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Semantics of Joins of Knowledge Bases
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Abstract

In this paper we propose a more natural model of updates
of knowiedge bases, where we represent a knowledge as a closed
formula of first—order logic and consider a knowledge base as
a theory. To do this we extend the model of updates of
theories proposed by Fagin et al., and define joins of
theories. Furthermore we extend the concept of join to treat
logical databases of Fagin et al. and show that we can
formulate the insertion of theories of Fagin et al. as a

special case of the join of logical databases.

1. Introduction

Recently many researches have been devoted to theoretical -
studies of knowledge bases, particularly, the formal semantics
of updating knowledge bases. They naturally consider that a
knowledge can be represented as a sentence, i.e., a closed
formula of the first-order logic and a knowledge base as a
theory, i.e., a consistent set of sentences.

Fagin et al. [1,2] studied the semantics of updates in
databases, and introduced é partial order in the possible new
theories that accomplish the update to define the concept of
the minimal theory accomplishing it. In particular they
required that for an insertion of a sentence 0 into a theory
S, the sentence 0 should belong to the theory that
accomplishes the insertion.



The main results of Fagin et al. [1,2] are summarized as
follows: -
(1) Let S, T be theories, and let 0 be a sentence. TU {¢g }
accomplishes the insertion of ¢ into S minimally if and only
if T is a maximal subset of S that is consistent with o .
(2) Let S, T be theories, and let- 2 be a set of sentences. T
U Z accomplishes the insertion of X into S8 minimally if and

only if T is a maximal subset of S that is consistent with 2 .

On the other hand, the authors [3] independently defined
a different model of insertions to discuss a dynamic behavior
of knowledge bases. They considered that for an insertion of a
'sentence ¢ into a theory S the theories that accomplish the
insertion should be the maximal consistent subsets of sSU {0 1}.
These theories include not only the theories that accomplish
the insertion in the sense of the model of Fagin et al., but
also the theory S itself. We can regard the latter case és the
rejection of the insertion because of arising of
inconsistency.

In this paper, we extend the model of Fagin et al., to
define a more natural model of updates of theories, that is,
joins of theories instead of insertions. This enables us to
treat the models of Fagin et al. and the authors in the same
frame work. Furthermore we extend the concept of join to treat
logical databases of Fagin et al. [1] and show that we can
formulate the concept of insertion of Fagin et al. as a
special case of the join of logical databases.

We use .the similar notions and notations to Fagin et al.
[1,2]. We assume that a sentence is neither inconsistent nor
valid. We shall use the letters such as ¢ ,7 , = to denote a

sentence, and S, T, *« to denote a theory.



2. Joins of Theories'

Wé define the semantics of joins of theories like Fagin
et al.

Definition 2.1 Assume that SIU Sz¢ ¢ . A theory T accomplishes
the join of S; and Sy if (S;US,)NT# ¢ . When S;U S,=¢ , we
define that any theory T accomplishes the join of 81 and Sz.
O

Here we introduce a partial order in the theories that
accomplish the join. This enables us to discuss the minimal
changes for joins of theories.

Definition 2.2 Let Ti'and T, be two theories that accomplish
the join of S; and S,, and let S be S;U S,.

(1> Ty has fewer insertions than To with respect to S if
Tl-SCZTz—S. '

(2) Tl has the same insertions as T2 with respect to S if
Tl-S=T2—S.

(3) Tl has fewer deletions than T2 with respect to S if
'S—TIC:S—TZ. ’ )

(4) Tl has the same deletions as Tz with respect to S if
S-T,;=5-T,. O | |

We shall omit reference to S when it is clear from the
context. '

Lemma 2.1 For each theory T that accomplishes the join of 5,
and S,, there is a theory T' such that

(1) T' accomplishes the join of S1 and S,,

(2) T'CST, and o -

(3) T' has the same deletions as T. OO

In fact, T‘=(SIU Sz)ﬂ T satisfies the above conditions
(1)~f(35. ‘ - '
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The above lemma claims that when dealing with joins it
suffices to consider the set of deleted sentences. Thus we can
make the following definition.

Definition 2.3 Ty accomplishes the join of Sl and S, with a

smaller change than T2 if both Tl and Tz accomplishes the
join, and Tl has fewer deletions than T2.ID

Definition 2.4 T accomplishes the join of S, and S, minimally
if there is no theory that accomplishes this join with a
smaller change than T. O

Theorem 2.1 T accomplishes the join of S; and S, minimally

if and only if T is a maximal consistent subset of S=81U 52'

O

[Proof] This theorem trivially holds when S=¢ . So we assume
that S# ¢ .

(1) Sufficiency. Assume that T does not accomplish the join
minimally. Then there is a theory T' such that T' accomplishes
the join and S-T'C S-T. Note that Lemma 2.1 allows us to take
T* as a subset of S. So TCT'. For a sentence ¢ in T'~-T, TU
{0} is consistent. This is a contradiction.

{(2) Necessity. Assume. that T is not a maximal subset. Then
there is a sentence ¢ in S-T, and TU {0 } is consistent. TU
{og } accomplishes the join, and S~-(TU {0 })>C S8-T. This is a
contradiction. [J

Example 2.1 Let S, and S, be the propositional theories
{A,A= B} and {— B}, respectively. Then the theories that
accomplish the join of S; and S, minimally are T;=(A,— B},
T,={A= B, B}, and Tg={A,A=B}. O

Example 2.2 *© Let Sy and S, be the propositional theories
{A,B} and {(— A, B}, respectively. Then the theories that
accomplish the join of S; and 52 minimally are T1={A,B}, T2=



(= A,— BY, Tg=(A,— B}, and T, =(—A,B}. O

Let & ;| and & , be sets of theories that accomplish the
insertion of Sz into Sl minimally, and Sl into 52 minimally,
respectively. Then Q’1={T1,T2}, El"2={T3} for Example 2.1, and
g =Ty}, 4 ,={(Ty} for Example 2.2.

Let & be a set of theories that accomplish the join of
S, and S minimally. Then you may expect that 4 ;U4 ,=4, but
this is not generally true. In fact & U4 ,=4 in the case of
Example 2.1, but not so in the case of Example 2.2. We can

prove the following theorem.

Theorem 2.2 srlug‘zgs’[ . d

[Proof] Suppose that T€ 4 ;, and let S;' be a maximal subset
of S; that is consistent with S,. Then T=S;'U 8,. Thus T is a
maximal consistent subset of Slu 8,. That is, Te 4 . By the
similar way, when T€ 4 ,, we can show T€ ' . Thus 4 U4 ,&
ag. o

But under a certain condition & ;U4 ,=4 holds. The next
theorem gives a sufficient condition that & U ,=4 holds.

Theorem 2.3 .’:TlUEZ'2=£Z" if 5; or 8, is a singleton set. O
Before we prove this theorem, we give the next lemma.

Lemma 2.2. For two theories S; and S5,, let 5;' be a
maximal subset of 5; that is consistent with S,. Let T be a
maximal consistent subset of $;U S,. Then S;'U S,=T if and
only if S,&T. O ’

[Proof] The necessity is trivial. We prove only the
sufficiency. » ‘ '

Since Ség T, we know that T=(TN $;)U S,. Thus it suffices
to show that TN 815", i;e., ™0n S5; is a maximal subset of 3,
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that is consistent with S,. Assume that for some sentence ¢
in 8;-(TN 8;), (TN 8;)U {0 } be consistent with S,. Then TU
{o y=(TNsSpU S2U {0} is consistent. Since T is a maximal
consistent subset of S;U S,, we know that TU (o} is
incohsistent. This is a contradiction. [

[Proof of Theorem 2.3] By Theorem 2.2 it suffices only to
show S <4 U4 5. Suppose TE S . Then T is a maximal
consistent subset of SIU,SZ. Now suppose Sz={a Yo If 0 €T,
then T=Sl'U S, by Lemma 2.2. Thus T€ S ;U ,. On the other
hand, if 0 € T, then T=Sl and Sz'=¢ , where 82' is a maximal
subset of S, that is consistent of S;. Since T=SIU So', TGEETI
U4 ,. The proof for the case that S; is a singleton is

similar to the above. [

3. Joins of Logical Datébases

Fagin et al. [1] also studied updates of theories where
different sentences can carry different priorities. The main
results are as follows:

A pair <i,o > of a non-negative integer i and a sentence
0 1is called a tagged sentence, and a non-negative integer i a
tag. A smaller value of a tag means a higher priority of the
tagged sentence. A logical database is a consistent set of
tagged sentences. We shall use D, E, - to denote a logical
database. Di is the éet of tagged sentences in D whose tag is
smaller or equal to i, i.e., Di={<j, 7 >l <j, T >€D, j<i}.
Then DU {Kj,0 >} accomplishes the insertion of o into E if
and only if D! is a maximal subset of E!l that is consistent
~ with o for i=0,*+,n, where n is the highest tag in E.

Next we consider the join of logical databases.

Definition 3.1 Assume that E{UE,# ¢ . A logical database D
accomplishes the join of El and Ey if (E;U Ey)N D# b . When'El
U E2=¢ , we define that any logical database D accomplishes



the join of E; and E,. O

Definition 3.2 Let Dy and Dy be two légical databases that

accomplish the join of E; and E,, and let E be E1U E, with n

as the highest tag in it. D; accomplishes the join with a

smaller change than D, if for some i, 0= i< n, Ei"l—Dli-1=
i-1_pn i-1 i_p. i i_p i

E Dy'™*, E'-Dy'CE'-D,'. O

Definition 3.3 D accomplishes the join of E, and E2 minimally
if there is no logical database that accomplishes this join
with a smaller change than D. [

Theorem 3.1 Let E be E{UE, with n as the highest tag in
it. D accomplishes the join of El and E2 minimally if and only

if D! is a maximal consistent subset of E! for i=0,- ,n. O

We can prove Theorem 3.1 by a similar way to Theorem 2.1.

Let Th(D) be a theory obtained from D by stripping the
tags, i.e., Th(D)={T | <i,T >ED}. Let D be a set of logical
databases and let Th(D ) be a set of theories obtained from
logical databases in D, i.e., Th(D ) ={(Th(D)| DE D}.

The next theorem shows that the definition of joins is an
extension of that of insertions. A

Theorem 3.2 Let all the tags of tagged sentences in E; are
larger than those of Eo. Let 9 be the set of logical
databases that accomplish the join of Eq and EZ minimally. Let
Q'l be the set of theories that accomplish the insertion of
Th(E,) into Th(Ey) minimally. Then Th(D)»=4 {. O

[Proof] Put E=E;U E,. Let Th(El')vbe a maximal subset of
Th(E;) that is consistent with Th(E,).

(1) Suppose that Th(D)€& Th(D ). Since Th(D!) is a maximal
consistent subset of Th(ED) for all i, 0= i= t;, where t; is
the highest tag in El' we know that Th(Ez)QETh(D). Since Th(D)
is a maximal consistent subset of Th(E), by Lemma 2.2,



Th(D)=Th(E1')U Th(Ez). Thus Th(D)EEETI.
(2) Suppose that TE‘Q'I. Then T=Th(E1')U Th(Ez). Thus T is a
maximal consistent subset of Th(E). That is, TE Th(D ). O

The theories that accomplish the insertion minimally are
the same as the theories that accomplish the join minimally
with the condition about tags of sentences. Intuitively, in
the case of insertions of theories, the inserted sentences are
treated as if they have the highest tags, but in the case of
joins of theories, all sentences are treated equivalently.

Example 3.1 Let El and Ez be logical databases {<0,A>,<0,

A= B>} and {<1,— B>}, respectively, and consider the join of
E; and E,. Now we construct a logical database D that
accomplishes the join minimally. Let E be E1U E,, then DO, the
maximal consistent subset of EO, is {<O,A>,<0;A:>B>}. And
D1={<O,A>,<O,A:>B>}, that is, we can not add tagged sentences
to DO anymore. Thus D={<0,A>,<0,A= B>}. [J

Example 3.2 Let E; and EZ be logical databases {<K1,A>,<1,
A=> B>} and {<0,— B>}, respectively. In this case DY={<0,— B>}.
And D! is ¢<0,— B>,<1,A>} or {<0,— B>,<1,A=>B>)}. Thus D is
(<0, B>,<1,A>} or {<0,—B>,<1,A=B>. O

In Example 3.1, Th(D)={A,A= B} is the same as the theory
that accomplish the insertion of Th(E;)={A,A= B} into Th(Ejy)=
{—= B} minimally, that is, Th(ﬂ))=£f1. And in Example 3.2 we
can also make it sure that Th(D)=4 ; holds.

4. Conclusion

We studied joins of theories as an extension of
insertions, which can model the insertion of knowledges into a

Knowledge base more naturally.



Acknowledgments

The authors wish to express their gratitude to Dr. Namio
HONDA, President of Toyohashi University of Technology and Dr.
Teruo FUKUMURA, Professor of Nagoya University for their
encouragements to cohduct this work. They also thank Associate
Professor Hirotomo ASO of Tohoku University, and Associate
Professor Toshiki SAKABE of Mie University for their helpful
discussions. This research is partly supported by the Grants
for the Special Project Research No.61102003 from the Ministry
of Education, Science and Culture of Japan.

References

{1] R.Fagin, J.D.Ullman, M.Y.Vardi: On the Semantics of
Updates in Databases, Proc. 2nd ACM Symp. on the Principles of
Database Systems, pp.352-365 (1983).

[2] G.M.Kuper, J.D.Ullman, M.Y.Vardi: On the Equivalence of
Logical Databases, Proc. 3rd ACM Symp. on the Principles of
Database Systems, pp.221-228 (1984).

[3] K.Toyama, Y.Inagaki: A Dynamic Model of Knowledge
Structure, Report of Tech. Group on Artificial Intelligence
and Knowledge Processing, AI86-10, IECEJ (1986), in Japanese.
[4] K.Toyama, Y.Inagaki: On the Semantics of Joins of
Knowledge Bases, Report of Tech. Group on Artificial
Intelligence and Knowledge Engineering, AI50-9, IPSJ (1987).



