goooboooogn
O 6250 19870 147-156

147
On Parallel Computation Time of Unification
for Restricted Terms
Masaaki OHKUBO, Hiroto YASUURA and Shuzo YAJINA
Faculty of Engineering, KYQTO University
1. Introduction
Unification!!! in first-order logic is one of the elementary

operations_in 1ogi¢ programming languages such as Prolog, mechan-
ical theorem pfovers based on resolution, type inference systems,
term rewriting systems and so on!'2!. Informally, unifiéation is
defined as follows: Given two terms constructed of Variébles and
function symbols, find, if it exists, the éiﬁplest assignment of
an appropriate term to every variable which makes the two terms
equal. In [3] and [4], Yasuura and Dwork's group showed that
unification is 1log-DEPTH (log-SPACE) complete for PSIZE (PTIME).
This fact suggests that parallel wunification algorithm may not
perform significantly faster than the best éequéntial
algorithmt21 051~ Tn practical experiments, however, it was ob-
tained that the numbef of variables or arity of each function
symbol is not so 1large!®l . There remains a possibility that
unifications appearing in actual execution of Prolog programs is
quite easier than general cases discussed in [3] and [4].

In this paper, we discuss parallel computation time of uni-
fication for restricted terms. We place restrictions on appear-

ance of variables, arity and nesting on function symbols of terms

148

to be unified. We show that unification for quite strongly re-
stricted terms has the same complexity of one for terms without

any restrictions.

2. Preliminaries
2.1 Unifiability Decision Problem!'! 3]

In this paper, we discuss unification in first-order logic.
Let F be a set of function symbols and V be a set of variables.
We assume that FnV=¢. Each function symbol has a fixed arity, a
nonnegative integer, and zero-arity function symbols are called
constants. We use lower case letters a,b,f,g,... as function
symbols, and upper letters X,Y,X:,Y:;,... as variables.

Terms on FUV are defined recursively as follows:

(1) a variable XeV or a constant acF is a term.

(2 irf ¢t,,t>,...,t, are terms and féF is a k-arity function
symbol (k>0), then f(f,,tz,...,t,) is a term.
Let T be the set of terms on FUV. A substitution o:X-T is

represented by a finite set of ordered pairs of terms and
variables {(t;.X;) | t; is a term, X, is a variable and no two
pairs have the same variables as the second element}. Applying a
substitution ¢ to a term t, we represent the resulting term by
o(t). A substitution ¢ is called unifier for £; and t-., 1if and
only if o(ti1)=0(t2). We also say that t, and ft. are unifiable
when there 1is a unifier for them. A unifiér c is said to be the
most general unifier (MGU) for t, and t., 1if and only if o 1is a
unifier for ¢, and f., and for every unifier ¢ of them there is a

substitution A such that 6=0¢*A, where * means the composition of

144

substitutions. If two terms are unifiable, there is an MGU and it
is unique up to variable renaming.

| A term can be represented by a labeled directéed acyclic
graph G=(N,E), called a term graph, as the following 'manner:

(1) Every node weN has a unique label in FUV. Every node labeled
with a variable XeV, called a wvariaeble node, has outdegree 0, and
no two nodes have the same label. Every node labeled with a k-
arity function symbol feF, called a function node, has k (k=0)
~outgoing edges each of which 1is 1labeled with 1,2,...,k,
respectively.

(2) A node with a label ¢, a constant or a variable, represents a
term £. A node v with label f, a k-arity function symbol (&>0),
represents a term f(t,,t2,...,t;) where t; is a term represented
by the node pointed by the i-th outgoing edge of wv.

A term graph G=(N,E) is encoded in O(|E|log|N|+|N|log|N]|)
bits, where |N| is the number of nodes and |E| is the number of
edges in G.

The wunifiability decision problem (UDP) 1is defined as
follows: For a given term graph G and two nodes v; and wes in
G, decide whether or not ¢, énd t. are unifiable, where ¢, and

t. are terms represented by v, and v-, respectively.

2.2 Parallel Computation Model and Complexity Classes

In this paper, for simplicity, we are concerned 'oniy with
unifiability for given two terms, and discuss its time' complexity
in parallel computation. Clearly, - UDP is not harder than the

unification problem finding MGU.

150

We adopt combinational circuits as a model of parallel com-
putation. We will be concerned with an implementation of a UDP
computation circuit as a combinational circuit, and estimate
parallel computation time for UDP by the depth of the circuit.

We represent the complexity classes of problems, which are
computable by combinational circuits with polynomial’ size and
with log depth, by PSIZE and LOGDEPTH, respectively!71 81l = 'A
' problem P is log-DEPTH reducible to a problem ¢, if and only if
theré is an 0O(logn) depth combinational <circuit € for computing
P, and C is allowed to have oracle nodes for ¢. An oracle node
for @ computes Q,land the depth of it is defined as Tlogri, where.
r is the length of input for @. A problem P is called log-DEPTH
complete for a class A of problems, if and only if P is in A4 and
every problem in A is log-DEPTH reducible to P. In other words,
P is the most difficult problem 1in A with respect of parallel
computation time. Formal definitions of these concepts are de-
scribed in [7j.

DLOGSPACE (NLOGSPACFE) is the class of problems computable by
an O(logn) tape bounded deterministic (nondeterministic) Turing

machine.

3. Parallel Computation Time of Unification for General Terms!3!

In this section, we introduce parallel complexity of unifi-
cation without restrictions. It has been derived in [3] by
showing the relations between UDP and the directed hypergraph
accessibility problem.

A directed hypergraph H=(N, ,E,), where N, is a set of nodes

151

and E, is a set of directed hyperedges, is a generalization of a

directed graph. A hyperedge e is an ordered pair of a pair of
nodes {w;,,w;} in N, and a node w, in N,-{w;,w;}, denoted
({w; ,w; },w,). We sometimes call the edge e a normal edge when

w; =w; . In-a directed hypergraph H=(N,,E,), w in N, is said to be
accessible from a subset S of N,, if and only if w is a member of
S or there exists a hyperedge ({w;,w;},w) such that both w; and
w; are accessible from S.

| An incidence matriz of a directed hypergraph H=(N, ,F,) is an
IN, Ix|Eyp| matrix(h;;). Each ehtry h,; represents a relation be-

tween the node w; and the hyperedge ej=({wj,wj},wk). If w, =w,
1 2 .

then h;; =2, if w; is w, or w, then h;;=1, and otherwise h;;=0. We
. 1

2
can encode (h;;) into binary with O(IN,||E,]|) Dbits.

The directed hypergraph accessibility pro’blem (DHCAP‘) is
defined as follows: For a given incidence matrix of a hypergraph
H=(N; ,E;), a subset of nodes S and a node w in H, detefmine
whether w is accessible from S.

UDP can be reduced to DHGAP by the following algorithm.
Algorithm UNIFY!3] |
input: A binary coding of a term graph G=(V,EF), nodes v, and v
in V which represent terms t; and t. respectively.
output: If t, and ¢. are unifiable, the output 1is 'YES',
otherwise 'NO°'.
step 1 Construct a hypergraph H=(Nh,Eh) as follows: For every
pair 6f nodes v»; and v»; in N, generate a node w;; in N, where

Wy ; =W, If »; and v; have the same label in F and the h-th

) Ji -

outgoing'édges of them point to v, and v, respectively, generate

15¢

a normal edge (w;; ,wg;) in E,. If the label of v, is a variable

i
in V, generate a hyperedge ({w;,.,w;,},w;;) in E, for every wv; and
v; .
step 2 Compute the accessibility problem of H from w,;> to every
node in E, in paréllel.
step 3 If there exists a node w;; in N, such that it 1is
accessible from w;., and w»; and w»; have different labels in F,
" then output 'NO', otherwise output 'YES'.O

-UDP is 1log-DEPTH reducible to DHGAP by the algorithm UNIFY.
Conversely, DHGAP for any acyclic directed hypergraph is log-
DEPTH reducible to UDP. UDP is log-DEPTH complete for PSIZE since
DHGAP is log-DEPTH complete for PSIZE[(31! .| It is also shown that
UDP can be computed by a combinational circuit with depth

O(log2n+mlogm), where n is the number of nodes in a given term

graph G and m the number of variable nodes in G.

4. ParallelVComputation Time of Unification for Restricted Terms
4.1 Restrictions on Variables
From the discussion of Section.S, it is clear that if m is
small enough, more precisely méiogzn/loglogn, UDP is combutable
by an 0(log?n) depthvcpmbinstional circuit. In this subsection,
we show the parallel complexity of UDP under some restrictions on
variables.
- The directed acyclic graph accessibility problem (AGAP) is
defined as_follows: For a given adjacency matrix of a directed
acyclic graph G,=(N,,E), and two nodes u; and ur in G,, deter;

mine whether u-. is accessible from u,. We represent an AGAP by

153

(Gy 11 ,U2) . From the’discussion of [9], we.can eésily‘show the
following lemma.
Lemma 4.1.1 AGAP is 1og-DEPTH complete for NLOGSPACE.O

At first, we show the parallel complexity of UDP with no
variables. We call the problem labeled directed acyclic graph
matching (DAG matching). If two terms are given in the form of a
string of 'symbols, it is a trivial operation on strings, but it
is not quite so trivial an operation when terms are represeﬁted
by term graphs. Since only normal edges appear in Algorithm
UNIFY for DAG matching, DAG matching and AGAP are log-DEPTH re-
ducible each other.
Theorem 4.1.1 DAG matching is 1log-DEPTH complete for Co-
NLOGSPACE.O

We will show the complexity is equal to one of DAG -matching
even if wvariables appear only in oné term. We call the problem
pattern metching. For pattern matching, any path from wi;2 to any
node in UNIFY includes only one hyperedge. Thus we only need to
solve AGAP twice..
Theorem 4.1.2 Pattern matching is 1log-DEPTH complete for Co-

NLOGSPACE .O

4.2 Restriction on Funétion Symbols

In this subsection, we show the parallel complexity of UDP
under restriction on outdegree of function nodes, i.e.,
restriction on arity of function symbols. In the following
discussion, the maximum outdegree of function nodes in ¢ 1is

denoted by gq.

154

It is well known that AGAP for a graph in which outdegree of
each node is not greater than 1 is 1log-DEPTH complete for
DLOGSPACE!71 ., When q=1, no node accessible from w,> in the
hypergraph of UNIFY has two or more outgoing edges. Then we have
the following Lemma.

Lemma 4.2.1 If g=1, UDP is log-DEPTH complete . .for DLOGSPACE.O

For any acyclic directed graph H, in which outdegree of each
node is at most 2, DHGAP for H is 1og-DEPTH complete for PSIZE by
the-similar discussion in [3]. We can easily show that DHGAP for
H is 1log-DEPTH reducible to UDP with ¢g=2 by the same way in [3].
Therefore, UDP with ¢g=2 is 1log-DEPTH complete for PSIZE.

Theorem 4.2.1 For any g¢g=2, UDP for a term graph with the maximum
outdegree g of function nodes is 1og-DEPTH complete for PSIZE. If

g=1, UDP is 10g-DEPTH complete for DLOGSPACE.O

4.3 Restriction on Depth of Term Graphs

In this subsection, we show the parallel complexity of UDP
under a restriction on the depth of term graphs. The depth of
each node w; and a term graph G are defined as follows: For a
given term graph G and two nodes v, and v, in UDP, depth of wv; is
the length, of the longest path from v, or wz to w;. If there is
no path from v, (vz2) to wv,, the length of the path is defined as
0. The depth of G, denoted d, is defined as the maximum depth of
nodes.

Assume that d=1. For a given term graph G, we can construct
an undirected graph G’ such that nodes are constant or variable

nodes in G and there is an edge (v;, wv;) if »; and w»; are h-th

159

sons of each root node.in G. It is easy to show that negation of
UDP is equal to accessibility problem on ¢’ from a constant node
fo different constant nodes. Accessibility ’ problem for
undirected graphs‘is NLOGSPACE but has not shown»to,be log-DEPTH
éomplete.
Lemma 4.3.1 If d=l,‘UDP is in Co-NLOGSPACE.QO

Introducing mnew variables, we can easily transform a term
graph with large depth into a term graph with depth 2. Thus we
have the following theorem.
Theorem 4.3.1 For any. d=z2, UDP for a term graph with the maximum
depth d is log-DEPTH complete for PSIZE. If d=1, UDP is in Co-

NLOGSPACE and there is 0O(log2n) depth circuit for it..O

5. Conclusion

We have shown the parallel computational complexity of
unification under several restrictions on terms. The results
obtained in this paper suggest that it is difficult to désign a
parallel unification algorithm in time O(log*n) except for DAG
matching and pattern matching, even if outdegree of function
nodes and the depth of a term graph are restricted to at most 2.

By the similar discussion in section 4, we can also show
that we can change "log-DEPTH complete for" with "NC!' complete
for!®l " in the theorems proved in this paper, if we only replace

"for PSIZE" with "for PTIME" in them.

References

[1] Robinson,J.A. : A Machine-Oriented Logic Based on the Resolu-

156

tion Principle, J. ACN 12, 1 (1965), 23-41.

[2] Martelli,A. and Montanari,U. : An Efficient Unification Algo-
rithm, ACM TOPLAS 4, 2 (Apr. 1982) 258-282.

[3] Yasuura,H. : On Parallel Computational Complexity of Unifica-
tion, FGCS (1984), 235-243.

(4] Dwork,C., Kanéllakis,P.C. and Mitchell,J.C. : On the Sequen-
tial Nature of Unification, J. Logic Programming (1984) 35-50.
[5] Paterson,M.S. and Wegman,M.N. : Linear Unification, JCSS 16
(1978), 158-167.

[6] Onai,R., Shimizu,H., Masuda,K. and Aso,M. : Analysis of Se-
~quential Prolog Programs, J. Logic Programming (1986), 119-141.
[7] Yasuura,H. : Complexity Theory of Logic Circuits, J. IPSJ 26,
6 (June, 1986), 575-582 (in Japanese).

[8] Cook,S.A. : The Classification of Problems Which Have Fast
Parallel Algorithms, LNCS 158 (Proc. of Int. FCT Conf.) (1983),
78-93.

[9] Borodin,A. : On Relating Time and Space to Size and Depth,

SIAN J. Comput. 6, 4 (1977) 733-744.

