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Rings with only finitely many isomorphism classes

of indecomposable maximal Buchsbaum modules, II

Shiro Goto*) (Nihon University)
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1. Introduction.
The purpose of this paper is to determine the structure of
one-dimensional local rings that have finite Buchsbaum-represen-

tation type and our main results are summarized into the following

Theorem (1.1). Let R be a Noetherian local ring of dimR
= 1 . Suppose that R 1is complete and the residue class field
of R is infinite. Then the following two conditioﬁs are equiva-
lent.

(1) R has finite Buchsbaum-representation type, that is R
possesses only finitely many isomorphism classes of indecomposable
maximal Buchsbaum modules;

(2) R. =2 P/fI , where P is a two-dimensional complete regu-
lar local ring with maximal ideal n , f e n , and I an ideal
of P suchthat I contains some power of n , f ¢ n’ , and
P/fP is reduced.

In particular, R 1is a Cohen-Macaulay ring of finite Buchsbaum-
representation type if and only if R is a reduced ring of multi-

plicity at most 2 .

As an immediate consequence of (1.1), we have

*) Partially SQpported by Grant-in-Aid for Co-operative Research.

-



a0

Corollary (1.2). Let R be a Cohen—Macaﬁlay complete local
ring of dim R = 1 and assume that R contains an algebraically
closed coefficient field k . Then R has finite Buchsbaum-repre-
sentation type if and only if R is a simple curve singularity of

type (An), that is R is isomorphic to one of the following rings:

KK, Y0/ (X2 + XY™ (nz 0),
KI[X,Y/(x% + Y*0FT) (nz 1),
k([ X,Y 0/ (x% + xy?tt 4 g2t (1 si<n, chk=2).

Accordingly, combining (1.2) and the main result of the previous
paper [10] of the authof and K. Nishida, one knows all the Cohen-
Macaulay complete local rings R of dim R z 1 that have finite
Buchsbaum-representation type, provided the rings R contain
algebraically closed coefficient fields k of ch k # 2 . But,
before going into the detail, let us recall some basic notion.

Let R be a Noetherian local ring and M a finitely gener-
ated R-module. Then M 1is said to be Buchsbaum, if the difference

Tp(M) = 1(/qM) - e ()

is an invariant of M which does not depend on the particular
choice of a parameter ideal q for M (here lR(M/qM) and‘ eq(M)
respectively denote the length of M/gM and the multiplicity of
M relative to gq ). Consequently, M is Cohen-Macaulay if and

only if M is Buchsbaum and I,(M) = O . A Buchsbaum R-module

g (

M is called maximal, if dimRM = dim R . The ring R 1s said

to be a Buchsbaum ring, if R 1is a Buchsbaum module over itself.
The notion of Buchsbaum ring was introduced by W. Vogel [21],

while he studied a problem posed by D. A. Buchsbaum [4]. Nowadays
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it has been recognized that Buchsbaum rings and modules behave
themselves as well as the Cohen-Macaulay ones and the researches
on Buchsbaum rings and modules are gathered into the monumental
book [20] of J. Stilckrad and W. Vogel, which the readers may con-
sult for the general referénces too.

Let us say that a Noetherian local ring R has finite Buchs-
baum-representation type (resp. finite CM-representation type),
if 'R possesses only finitely many isomorphism classes of indecom-
posable maximal Buchsbaum (resp. Cohen-Macaulay) modules. Inspired
by the recent drastic pfogress of the research on Cohen-Macaulay
local rings possessing finite CM-representation type (see [1, 2,
3, 5, 8, 11, 14, 15, 18, 22] etc.), the rings of finite Buchsbaum-
representation type have begun to be explored. The fundamental
theorem is due to D. Eisenbud and the author [7] (see [9] also),
which claims that any regular local ring R has finite Buchsbaum-
representation type —— more precisely, the syzygy modules of the
residue class field of R are the representatives of indecom-
posable maximal Buchsbaum R—modules and any maximal Buchsbaum R-
module is a direct sum of them. Subsequently, by the help of the
recent results of [5] and [15] concerning maximal Cohen-Macaulay
modules on simple hypersurface singularities, the author and K.
Nishida [10] succeeded in showing that the converse of our funda-
-mental theorem is also true, provided R 1is a Cohen-Macaulay complete
local ring of dim R 22 and R contains an algebraically closed
coefficient field k of ch k # 2 . It would be quite interest-
ing, if one can remove (or replace by a weaker one) the assumption

in [10] that R is Cohen-Macaulay. But the one-dimensional case
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- seems to be a more urgent theme, which we have chosen as the target
of the present paper. |

In the one-dimensional case one must be slightly careful,
because non-regular Cohen-Macaulay rings may have finite Buchsbaum-
representation type. The first example was given by [10, Theorem
(5;3)] and the ring

k[ X, Y0 /(x* + ¥2)

is, where X, Y are indeterminates over a field k . However as
is stated in our coroliary (1.2), such rings as k[[X,Y]]/(X2 + YB)
are in some sense the only one-dimensional Cohen-Macaulay local
rings possessing finite Buchsbaum-representation type. A general
structure theorem is now supplied by our theorem (1.1) for any one-
dimensional local rings to have finite Buchsbaum-representation -
type.

1et us now explain how to organize'this paper. The last as-
sertion of Theorem (1.1) will be proved in Sections 3, 4 and 5. We
will prove the implication (1) => (2) (resp. (2) => (1)) of Theorem
(1.1) in Section 6 (resp. Section 7). Section 2 is devoted to
some preliminary steps, which we need in the proof of Theorem (1.1).

Throughout this paper let R be a Noetherian local ring with
maximal ideal m and dim R =1 . Let H!(.) denote the i -th
local cohomology functor of R relative to m . For each‘finitely
generated R-module M , let UR(M) denote the number of elements

in a minimal system of generators for M .

2. Preliminaries.

To begin with we note
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Lemma (2.1). Let M be a finitely generated R-module. Then
(1) M is a maximal Buchsbaum R-module if and only if
. _ 0 _
dlmRM = 1 and m.Hm(M) = (0) |
(2) Suppose that M 1is an indecomposable maximal Buchsbaum R-

module. Then HE(M) is contained in mM .

Proof. (1) See [19, Proposition 15].

(2) See [10, Proof of Claim in Theorem (5.3)1.
The next result is due to [2], when R is complete.

Proposition (2.2). Let R be a Cohen-Macaulay ring. Then

R is reduced, if R has finite CM-representation type.

Proof. Let p be a minimal prime ideal of R and let p(2)

= p2Rp A R . Then as R/p(z) has finite CM-representation type,
passing to the ring R/p(z) , we may assume that p 1is a unique
minimal prime ideal of R with p2 = (0) . Choose a regular
element x of R and put

Ii = xiR +p

for each 1 2z 1 . Then since Ii is an indecomposable maximal

Cohen-Macaulay R-module, there must be an isomorphism ¢ : Ii > Ij
for some 1 5 1 < j
Claim. ¢(p) = p and ¢(xi) = exj mod p with a unit € of R.
For, let f € p . Then as f.¢(f) = ¢(f2) = 0 , the element

¢(f) is a zerodivisor of R . Hence ¢(f) € p and so we get

¢(p) = p . Because Ij = ¢(xi)R + p , the second assertion is clear.
Now let f € p . Then as

xi.¢(f) = f.¢(xi) = ef,x9

- 5 -
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i .

by the claim, we get x'p = x¢(p) = xIp . Hence p = xI77t

P,

which implies (by Nakayama's lemma) that p = (0)

Lemma (2.3) (cf. [10, Proposition (5.2)]). Let L be a
maximal Cohen-Macaulay R-module and 1et
c » M » F > L » O
denote the initial part of a minimal free resolution of L . Then
(1) For any R-submodule N of M containing mM , the R-module

O

m F/N) = M/N . If L is

F/N is a maximal Buchsbaum module and H
indecomposable, then so is F/N

(2) Let N and N' be R-submodules of M containing mM . Then

i

F/N = F/N' if and only if ¢(N) = N!' for some automorphism ¢ of

F . When this is the case, one always has ¢(M) =M tbo.

Proof. (1) Consider the exact sequence
0+ M/N~>F/N~>L>0
and we get Hg(F/N) = M/N , since m.(M/N) = (0) (and since L is

Cohen-Macaulay). So F/N. is, by (2.1), a maximal Buchsbaum R-

module. Assume that F/N A1 ® A2 for some non-zero R-submodules

A

I

. and A2 . If dimRAi 1 for any 1 =1, 2 , then the iso-

morphisms

t
]

(F/N)/H) (F/N)

0
) 8 A2/Hm(A

K

0
Ay/Hp (A, 2)

claim that L 1is decomposable. If ’dimRA:.L = 0 for some i , say
i =2 , then A2 is contained in Hg(F/N) and so L is a homo-

morphic image of A, . Hence u_(L) (A ) —— this is im-

MR

A

v
-

possible, because wp(L) = up(A;) + up(Ay) and wup(A,)

Thus F/N is indecomposable, if so is L



(2) The first assertion is standard. Let us check the
second one and let ¢ : F/N » F/N' denote the isomorphism in-
duced by ¢ . Then as Hg(.) is a functor, we get

G(HO(F/N)) = HO(F/N') ,

whence ¢(M) = M Dbecause Hg(F/N) = M/N and Hg(F/N‘) = M/N' .

Corollary (2.4). Suppose that R has finite Buchsbaum-
representation type and that the field R/m is infinite. Let I
be an ideal of R such that R/I is a Cohen-Macaulay ring of

dim R/I = 1 . Then up(I) £ 1 and I = /I

Proof. Let F denote the set of ideals J in R satisfy-
ing mIC JC I . Then for each J in F , applying (2.3) to
the exact seqﬁence- 0+I~>R~>R/I >0, we get that R/J is an
indecomposable maximal Buchsbaum R-module. Hence the set F
must be finite, which forces UR(I) =1 as R/m is infinite.

See (2.2) for the second assertion.
Let us recall the following

Definition (2.5). Let K be an R-module. Then K 1is called

a canonical module of R and denoted by KR , if

A ~ 1
R g K = HomR(Hm(R),E)
.as R-modules (here R (resp. E ) denotes the completion of R

(resp. the injective envelope of R/m )).

The canonical module of R is uniquely (up to isomorphisms)

determined by R , if it exists. When R 1is a homomorphic image



9b

of a Gorenstein local ring S , R has a canonical module Kp =
Extg(R,S) (t =dim S - 1 ) (cf. [13, Satz 5.12]). Various
properties of canonical modules are aiscussed in [13]. Let us
summarize below some of them, which we shall use in the proof of

(2.7).

Proposition (2.6) ([13]). Let" R be a Cohen-Macaulay ring
possessing a canonical module KR . Then

(1) Ko is an indecomposable maximal Cohen-Macaulay R-module with
Extg(Kgp,Kg) = R (1i=0),
=(0) (1i1>0).
(2) For any prime ideal p of R the local ring Rp has the
i dul K =
canonical module (Rp) (KR)p

(3) The following conditions are equivalent: (a) R 1is a Goren-

stein ring, (b) uR(KR) =1, and (c) Kp is free.

Let v(R) denote the embedding dimension of R .

Theorem (2.7). Let R be a Cohen-Macaulay ring of finite
Buchsbaum—representation type. Suppose that R possesses a
canonical module KR and that the field R/m is infinite. Then

v(R) = 2

Proof. ‘As R has finite CM-representation type, we have
only to show that R is a Gorenstein ring (cf. [12, Satz 1.2]) —
so it suffices to check that “R(KR) =1 (cf. (2.6) (3)).

Let |

0O+ M>F >XK. >0
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denote the initial part of a minimal free resolution of KR .
First pf all we will show that
| Claim 1. wp(M) s 1 |

For,'assﬁme uR(M) 2 2 and choose elements f , g of M
so that the classes f , g of f , g in M/mM are linearly in-
dependent over R/m . For each X & R/m , let CAEZR with A = cy
mod m and put

N, = mM + Rh

A A
where hk = f + cxg . Then F/NA'S are indecomposable maximal
Buchsbaum R-modules by (2.3)(1) (cf. (2.6)(1) too). Hence there
must be an isomorphism
F/NA = F/NU
for some A, pw e R/m with A#u. Take an automorphism ¢ of F
so that
¢(NA) = NU and ¢(M) =M
(cf. (2.3)(2)). Let ¢ denote the automorphism of KR induced
from ¢ and we write
o = ETKR
with a unit ¢ of R (cf. (2.6)(1)). Then as both the automorphisms
¢ and g1F 1ift ¢ , we have
¢ = g1F + 168§
with a homomorphism & : F » M (here 1 : M » F denotes the
inclusion map). Notice that §(M)c mM , as M C mF . Then we get
¢(hk) = g¢h, mod mM ,

A
whence hA € Nu because ¢(hl) e N and ¢ ¢ m . Consequently
) U
we see T + AZ € R/m.(F + ,g) , which forces A= u as (by our
choice) f and g are linearly independent over R/m —— this

is a contradiction.
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We put r = UR(KR) . Let us assume that r 2z 2 .k Then M #

(0) by (2.6)(3), whence Hr(M) =1 by Claim 1. Write
MR/
with an ideal I of R —— so R/I is a Cohen—Macaulay ring of
dim R/I =1 . Let p ¢ ASSRR/I . Then since IRp = (0) and since
(KR)p = Rp by (2.6)(2) and (3) (recall that R is a reduced
ring, cf. (2.2)), we readily get by fhé exaét sequence
(%) 0O+ R/I >F ~» Kp > 0

that

Claim 2. r =2

Now take the Kp-dual of the sequence (#*). Then because
'HomR(R/I,KR) is a canonical module KR/I of R/I (cf. [13, Satz
5.12]), we have an exact sequence of the following form:

(#3%) 0> R >Ky 8 Kp KR/I + 0

(cf. (2.6)(1)). Notice that R/I is also a Cohen-Macaulay ring
of finite Buchsbaum-representation type. Then we get by Claim 2

that UR(K 2 too, whence 2r = 3 Dby the exact sequence (¥¥%)

R/I) S
— this is of course impossible, since r = 2 by Claim 2. Thus

uR(KR) =1 , as desired.

For the rest of this section let P denote a regular local
ring of dim P = 2 and assume that
R = P/fP
with an element f of P .

We note
Proposition (2.8) ([6] and [12, Lemma 1.3]). Let M be an

- 10 -



indecomposable maximal Cohen-Macaulay R-module such that M # R . Then

the minimal free resolution of M 1is periodic of period 2 and

the first syzygy.module of M is indecomposable too.

The next corollary is fairly obvious. However its use is so

crucial that let us give a proof for completeness.

Corollary (2.9). Let L Dbe a maximal Cohen-Macaulay R-module

with no free direct summand. Let
0O+ M->F->L-~»>0

denote the initial part of a minimal free resolution of L . Then

uR(M) = uR(L) , and any automorphism of M can be extended to

that of F

Proof ([6]). Let
A ¢ €
0 - F1 > FO ~ L >0

be a minimal free resolution of the P-module L . Then as fFO
is contained in ¢(F1) , we have a (unique) homomorphism ¥ : FO+ F1

with ¢dey = f1FO . Notice that Uod = f1F1 too. Let Fi = Fi/fFi

(i=0,1) and let ¢ : F, » F,

by ¢ . Then a simple use of the snake lemmé yields an exact

denote the homomorphism induced

sequence _
s ¢ _
(%) 0O+L » F, > F.->L>0
‘of R-modules, where
3(e(x)) = v(x) mod fF1
for each element x of FO . Notice that 3(L) C m.§1 (other-

wise, L contains R as a direct summand) and we have the sequence

(*) to be part of a minimal free resblution of L . Hence

- 11 -
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UR(M) = uR(L) . Let us identify F = ?O and M = Image ¢ .

Let & ©be any automorphism of M . Then because the P-module

M admits a minimal free resolution
]
0 - FO > F1 > M= 0,
we may choose automorphisms FO > FO and F1‘+ F1 so that a
lifts & and ooy = Yef

Claim. ¢oa = Bod

f1F1 . Then

fao

For, first recall that vo¢

Yo (doa)

ao (Yod)
1<'r)°(B°d)) ’

whence we get ¢oa = Bod

Let o (resp. B ) denote the automorphism of F1 (resp. FO)

induced from a (resp. B ). Then by the above claim, the square
_ 0
i T
= |®
- ¢ _
F1 —_— FO

is commutative and therefore, since M = Image ¢ and the auto-
morphism o of f1 lifts &£, we get that the automorphism E

of F =TF, 1is a required extension of ¢

3. Cohen-Macaulay rings of finite Buchsbaum-representation type, I.
The purpose of this section is to prove the following

Theorem (3.1). Let R be a Cohen-Macaulay complete local

- 12 -



ring with infinite residue class field. Suppose that R ‘has
finite Buchsbaum-representation type. Then R is a reduced ring

and the multiplicity e(R) of R is at most 2 .

In this theorem the assertion that R 1is a reduced ring is
already known (cf. (2.2)). Because, by virtue of (2.7), our ring
R is a homomorphic image of a two-dimensional regular local ring,

the assertion that e(R) £ 2 immediately follows from the next

Theorem (3.2). Let P be a regular local ring of dim P =
2 and assume that R = P/fP with an element f of P . Let R
denote the integral closure of R 1in its total quotient ring. If
the R-module R is finitely generated and if e(R) > 3 , there
exists a famiiy {MX}X € R/m of indecomposabie maximal Buchsbaum
R-modules such that

My, # M, for X #u .

We divide the proof bf Theorem (3.2) into several steps.
Let R be as in (3.2). Assume that R is module-finite over R
and e(R) > 3 . Let
A={xeR|xn(C m},
which we shall identify with the endomorphism ring HomR(m’m)
of m .’ |

First of all we note
Lemma (3.3). R 1is a reduced ring and lR(A/R) <1,
Proof. Apply two functors HomR(m,.) and HomR(.,R) to the

- 13 -
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canonical exact sequence
0O +m->>R~->R/m >0

- Then we get a commutative diagram

0
4

Exty (R/m,R)
+

o0 — A — Hom,(m,R) — HomR(m,R/m)

g
+i 4

R == HQmR(R,R)

4
0

with exact rows and columns, where i : R —> A‘ denotes the
inclusion map. As R 1s Gorenstein, we have

| Exty(R/m,R) = R/m
whence the inequality lR(A/R) < 1 follows. See [13, Proof of

Satz 3.6] for the second assertion.

Let J (resp. ¢ ;‘R : R ) denote the Jacobson radical
(resp. the ééﬁddétor ideal) of R . Since R is module-finite
over R , the ideal ¢ contains some power g8 of J —
take n as small as possible. Then Jn_1<¢ R and we may choose
an element h of Jn_1 so that h ¢ R . Because hJ C J®C c ,
we have hm C ¢ Cm whence h e A . Thus by (3.3) we get the

first part of the following
Proposition (3.4). A =R + Rh and hn C'm2 .

Proof. As hmC c , to check that hm C,m2 it suffices to

- 14 -
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show that ¢ C m° . Assume c ¢ m® . Then as v(R/e) <1,
R/c is a Gorenstein local ring of dim R/c = 0 . Accordingly,
ﬁ/R contains R/g as a submodule and so we have an isomorphism
B/R 2 R/c , |

because

1,(R/R) = 1.(R/c)
(cf., e.g., [13, Korollar 3.5]). In particular uR(ﬁ/R) =1,
which forces uR(ﬁ) < 2 . However this contradicts our hypothesis

that e(R) > 3 , because e(R) = uR(ﬁ) (recall that R is a

reduced ring, cf. (3.3)). Thus c ( m° .
The proof of the next assertion is standard.

Corollary (3.5). Let a , b be elements of R . Then

a + bh is a unit of A if and only if a 1is a unit of R

Let L be the first syzygy module of m . Then because m
is indecomposable (since the ring A is local, ef. (3.5)), by
(2.8) L is indecomposable too. Furthermore we get again by
(2.8) an exact sequence

O+m->F~>L~>0
of R-modules with F free of rank 2 . Now let x , y be a

'(minimal) system of generators for m . For each X €R/m , choose

¢, € R so that A =

A mod m and put

_ 2
NA =mn" + RZA ,

where z, = x + c,y . Then by (2.3)(1) the R-modules M;Xz‘F/NA

€

are indecomposable maximal Buchsbaum modules.

Proposition (3.6). A=u, if MA = MIJ'

- 15 -
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Mu . Then we may choose, by (2.3)

(2), an automorphism ¥ of m so that w(NA) =N, . Write ¥ =

ne

Proof. Assume that MX

a + bhh with a , be R . Then a 1is a unit of R (cf. (3.5)).
Furthermore as }mlc:mz by (3.4), we have

W(ZA) = az, mod n? .
Hence z, € Nu , which guarantees that A = u because x , ¥y

form a minimal system of generators for m . This completes the

proof of Theorem (3.2).

4. Cohen-Macaulay rings of finite Buchsbaum-representation type, II.
Let R be a reduced complete local ring of e(R) = 2 and

assume that m2 = ym for some y e m . (Such an element y must

exist, when the field R/m 1is infinite; see, e.g., [17].) The

purpose of this section (and the next section too) is to prove the

following
Thedrem_(4.1). R has finite Buchsbaum-representation type.

Notice that the last assertion in Theorem (1.1) follows from Theorems

(3.1) and (4.1).

To begin with we note

Lemma (4.2). Let M be an indecomposable maximal Cohen-
Macaulay R-module such that M £# R . Then for any x € m such

that m = (x, y) , M can be regarded as an R[x/y]-module.

Proof. See the proof of [12, Satz 1.6, a)l.

- 16 -
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Now let R (resp. J ) denote the normalization of R (resp.
the Jacobson radical of R ). First we consider the case where
R is an integral domain. Let v denote the discrete valuation
of R . Then as
e(R) = v(y).1,(R/J) ,

we have the following two cases:

(1) v(y) =2 and R/m = R/J ,
(I1) v(y) = 1 and 1R(§/J) =2 .
In this section we mainly deal with the case (I) —— the case (II)

and the case where R 1is not an integral domain shall be postponed
to the next section.

Let us now assume that v(y) = 2 and R/m = R/J

Lemma (4.3). The ring R contains an element x such that

m=(x, y) and v(x) =2n +1 (n21).

Proof. Suppose that v(x) 1is even for any x ¢ R such that

m= (x, y). Let v(x) = 2n and write x = zy" with z ¢ R .
Then as z =c +2' (cegR, 2' ¢ J ), letting x' = z'yn we
get x = cy" + x'! —— hence x' ¢ R and m = (x', y). Because

v(x') = 2n + v(z') > V(X) ’

repeating this argument we have a sequence {X.

} . .,  of elements
i’ i 2 1

in R that satisfies m = (xi, y) and V(Xi) < V(Xi+1) for any
i 21 . Choose n 2 1 so that the conductor ideal ¢ =R : R
contains J% . Then as m Dc , we get X € m2 for any 1 21

such that v(xi) 2 2n , whence m = yR —— this is a contradiction.

Let x e R be as in (4.3) and write v(x) =2n + 1 (n 21 );‘

- 17 =
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Let t = x/y" (hence J =1tR , as v(t) = 1 ) and
Ry = Rlty'] (C R

for each 0 < i {n . Then R=R+Rt, R, =R , and Rn =R .

0

We write t2 = a + bt with a , b e m and denote by ms the
maximal ideal of Ri (0<ign).

Proposition (4.4). Let 1 =i sn . Then

_ i
- R _

(2) e(Ri) = 2 and ms™ = ymy

Proof. (1) As v(ty") z 1, tyi € m; whence m, = mR; +
tyiRi . Since x = tyl.y""t , we get m, = (y; tyl)Ri

(2) Because miﬁ = yR = 72 by (1), we get e(Ri) = up (R)

: . . i

=2 . As t° =a + bt , (tyl)2 = ayzl + tyt.byt whence

iy2 2 _
(ty=)° € ym; and so m;" = ym,

We get mRi = yRi for each 0 < i <n , since x = tyi.y

‘Therefore by (4.4) we have

Corollary (4.5). Let O < i < n . Then tyi ¢ mR, but

R.) = 2 and Ri=R+Rtyi

i2
(ty=)" € mRi . Hence UR( 5

Corollary (4.6). Let 0 s i £ j < n . Then the conductor

ideal Rj : R, contains yj_i and tyj

Proof. As R, = Rj + Rjtyi by (4.5), the assertion yj'i

£ Rj; Ry jé obvynm. Because tyi_tyj = ayitd 4 tyj.byi e Rj ’

get tyJ is in the conductor too.

- 18 -
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Proposition (4.7). The ring R has finite CM-representation

A

type and the R-modules R, (O

5 i £ n) are the representatives of

indecomposable maximal Cohen-Macaulay R-modules.

Proof (cf. [12, p. 26, Bemerkungen b)]). Let M be an in-
decomposable maximal Cohen-Macaulay R-module such that M ¥'Ri
for’any 1 =isn. Thenas M # R, by (4.2) we may consider
M +to be an Rn_1-module. Notice that the Rn_1—module M is again
an indecomposable maximal Cohen-Macaulay module (cf. [11, Lemma 1])
and M # Ri as Rn_1—modules for any 1 £ i £n - 1 . Therefore
because by (4.4) the ring R _1 satisfies the same standard as-
sumption as that of R = Rn , Wwe can repeat the above argument to
conclude that M is an indecomposable maximal Cohen-Maculay RO—
module. Hence M = RO , as RO = R 1is a discrete valuatioﬁ ring.

To see that R, # Rj as R-modules for i < j , it suffices

to check that Ry £ Rj if i< j (ef. [11, Lemma 1]). Assunme

the contrary and we get Rj—1 = Rj for some 1 = j = n . Then
ms = yR; by (4.4)(1), since tyd ™1 e R, — this contrdicts
(4.4)(2).

Corollary (to the proof) (4.8). J°* ' ¢ u but J°%C m

Proof. As tyn~1 £ R = R, » we see gon-T ¢ m . Because Jon

= y"R and y"R = y'R + ty"R , we get J2n.(: (y%, xR

Lemma (4.9). Let O < i< n . Then there exists an exact

o. .
i i
sequence 0 — Ri — R2—~+ Ri — 0 of R-modules such that

m
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i n+i
: X 5 Xy~ +ay
5, (1) = Ln“i , o (eyh) = f } :
X
) i
81(61) =1, and Ei(eZ) = -ty ,

where e1s €5 denote the standard basis of R2 .

Proof. As UR(Ker Ei) =2 (ef. (2.9) and (4.5
i, _.n+i
d {bxy + ay

X

an

Ker €. to be generated by { .
i yn—l

X
X - bxyi - ayn+i 2
=0,
n-i
y - X
a monomorphism oi : Ri — R2 is induced so that
bxyl + ayn+l

X

aﬁd Oi(tyi) = [

For each 0O =i < n we define

Mig = Ry s

M,, = R°/o, (mR, + R) ,
Miz = Rz/oi(mi) ;

My, = R®/0. (nR,)

Thén.by (2.3) M,.'s are indecomposable maximal Buchsbaum R-

1J
modules with

0
Lo (B0, )

|
(&)
—
[N
]
—
~
-

We furthermore have

- 20 -
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Theorem (4.10). R has finite Buchsbaum-representation type
and the R-modules Mij' (0O £i<n,1sjs4) and R are the

representatives of indecomposable maximal Buchsbaum modules.

To prove Theorem (4.10) we need one more lemma. Let

0 =1 r}.

A

<£i_ <n be integers.and I ={i_ | 1 £«

= S e
1 2 r Q

We write

I-= {31, j2, cie jq} - with ‘j1 <y < ees < Jq,'

For each 1 s B

A

q , let rB=#{a|1§0L§r sucbthat i, = ig

We put

=
1
e

Ri and I'=
1 "o o

I e

R. /mR.
i i
o 9 o o

and regard each element of L (resp. L ) as a column vector

with entries in R. (resp. R. /mR. ). Let v. (1 s j s s)
i i i j
_ o Qg Qo .
be elements of L and put U = z kvj , where k = R/m
j=a

Lemma (4.11). By some automorphism.of T induced from that
"of L, U 1is mapped onto the k-subspace U' of T which is

spanned by the columns of an r by s matrix of the following

form
A1 0 0 0
0 1o &% o o
: 0o |o .o
1 0
0 0 0 Aq
’where the submatrix AB (1 =B =q)  consists of rB rows and the

entries of A are non-units of R, /mR.
B B g

.
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Proof. First of all let us introduceée three kinds of permissi-

ble automorphisms of L , which we utilize as elementary row trans-

formations on the matrix A = (v1, Voy see s VS) .
Let 1 sa,Bsr (a #B) be integers. For h € HomR(R. ,R: ),
i 1g
we denote by WU(h) the automorphism of L which sends each ele-
ment t(xw, cee Xr) of L to t(x1, cie g Xgy eee y Xg ot h(x,),
e+ 5 X_) . For example assume that o < B 'and let u € R, : R,
Tr lB la
and v € R, . Then the element u (resp. v ) defines a homo-
u N
morphism 1 : Ria > RiB (resp. ‘v : RiB > Ria ) so that
4(f) = u.f (resp. V(f) = v.f ) for each f ¢ Rj (resp. £ € R, ).
a : B

We denote by &(u) (resp. n(v) ) +the automorphism of L induced
from ¥(4) (resp. ¥(¥) ). For each unit € of R, , let €

a

be the automorphism of L which sends each t(x y, ees 5 X_) E L
1 r

, X_) . The automorphism p(g) of L

to t(x_l, cee s EX ... r

induced from £ is permissible too.

In what follows, we will show that by a successive application
of the elementary row transformations &(u), n(v) and p(e)
together with elementary coiumn transformations with coefficients
in k , the r by s matrix A can be transforﬁed into a matrix

of the above form. Let a_. denote the (o,j)-entry of A

aJ
First let 1=sa<Bf =r and 1 =2 j £ s . Assume that aaj =
1 , while aB. is a non-unit of R. /mR. . Then since
! s g
ig :
aBj = cty mod mRiB
g
for some ¢ € R (ef. (4.5)) and since u = - cty € R. : R
i i
‘ o
(ef. (4.6)), by &(u) we may reduce 8 ; to 0 . Similargy,

- 22 -
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applying n(v) where v ¢ R such that
' Y
= - v mod mRi y
y

we may assume an =0 for any 1 £ Y < a too. Consequently

starting from the lower rows, our matrix A can be transformed

a_ .
YJ

so that it has the fornm

where all the entries of B are non-units.
Now apply column operations to B , until A has the form

0 .1\A1]O

,

b

where A1 consists of r, Tows and the columns of A1 are linearly

independent over k . Then because any non-unit of Rj /ij has
1 1
the form
J1
cty mod mR.
I

with ¢ € R , only making use of elementary column transformations

with coefficients in k , the matrix A is transformed so that

1

each column of A1 crosses a row (of A, ) whose unique non-zero

1

. J
entry lies in the column and equals ty 1, mod ij
: 1

Let ry < B = r and choose an entry aBj of B1 . Let us

- 23 -
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i
write aBj = cty 8 mod mRi with ¢ € R and consider the row
B
of A1 whose unique non-zero entry lies in the j-th column (of
J
A ) and equals ty 1 mod ij . Then because
' 1
ig-]
y B 1 € Ri : R. ,
B d1 i
by virtue of the row transformation §&(- cy B ) we may reduce
i-]
a,. to O . Since Yy B 1 € mR, and since the row of A is
5 o e

chosen to have a unique non-zero entry, the operation g(— cy B 1)
causes no change on the other entries of A . Thus the matrix B1

may be assumed to be O and repeating this procedure, we reach

the required normal form

Proof of Theorem (4.10) (cf. Proof of [10, Theorem (5.3)]).

IA

j = 4) and R are not

The R-modules Mij (0 =£i<n, 1

isomorphic to each other. In fact, since Mij/Hg(Mij) =R, ,

it is enough to check that M-l2 3 Mi for each 0O <1 <n

3

Assume the contrary. Then by (2.3)(2) we may choose an automorphism

¢ of the R-module R, so that q)(mRi + R)C m; —— this is im-

possible, because ¢ = ETR with a unit ¢ of . Ri
i

Now let M be an indecomposable maximal Buchsbaum R-module

such that M # R . Let V = HS(M) . Then since M/V. is a maximal

- 24 -
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Cohen-Macaulay R-module, by (4.7) we get an isomorphism

;
M/V =2 @ Ri
a =1 "a
with O = 1, < 12 £ ... = i. <n . Let
r 2
L= ® R, and F=(R )T
a=1 "a

Then as VC mM  (cf. (2.1)(2)), we have by (4.9) a commutative

diagram
0
£ n r
0 > L > F — L — O
+i I 4

/r
Vv
f
0

with exact rows and columns, where & (resp. n ) denotes the

r r
direct sum ® o. (resp. & €. ) and the homomorphism
@ =1 1o a =1 "a

i ¢+ N> 1L 1is considered to be the inclusion map. Notice that

e

nL CN , as V 2 L/N (ef. (2.1)(1)). Let

_ r
L = ] Ri /mRi
a=1 "a Ta

!

~and let T : L » denote the canonical epimorphism. We put

U = t(N) and s

i

dimkU (here k = R/m ). If s =0, then N

~ T .2 _
mL and so M = & R%/o. (mR, ) . Hence we get r = 1 and
Coa =1 Yo o _

Mi4 with 0 <1 <n

=
1t

- 25 =



114

Suppose that s 21 and apply Lemma (4.11) to the k-subspace
U of L . Then we find an automorphism of L , induced from an
automorphism ¢ of L , that maps U onto the k-subspace U'

spanned by the columns of an r by s matrix A of the follow-

ing form
0 1 1—\1 0 0
0
o | &, 0 _
1 | 0570 o TA
\ q ’
where each submatrix AB consists of rg Trows. Let N' = T—T(U').

Then N' = ¢(N) clearly and so, by (2.3)(2) and (2.9), we get an
isomorphism

M = F/E(N')
— hence we may assume N = N' ., Then the condition that M 1is

indecomposable now causes a restriction on the form of the above

matrix A so that q = 1 , whence i1 = id for any 1 < g < r
Thus L = Rir with 0 < i < n
In this case because our matrix A has the normal form
[ 1 tyt
O -
tyl
1 0
(#) N mod mRi
0 RS 0
tyi
{ 0 0 0

- 26 -
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(cf. [10, Lemma (5.4)]), we may assume that N = mL + W where
W 1s the R-submodule of L generated by the columns of the
matrix (#). Since M is indecomposable, we conclude that r =
1 and the matrix (#) must be one of (1 tyi), (1) , and (tyi).

Hence M = M or M = MiB as required.

i1?

5. Cohen-Macaulay rings of finite Buchsbaum-representation type,
II (continued).

Let us consider the case (II) where v(y) = 1 and lR(ﬁ/J)

i

2 « We note

Lemma (5.1). The ring R contains an element x such that

=}

= (x, y) and R =R + R(x/y®) , where n = v(x)

Proof. Assume that R # R + R(x/y") for any x € R such
that m = (x, y) . Let t = x/y% (n = Q(x) ). Then t ¢ R + mR ,

as R #ZR + Rt . We write t = c + gz with ¢ e R and z e nR .

Then x = cy’ + zy" and so we get x' = zy" ¢ R and m = (x', y).
Because v(x) =n < v(x') , repeating this argument we have a
sequence {xi} i » 1 o©of elements in R that satisfies m = (Xi’ y)

and v(x.,) < v(x.

s49) for any i > 1 . This sequence { X: ) s

i iz 1
forces m = yR (cf. Proof of (4.3)), which is a required contra-

diction.

Let x be as in (5.1) and put t = x/y" . For each 0 < i < n,
we define

Ri = R{ty'] C R .
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Clearly R, = R and Rn = R'. We write t2 = a + bt with

a , b e R and denote by ms the maximal‘ideal of Ri . Then

R has finite CM-representation type and the R-modules Ri

(0 =1 = n) are the representatives of indecomposable maximal
Cohen-Macaulay modules. (Notice that the éssertions,(A.A), (4.5)
and (4.6) hold in the case (ITI) too. The number n is character-
ized by the condition that J"7 Cn but JOC m .) For each

0 =i <n, the R-module Ri has a presentation
%3 , Fi
0 — Ri — R —— Ri — 0

such that

[bxyi + ayn+i]
b

n-1i

X .
5. (1) = [ .} , o, (tyh) =
y X

» _ _ i
Ei(e1) = 1 and si(ez) = -ty ,

2

where e denote the standard basis of R

1 62 (cf. (4-9))-

Similarly as in the case (I), we define

Miq = By

Miz = R2/oi(mRi + R) ,
Miz = R%/0, (my)

MiA = Rz/oi(mRi)

Then Mij's are indecomposable maximal Buchsbaum R-modules with

0 (321)’

=1

I

1p(ED (M, 1))

I
N
-
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=2 (j=4)
(Notice that M03 ='MO4 , as J‘= mR .) Furthermore we have the
following

Theorem (5.2). The ring R has finite Buchsbaum-represen-

tation type and the R-modules

Mij‘ (1 si<n, 1s7js4), Moj (1 =j = 3), and R

are the representatives of indecomposable maximal Buchsbaum modules.

The proof of (5.2) is the same as that of (4.10).

The lemma
corresponding to (4.11) is

Lemma (5.3) (stated with the same notation as in (4.11)).

By
some automorphism of T

induced from that of L , U is mapped

~onto the k-subspace U' of L spanned by the columns of an r

- by s matrix of the following form
0 Al oo 0
1 -
0 0 0 Aq X
where the submatrix A (1 < g < 9a) consists of r

rows, the
entries of AB (2

< B sq) are non4uhits of R. /mR.

, and A1
B g
has the form

- 29 -
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mod mR .

_ Proof. Let us maintain the notation in the proof of (4.11).
First, starting from the lower rows, we transform our matrix A

into

where B consists of ry TOWS and the entries of C are non-
units. Because R/mR is a field with the k-basis 1, t mod mR ,
the matrix B 1is subsequently transformed into

1 t

: "t

(here t = t mod mR ), whence A has the form

- 30 -
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0 : t 0
.
0 0
! c c c
.0 1 2 3
1
Let rq < B = r and choose an entry ag. of C1 We write
ig » Y, i, ig ig
= cty mod mRiB with c¢c € R Then as t%y "~ =ay + b.ty ,
i i
the element - ct2y 8 is still in L and therefore by &( - cty B)
B
we can safely reduce aBj to O —— hence C1 may be assumed
to be 0 . Now consider an entry a&j of 02‘ and write aBj =
i i
c.ty 8 mod mRi Then by the row operation &(- cy B) we may
B i
reduce aBj to 0 , while C1 remains O as y ¢ mRiB
Consequently, we may assume the matrix A to have the form
( -
1 t
. t
0
0 1
0
0
1
0 0 C

119

aBJ

So the process in the proof of (4.11) still works to get the

required normal form.

Now we consider the case (III) where

- 31
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domain. Recall that as e(R) = 2, the ring R contains precisely
two minimal prime ideals P; (i =1, 2) (cf. [16, (24.71). R/pi

is a discrete valuation ring with the regular parameter, y mod p; .

Lemma (5.4). The ideal P, contains an element x such

that m = (x, y) and x - y" ¢ p, for some n 2 1 .

n

Proof. We write m = (x, y) . If X ¢ p, , then x = ¢y
mod P, for some unit ¢ of R and n 2 1; so the element x/¢
satisfies the requirements. Assume x 2 P and write x = cy
mod joF with ¢ € R . Let x' =x - cy . Then x' ¢ jof and’
m= (x', y) clearly, whence the problem is reduced to the case

where x E P4

Let x be as in (5.4). Then we have Py = (x) and Py, =
. (Hence the relation X2 = xyn defines the ring R .)
We put t = x/y" and define

R, = Rty '] C T

for 0 <i <n. Then R, =R, as R =R + Rt . (Clearly Rn =
R .) For each 1 21 < n we denote by ms the maximal ideal of
the local ring R, . Then the assertions (4.4), (4.5) and (4.6)
hold in the case (III) too. Consequently, R has finite CM-

representation type and the R-modules Ri (1 <1

A

n) and R/pi
(i =1, 2) are the representatives of indecomposable maximal
Cohen-Macaulay modules (cf. Proof of (4.7). Notice that R =
R/p1 X R/p2 .). The number n is characterized also by the con-

dition that J%7' ¢ m but J°(C m

- 32 -



121

For each 1 =i < n , the R-module Ri has a presentation

et x i *¥
with 01(1) = [ n—i]’ o,(ty ) = [
y X

, 81(81) = 1 and si(ez)

= - tyl . We put

Miq =Ry

M., = R*/o, (R, + R) ,
Miz = R%/0g (mg)

My, = R*/0_ (uR,)

Then Mij's are non-isomorphic indecomposable maximal Buchsbaum

R-modules with

0 .
= 2 (J = 293) ’
= 3 (3 = 4)

For R/p1 ~and R/p2 , we have the canonical exact sequences
: €1
0 — R/p1 —+ R — R/p — 0,
£ 2
2
0 — R/p2 — R ‘rAR/p1 > 0

with 51(1) = x - y® and gx(1) = x . Let o £, 8 &5, , the

1
direct sum of '51’ and &2 , and N = m.(R/p1 ® R/pz) + R[1] .

We put

M = Rz/o(Nj .
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Then
Proposition (5.5). M is an indecomposable maximal Buchsbaum

R-module with lR(HS(M)) 1 .

Proof. By (2.3)(1) it suffices to check that M is indecom-
posable. Assume that M = M1 ® M2 with non-zero R-modules Mi .
Then UR(Mi) =1 (i =1,2), whence the isomorphisms

~ 0
R/p, ® R/p, = M/H (M)
claim that dimpM. = 1 (i = 1,2). Also these isomorphisms allow
us to write
0 _ 0 _n/
M1/Hm(M1) = R/p2 and M2/Hm(M2) = R/p1
Consequently, as Mi's are indecomposable maximal Buchsbaum R-
modules (cf. (2.1)), we have an isomorphism
M, = R/g (N))
with an R-submodule N, of R/pi containing m.(R/pi) . There-
fore
M2 R%/6(N, 8 N,)
| 1 9 Na)
whence by (2.3)(2) we have
o(N) = N, & N,
for some automorphism ¢ of the R-module R/p1 ® R/p2 . Because

HomR(R/pi,R/pj) = (0) if i # j, the automorphism ¢ is diagonal,

say
f mod joF 0
b =
0 g mod P,
with f, g wunits of R . Consequently as ¢([1]) - £ mod p1] ’
' 1 g mod Py
we get N, = R/pi (i =1,2) whence N = R/p1 ® R/p2 —— this

is a contradiction.
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We close the main part of this section with the following

Theorem (5.6). The ring R has finite Buchsbaum-represen-

tation type and the R-modules R/pi (i =1, 2), R/(xy),

n+1)

R/(xy -y , M, M.. (1 si<n,1s=s3js14), and R are

1
the representatives of indecomposable maximal Buchsbaum modules.

The proof of (5.6) is the same as that of (4.10), which we

leave to the readers. To state the lemma corresponding to (4.11),

let m20, nz 0, and 1 s i1 < i2 £ ... S ir < n be integers
with m +n +r 2 1. Let I:{ia[1§a§r} and write
I = { j2, j3, ooy jq } with j2 < j3< e < jq .
We put r,=m+n and rg = #{a |1 = o s r such that i, = jB }
for each 2 =B = q . Let
r
L= (R/p;)" @ (R/p,)" @ (& R, )
1 2 - i
o =1 "o
and
= m n T
L=k 6kx & ( & R. /mR, ),
@ =1 Ta T
where k = R/m . Finally, let vy (1 s j = s) be elements of
_ s
L and put U = b} kvj . Then we have
j=1

Lemma (5.7). By some automorphism of T induced from that
of L, U is mapped onto the k-subspace U' of T spanned by

‘the columns of an r by s matrix of the form

,
0 A, ] O 0
1
0 Ay 0
1 ’ N
A
\ 0 0 a
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7

B < q) consists of r_, rows, the

B

éntries of AB (2 £ B = q) are non-units, and the matrix A1

where the submatrix AB (1

has the following form

(1 ) ]
" 0 0 m
O.
)
(*) 0 :
1 0
1 ‘n
“1l 0 0
0

Proof. First of all, let us transform our matrix A =

(v1, Vo eee v,) into the form

where B consists of r, rows and the entries of C .are non-
units. Then as B has its entries in the field k , subsequently
we can transform B 1nto the above form (*) whence we may assume

A to have the form
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0 0
0 1 0
0
J
1 AY
O .
0 1 0
n
7
I 0 0
0
]
C, C, Cy
:

Consequently by the same manner as in the proof of (5.3), we can
~reduce both the matrices C1 and 02 to O and the process in

the proof of (4.11) works to get the requifed normal form.

We shall use the rest of this section to give some examples.
 Let nB(R) denote the number of the isomorphism classes of in-

decomposable maximal Buchsbaum R-modules.

Example (5.8). Let S = k[[t]] be a formal power series
ring over a field k . Let n 2 1 be an integer and y ¢ tZS

that is not contained in tBS . We put
R = k[ t°77,y0 .
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Then R has the normalization S , e(R) =2 , and m2==ym . This

ring R is of type (I) and nB(R) = 4n + 1

Example (5.9). Let K/k be an extension of fields with
degreé 2 and S = K[[y]l]l a formal power‘series ring over K .
Let n 21 be an integer and t e K that is not contained in
k . We put

R = k([ ty™,y1].
Then R has the normalization S, e(R) =2 , and n° = ym .- R

is of type (II) and nB(R) = n

Example (5.10). Let k[[X,Y]] be a formal power series ring
over a field k . Let n 21 be an integer. We put
R = k([ X,Y N/(x* - xY)
Then e(R) = 2 and m? = ym , where y =Y mod (X2 - XY") . This

ring R is of type (III) and nB(R) = 4n + 2 .

~As is well-known, any equicharacteristic local ring of type
(I) (resp. (III)) arises liké (5.8) (resp. (5.10)). It is standard
to check that if R contains a coefficient field k of ch k # 2 ,
any local ring of type (II) arises like (5.9). If R contains an
algebraically closed coefficient field, the normal form of rings

R of type (I) is known by [14] and listed in our corollary (1.2).

6. Proof of the implication (1) = (2) in Theorem (1.1).
Let R be a complete local ring with infinite residue class

field and assume that R has finite Bucthaum—representatidn type.
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‘The aim of this section is to prove the implication (1) => (2)

in Theorem (1.1) and the next result (6.1) is the key.
Proposition (6.1). v(R) =2 and e(R) < 2

Proof. Let I = HO(R) . Then because R/I is a Cohen-
Macaulay ring of finite Buchsbaum-representation type, we get by
(3.1) that R/I is a reduced ring of e(R/I) = e(R) < 2 . As
uR(I) <1 by (2.4) and as V(R/I) <2 (ef. (2.7)), we have v(R)
s 3 too.

Now let us assume that v(R) = 3.. Then v(R/I) = 2 and
uR(I) = 1 —— hence e(R/I) =2 . |

Claim 1. R/I 1is an integral domain.

Proof of Claim 1. Suppose that R/I is not an integral
domaih. Then as R/I is a reduced ring of e(R/I ) = 2 , it
contains a minimal prime ideal p such that (R/I)/p is regular
(ef. (5.4)) — so ’R has a minimal prime ideal P with R/P
regular, too. However for this prime ideal P , since v(R) =
3 , we must have ug(P) = 2 while ug(P) =1 by (2.4) — this
is a contradiction.

By this claim we reach, for the ring R/I , the two cases
(I) and (II) explored in Sections 4 and 5. Let us write I = zR

with 2z € R . We choose elements x , ¥ of m so that X and

Yy (here . denotes the reduction mod I ) satisfy the require-
ments in (4.3) (resp. (5.1)), if we have the case (I) (resp. (II)).
Then m = (x, y, z) 'clearly. Let S denote the normalization

of R/I
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—,-n
First we consider the case (I). Let t = y/x (here n is
the integer given in (4.3)). Write t° = & + bt with a, be m .

Then by (4.9) we get an exact sequence

€

R4 - + RR—» 5 » 0
(#) (2 0 x bx + ay"
0 z yn X

t . Let

of R-modules with 6(61) =1 and €(e2)

2

F =R and K = Ker

Q]
.

For each X € R/m , we choose c, € R so that X =c, modm

and put

where

Then by (2.3)(1), the R-modules M, = F/N, are indecomposable
maximal Buchsbaum modules. Accordingly, to get a contradiction,

it suffices to check that
Claim 2. MA Z Mu , if X # u .

Proof of Claim 2. Suppose that My = Mu with A, u € R/m .

Then we have, by (2.3)(2), an automorphism ¢ of F that satis-
fies
cb(NA) = Nu and ¢(K) = K .

Let ¢ be the automorphism of S induced from ¢ . We write

® = (o - Et)1s
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0 a
with a,B € R (hence o ¢ m ) and put p = ( '] . Then as
1 -bv _
bqth the endomorphisms ¢ and QTF +Bp of F 1ift ¢ , we get
a homomorphism ¢ : F > K such that
¢ = a1F + Bp + io§

(here i:K > F denotes the inclusion map). Consequently, because

Z X 0
omy) =a |+ ) -v[] cm
0 y Z
(recall a,beg¢m ) and §(K)C mK (recall X C mF ), we see

ohy € N, | ;

—— hence hA € Nu as a ¢ m . Thus X = u, since ‘[ ] and
n Z

{bx tay ] are part of a minimal system of generators for K
X .

So we have the case (II). Similarly as in the case (I), let
n
/y  (here n 1is the integer given in (5.1)) and write

o+
I
d

2

t™ = + bt with a, b € R . Then as is noted in Section 5, we

o

have the same exact sequence (#) above. Let F and X be as
pA

X ,
before. But take hx = [ 1 + ck[yn] in our case. Let NX = mK

0
+ Rhy . Then My = F/NA is again an indecomposable maximal Buchs-

baum R-module. Let us check that A = u , if M, = Mu . First,

take an automorphism ¢ of F so that o¢(N,) = N, and ¢(K) =

K . Lift the automorphism § = (g - Et)1s of S (induced from ¢)

by means of a1F + Bp , where p = [O a ]. Choose a homomorphism
T -b

§:F > K so that

| b = a1F + Bp *+ 10§

(here i : K » F denotes the inclusion map). Then as ¢(hk) € Nu

and &(K) C mK ,. we get
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¢(h,) ah, + Bo(h,)

a'hu_mod mK

(here o' € R ), from which we have two equaliﬁies:
(1) az + ac,x + ch(ayn) = q'z + a'cux mod m2 ,

n

(2) acxyn + Bz + ch(x - by™) = a'cuy mod n?

Now recall that m = (x, ¥ z) and uR(m)‘= 3 . Then we find by
(2) that B € m  and so we get o ¢ m , since a - Bt is a unit
of S Dby our choice. Consequently because

a = o and ac, = oz'cLl mod m
by (1), we have cy = °, mod m . Thus X = p , which completes

the proof of (6.1).

Now let us quickly finish the proof of the implication (1)

=> (2) in Theorem (1.1). By (6.1) we may assume that v(R) = 2
- Let

R =P/J
for some ideal J 1in a complete regular local ring P of dim P
= 2 . Then as the ideal J is of height 1, we may write -

J = fI
with £ € P and I an ideal of P which contains some power of
the maximal ideal pn in P . Notice that P/fP has finite
Buchsbaum-representation type (as it is a homomorphic image of

R ) and we get by (3.1) that P/fP is a reduced ring of e(P/fP)

HA

2 —— hence f ¢ n3

7. Proof of the implication (2) => (1) in Theorem (1.1).

Let nB(R) denote the number of the isomorphism classes of
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indecomposable maximal Buchsbaum R-modules. In this section we
shall prove the implication (2) => (1) in Theorem (1.1), which

now readily follows from the next

Theorem (7.1). Let P be a regular local ring with maximal
ideal n and dim P =2 . Let 0 # fe n and I an n-primary
ideal of P . Then

nB(P/fI) = nB(P/fP) + 1 .

We divide the proof of Theorem (7.1) into several steps. Let

P, f, and I be as in (7.1). First we note
Lemma (7.2). nB(P/fI) = nB(P/fn) .

Proof. Any maximal Buchsbaum P/fn-module is naturally a
maximal Buchsbaum P/fI-module. Conversely, let M be a maximal
Buchsbaum P/fI-module. Then as n.Hg(M) = (0) (cf. (2.1)(1))
and HO(P/fI).M C HO(M) , we get the ideal n.HO(P/fI) = fn/fI

annihilates M so that M may be regarded as a P/fn-module too.

By (7.2) we may assume I =n . Let R = P/fn and S =
P/fP . For a while we fix a maximal Cohen-Macaulay S-module L

and assume that L doesn't contain S as a direct summand. Let

é T

o — p% — pR_ . L —s O

denote a minimal free resolution of the P-module L . Then we
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have a (unique) endomorphism Y of P? that satisfies

do¥ = Yoo 1 n
' P
(cf. [6] or Proof of (2.9)). Choose a homomorphism € : R"»> L
so that the diagram
T
PP — L
) I
n €
R® ——F— L
is commutative, where © denotes the canonical map. We put
M=Kere, ¢ =9 mod fn , and ¢ =Y mod fn
and identify ¢ (resp. ¥ ) with an n by n matrix with entries
35 5 (resp. bij ) in R .
Lemma (7.3). uR(M) =n and b,.em forany 1 si,jsn.
Proof. Let & =¢ mod fP and ¥ =¥ mod fP . We choose
a homomorphism T: s> making the diagram
n €
£ ] I
N T
S

—— L

commutative (here & denotes the canonical epimorphism). Then by
the proof of (2.9) we have an exact sequence

d

o T
00— L-—8"— s"— L —0
with Image ¥ = 3(L) (_ n.S" . Hence bij em for all 1 =i, j
< n and uS(Ker T) =n As &(M) Ker T and uR(M) £ n, we
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get UR(M) = n too.
Let f denote the reduction of f mod fn .

Proposition (7.4). (1) FT.R®C mM .
(2) Let Ugy Uy eee uh be a system of generators for M and
z € TR . Then there is a homomorphism n : R™ » R such that

n(ui) = 6i1z for any 1 £ i sn .

Proof. (1) Since o¢v = F1 and b,. em (1 si,j =n),
R i]
we get TRUC mM .

(2) Let n. : R®™ » R denote the homomorphism defined by the

1

i-th row of ¥ and put a, = t(a1j, By., -oo 5 a_.), the j-th

J 3’ nj
column of ¢ . Then as Yo = f1Rn , we have ni(gj) = Gijf for
any 1 s£i,j sn . We write for 1 =i =n
n
u, = z s
=1 J=J
with Cis € R . Then since { ui} 1< i n and {gi} % <isn

<
are both minimal systems of generators for M (cf. (7.3)), we have

the matrix [cij] to be invertible. Let z = c¢f (e e R) and

solve the equations

X, c
X ——
[cij] 2 =10
*n Ov
with x; e R (1 i sn). Then the homomorphism n = g X, N

R® —— R has the required property.
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Now choose an indecomposable maximal Buchsbaum R-module N

and write

L

0 =
N/Hm(N) = L

I &®

i
‘with Li indecomposable maximal Cohen-Macaulay R-modules. Then

as fR = Hg(R) and as Hg(R).N C Hg(N) , eéch L; is annihilated
by fR and may be considered to be an S-module. We claim

Lemma (7.5). Suppose_Li5§S for some 1 sis r . Then L

T e

=8 forany 1 =1 c<r.

Proof. Assume the contrary and write
N/Hg(N) =s"e L
with L a maximal Cohen-Macaulay S-module whiéh doesn't contain
S as a direct summand. Let
0—- M — R* £, 1 — o0
be the initial part of a minimal free resolution of L . Then as
Hg(N)(: mN  (ef. (2.1)(2)), similarly as in the proof of (4.10)
we get an R-submodule W of (FR)™ & M so that ; |
W ) m.((FR)™ ® M) and N = (R"™ & R")/W
(here (FR)™ denotes the direct sum of m copies of fR ). Let
V= (fR)" oM

and let p : V > V = V/mV denote the canonical epimorphism. We
regard each element of V as a column vector with entries in fR's
and M/mM . Let U = p(W) and r = dimkU (here k = R/m ).

Then r z 1, as N 1is indecomposable.

Let us take a k-basis v vr of U and consider

10 Yoy eee s
the m + 1 by r matrix C = (v1, Voy eee s Vr). Let
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(E4s €30 +-- » £,) be the (m + 1)-th row of C and put t =
2 |

dim _21 k. . Then after elementary column operations with coef-
: i=

ficients in k , the matrix C is transformed into

51 Uy e Gt i 0

where Ugjy Upy wee p Uy are part of a minimal system of generators

for M and Ei = u, mod mM for any 1 s1i st
Now let 1 =ism and 1 5 j st . Let (Z1, Zoy eee s Zt)

denote the i-th row of C Then by (7.4) we may choose a homo-

1 L]
morphism ”j : R® — R so that

n j(u(l) = _béajzj

for all 1sa = t . Let dﬁ denote the automorphism of R® @ R™

that sends each element t(x1, e » X y) of R™ @ R™ to

t(x1, cee 5 X. +n:ly)y ¢+« y X, y) . Then the restriction y,|V
i Jj m J

is an automorphism of V.- too, whence it induces an automorphism,

say éj , of V . Because nj(ua) = - aajzj for 1 = a st , the

row operation ¢j reduces zj to O , while the other entfiesv

of the i-th row of the matrix C1 doesn't change at all. Thus we
know that by some automorphism of V induced from an automorphism
§ of R®™ & R® with 6(V) =V, U is mapped onto the k-subspace

U' of V spanned by the columns of an m + 1 by r matrix of

the following form
0 l C

uq-az e ut , 0

Let W' = p_j(U‘) . Then as &(W) = W' , by (2.3)(2) we get

an isomorphism
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N = (R™ & R®) /W' ,

which forces N to be decomposable —— this is a contradiction.

‘Let us finish the proof of (7.1). Suppose first that L, 3
S for any 1 =i s=r . Then we get, with the same notation (but
m =0 ) as in Proof of (7.5), that

N = rR%/W .

Because f.R2C mM by (7.4)(1) and because mM C W , we find that
the ideal fR annihilates N whence N is an S-module. If Ly
= 8 for any 1 ; isr, we seé with the same notation (but L
= (0) ) as in Proof of (7.5) that

N = R"/wW
for some R-submodule W of (FR)® . As m.(FR) = (0) , it is

now standard to check that m = 1 and

in this case. Thus any indecomposable maximal Buchsbaum R-module
N is isomorphic to either R or an S-module. Hence

nB(R) =1 + ny(8) ,

B(
which completes the proof of (7.1).
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