <-0; y<-@ ;
while k;<k
do guess a y' such that [y'lsn and yLCy' ;
if y'=x then reject and halt ;
simulate M on y' ;
if M reaches the accepting‘state
then vy <- y' ; kl <=~ k1+l ;
else reject and halt,}
od ;
-accept and halt.
In the above, L denotes a suitable linear ordering on {0,1}* u

(@} satisfying that @LC x for any x€{0,1}". The proof of the

7



correctness of the above machine is left to the readers.

Lemma 2. For any A € {0,1}", each k,n30 and each x in
{0,1}* satisfying |x|¢n, the followings hold.

(1) 170<x,bin(k)> & pc(A) if k‘>CA(n),

(2) 1P%0<x,bin(k)> € pc(A) if k<Cp(n), and

(3) 170<x,bin(k)> € PC(A) <=> x &€ A if k=Cp(n).

roof. (1) Assume that k>CA(n). Then, we cannot choose k

'O

distinct words of length at most n from A. Hence, 1n0<x,bin(k)>
is not in pc(A).

(2) Assume that k<CA(n). Then, we can choose k distinct words
of length at most n from A-{x}. Hence, 1P0<x,bin(k)> is in
pc(3).

(3) Assume that k=CA(n). If x is not in A, then we can choose k
distinct words of length at most n from A (=A-{x}), and hence
1%0<x,bin(k)> is in pc(A).v If x is in A, then we cannot choose
k distinct words of length at most n from A-{x} ( such‘a choice

must always contains x), and hence 170<x,bin(k)> is not in pc(A).

Lemma 3. For any A & {0,1}" and each n20, Cgyqa)(ntl) =

CA(n)+n+1.

proof Obvious from Definition 1.

Lemma 4. For any AS{0,1}", k,n30, k=Cn(n) if and only if
1"*10<170,bin(k+n+1)> € pc(ex(n)) and 17*10<1P0,bin(k+n)> €

pc(ex(A)).



126

proof. In the proof of this 1emma, we apply Lemma 2 for
ex(A) instead of A.
(=>) Assume k=Cp(n). Since 170 is in ex(A) and k+n+l
=Ceyx(a)(n+l) from Lemma 3,1“410<1n0,bin(k+n+1)>='
1n+10<1n0,51n(cex(A)(n+1))> is not in pc(ex(A)) from Lemma 2(3).
On the other hahd, since k+n<Cgy (p)(n+l), 1n+10<ln0,bin(k+n)>v
is in pc(ex(A)) from Lemma 2(2).
(<=). Assume that the right hand héldé and kaA(nj. Then, we
consider three cases below.

Case 1: k<CA(n). In this case, k+n+l<Cex(A)(n+l). Hence,

17*10¢100,bin(k+n+1)> is in pc(ex(A)) from Lemma 2(2).

Case 2: k-l)CA(n). In this case; n+k>Cex(A)(n+l). Hence,
17*1g<1M0,bin(k+n)> is not in pc(ex(A)) from Lemma 2(1l).

Ca;e 3: k—l=CA(n). In this case, k+n=Cex(A)(n+l), and also,
170 is in ex(A). Hence, 1%*lo<1P0,bin(k+n)> is not in

pc{ex(a)) from Lemma 2(3).

In each cases, a contradiction occurs. Hence, k=CA(n) if

the right hand holds.

From Lemma 4, we can construct an efficient algorithm for

computing the census of each language in NSPACE(n).

n
—~—

Definition 2. For a language AS{O,I}*, define cen(A)

170bin(k) | n,k30, k=Cp(n) }.
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Lemma 5. For any?\g{o,l}*, if A is in NSPACE(n) then cen(a)

is in Z,SPACE(n).

proof. From Lemma 1, pc(ex(A)) is in NSPACE(n). Let M, be an
0(n) space+~bounded NTM which accepts pc(ex(a)), and let Mé be an
0(n) spacé-bounded'1tlTM which accepts pc(ex(A))®. Then, we

construct an algorithm as follows.

input 1%0bin(k), where n,k}0 ;
if k;2m'l then reject and halt ;
kl <- k+n ;
k2 <- k+n+l ;
simulate M; on input l“+10<1n0,bin(kl)> ;
if M; reaches the accepting state
then simulate M, on input ln+10<ln0,bin(k2)> ;
if Mé reaches the accepting state

then accept else reject

else reject.

It is obvious that the above algorithm can be realized by an
O(n) space-bounded ¢,TM. Also, it is easy to see that from

Lemma 4, the above algorithm accepts 1%0bin (k) iff k=Cp(n).

Now, we show the main theorem in this paper.

Proof of Main Theorem. Let M be an O(n) space-bounded T,TM.

We suppose that M's tépe alphabet is {al,u.,as} and M is cn+c
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space-bounded, where c¢ is a positive constanf depending cnly on
M. We also suppose that M has r states, denoteé by {ql,.",qr}.
Let I be an ID of M on input of length n. Then, we encode I inte
a binary word I" as follows. I¥ = §q...§ hyxq.chpx
(m<c|x|4c), where I¥ satisfies the following conditions.

(1) Each §; is in {0,1}, each h; is in {0,1}, and each x; is in

{ ol10S-i-1 | ogigs-1 }.

(2) If the state of I is 95 then qj=1 ané the others are all.o.
(3) Each h; indicates the position of M's tape head as follows.
If hi = 1, then M's tape head scans the i-th tape cell;
otherwise, the head does not scan this cell. Futhermore, the

only one of each h;j's is one and the others are all zero.

(4) Each x: indicates a content of the i-th tape cell as follows.

1

If the j-th bit of X3 is 1, then the content of the i-th cell is

We note that the form of each x; is restricted in (1).

az i

je
(5) |1¥|>r and |1*|-r=0 ( mod (s+l1) ).

If a binary word I* satisfies the above conditions, then we
call 1% a valid encoding of an ID I of M. We define a language
L<M>={ 1% [I# is a valid encoding of an existential ID I of M,
and there is a computation path of M from I to an accepting ID whose
internal IDs are all existential and the length of each encoding
word of whose internal IDs is egual to {I#l }. Obvicusly, L<KM> is
in NSPACE(n)(actually, we construct an 0(n) space-bounded NTM from M
which accepts L<M>). Then, the following facts hold from the

definition of L<M> and Lemma 2(3) ( also, recall the assumptions

for alternating Turing machines in section 2).
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~ Fact 1. Let exID(M,x) be the set of'existential'IDsbof M on
input x and let I, denote the initial ID of M on x. Then, M
accepts x if and only if for each I in exID(M,x) such that there
is a computation path from I0 to I whose inte:nal IDs are

all universal, I# is in L<MD.

Fact 2. Let IT be a valid encoding of an existential ID of M cn
.input of length n. Then, I% is in L<M> if and only if

1m0<I#,bin(CL<M>(m))> is not in pc(L<M>), where m=(s+l) (cn+c)+r.

From the fact L<M> is in NSPACE(n) and Lemma 1, the above
fact 2 tells us that given a correct census of L<M>, we can

construct an O(n) space-bounded n&TM which accepts L<M>.

Now, we construct an algorithm which accepts the same language
as M. Intuitively speaking, the algorithm bperates as foliows.
Given an input of length n, it first guesses a census of L<M> up
to length m=(s+l)(cn+c)+r. MNext, it checks the correctness of
the guessed census as in Lemma 5. If the census is correct, then
it begins to simulate M until an existential ID occurs. Finally,
if an existential ID occurs, then it decides whether that ID is

in LKM> by simulating a T TM in Fact 2.

Let MﬁE be an 0(n) space-bounded T TM which accepts

pc(L<M>)€, and let M be an 0(n) space-bounded ¢,TM which

cen

accepts cen(L<M>). Since L<KM> is in NSPACE(n), such machines

| 2
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exist from Lemma 1 and Lemma 5. Then, a desired algorithm is as

follows.

input x ;
m <=~ (s+1)(c|x{+c)+r ;
guess a binary word bin(k) such that |bin(k)|gm+1 ;

on input 1M0bin(k) ;

simulate Mcen

if M.opn does not reach the accepting state

n
then reject
else simulate M on input x until an existential ID I occurs ;
if no existential ID occur
then if M reaches the accepting state
then accept else reject
else simulate M== on input 1m0<I#,bin(k)> ;

PC

if MEE reaches the accepting state

then accept else reject.

It is easy to see that the above algorithm can be realized by
an O0(n) space-bounded 6,TM. We show the correctness of the
algorithm below. Assume the algorithm accepts an input x. Then,
there is a nonegative integer k such that Moen accepts 1™0bin (k)
and for each I in exID(M,x), if there is a computation path from
Io'to I whose internal IDs are all universal, then MﬁE accepts
1m0<I#,bin(k)>, where m=(s+1)(c|x|+c)+r and I, denotes the
initial ID of M on x. Since k=Cp¢m>(m) from the fact M., accepés
1™0bin(k), for each I in exID(M,x), if there is a computation

path from I0 to I whose internal IDs are all universal, then M§E

13
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accepts lm0<I#,bin(CL<M>(m))>, and hence, I is in L<M> from Fact
2. Thus, M accepts x from Fact 1l. The inverse direction is

similar. This complete the proof.

Corollary 1.  Z,SPACE(n) TT,SPACE(n) .

Corollary 2. Z,SPACE(n) Z, SPACE(n) for any k2.
Corollary 3. 3X,SPACE(S(n)) = 2 SPACE(S(n)) for any space-

constructible S(n))n.
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