DERIVATIONS IN MATRIX SUBRINGS

Andrzej NOWICKI

This note is an abstract of the author's papers [1], [2] and [3]. Let R be a ring with identity and let $M_n(R)$ denotes the ring of $n \times n$ matrices over R. We say that a subring P of $M_n(R)$ is special with the relation ω if P is of the form

$$P = \{ A \in M_n(R); A_{ij} = 0, \text{ for (i,j) } \notin \omega \},$$

where ω is a relation (reflexive and transitive) on the set $\{1,\ldots,n\}$.

We describe in this note all derivations, R-derivations and higher R-derivations of the ring P.

I.DERIVATIONS AND HIGHER DERIVATIONS IN A RING

1. Derivations. Let P be a ring with identity. An additive mapping $d:P \longrightarrow P$ is called a <u>derivation</u> (or an <u>ordinary derivation</u>) of P if d(xy) = d(x)y + xd(y), for any $x,y \in P$. We denote by D(P) the set of all derivations of P. If d and d' are derivations of P then the mapping d + d' is also a derivation of P, so D(P) is an abelian group.

Let a ϵ P and let d_a:P --- P be a mapping defined by d_a(x) = ax - xa, for any x ϵ P. Then d_a is a derivation of P.

Let $d \in D(P)$. If there exists an element $a \in P$ such that $d = d_a$ then d is called an <u>inner derivation</u> (with respect to a) of P. We denote by ID(P) the est of all inner derivations of P. ID(P) is a (normal) subgroup of D(P).

We shall say that P is an $\overline{\text{NS-ring}}$ if ID(P) = D(P), that is, a ring P is an NS-ring if and only if every derivation of P is inner.

2. <u>Higher derivations</u>. Let P be a ring with identity and let S be a segment of N = {0,1,...}, that is, S = N or S = {0,1,...,s} for some $s \ge 0$. A family $d = (d_m)_{m \in S}$ of mappings $d_m: P \longrightarrow P$ is called a <u>derivation of order s of P</u> (where $s = \sup(S) \le \infty$) if the following properties are satisfied:

(1)
$$d_m(x + y) = d_m(x) + d_m(y)$$
,

(2)
$$d_{m}(xy) = \sum_{i+j=m} d_{i}(x)d_{j}(y)$$
,

(3)
$$d_0 = id_p$$
,

for any x,y ϵ P, m ϵ S.

The set of derivations of order s of P, denoted by $D_{_{\rm S}}(P)$, is the group under the multiplication * defined by the formula

$$(d * d')_m = \sum_{\substack{i+i=m}} d_i \circ d'_j$$
,

where d,d' ϵ D_S(P) and m ϵ S.

Let $\delta\colon P \dashrightarrow P$ be a mapping. Then δ is an ordinary derivation of P if and only if (id_P, δ) is a derivation of order 1 of P. Therefore we may identify: $D(P) = D_1(P)$.

3. Examples of higher derivations. Let P and S be as in Section 2.

Example 3.1. Let $a \in P$, $d_0 = id_P$, and $d_m(x) = a^m x - a^{m-1} xa$, for $m \ge 1$, $x \in P$. Then $d = (d_m)_{m \in S}$ belongs to $D_S(P)$.

Example 3.2. Let d ϵ D_S(P), k ϵ S - {0} and let δ = (δ _m)_m ϵ S be the family of mappings from P to P defined by

$$\delta = \begin{cases} 0, & \text{if } k \nmid m \\ d_{n}, & \text{if } m = rk. \end{cases}$$

Then $\delta \in D_s(P)$.

The derivation d (of order s) from Example 3.1 will be denoted by [a,1]. The derivation δ (of order s) from Example 3.2, for d=[a,1]

will be denoted by [a,k].

4. Inner derivations. Let P and S be as in Section 2 and let $\underline{a} = (a_m)$ (where m ϵ S) be a sequence in P. Denote by $\Delta(\underline{a})$ the element in $D_S(P)$ defined by

$$\Delta(\underline{a})_{m} = ([a_{1},1] * [a_{2},2] * \dots * [a_{m},m])_{m},$$

for any $m \in S$.

Definition 4.1. Let d ϵ D_S(P). If there exists a sequence \underline{a} = (a_m) of elements of P such that d = $\Delta(\underline{a})$ then d is called an <u>inner derivation</u> of order s of P.

Denote by ${\rm ID}_{_{\rm S}}({\rm P})$ the set of inner derivations of order s of P.

<u>Proposition 4.2.</u> $ID_{S}(P)$ is a normal subgroup of $D_{S}(P)$.

Proposition 4.3. The following properties are equivalent

- (1) P is an NS-ring,
- (2) $ID_s(P) = D_s(P)$, for any $0 < s \le \infty$,
- (3) $ID_{S}(P) = D_{S}(P)$, for some $0 < s \le \infty$.

5.R-derivations. Let R \subset P be rings with identity and let S be a segment of N. If a derivation (of order s) d ϵ D_S(P) satisfies the condition

$$d_{m}(r) = 0,$$

for all m ϵ S - {0}, r ϵ R, then d is called <u>R-derivation of order s</u> of P, and the set of all such derivations is denoted by $D_s^R(P)$.

We define similary an ordinary R-derivation, an inner R-derivation, an inner R-derivation of order s and also, we define similary the groups $D^{R}(P)$, $ID^{R}(P)$ and $ID^{R}_{S}(P)$.

The group $D_s^R(P)$ is a subgroup of $D_s(P)$ and the group $ID_s^R(P)$ is a normal subgroup of $D_s^R(P)$.

We shall say that P is an NS-ring over R if $ID^{R}(P) = D^{R}(P)$.

Proposition 5.1. The following properties are equivalent

- (1) P is an NS-ring over R,
- (2) $\operatorname{ID}_{s}^{R}(P) = \operatorname{D}_{s}^{R}(P)$, for any $0 < s \le \infty$,
- (3) $ID_s^R(P) = D_s^R(P)$, for some $0 < s \le \infty$.

II. SPECIAL SUBRINGS OF MATRIX RINGS

6. Notices. Let R be a ring with identity, n a fixed natural number and ω a reflexive and transitive relation on the set $I_n = \{1,\ldots,n\}$. We denote by $M_n(R)$ the ring of n \times n matrices over R and by Z(R) the center of R. Moreover, we use the following conventios:

F(R) = the set of mappings from R to R,

 $\vec{\omega}$ = the smallest equivalence relation on I_n containing ω ,

 $\mathbf{T}_{_{\bigcup}}$ = a fixed set of representatives of equivalence classes of $\overline{\omega}_{\bullet}$

 $A_{ij} = ij$ -coefficient of a matrix A,

 E^{ij} = the element of the standard basis of $M_n(R)$,

$$M_n(R)_{\omega} = \{A \in M_n(R); A_{ij} = 0, \text{ for (i,j) } \notin \omega \}.$$

7. Transitive mappings and regular relations. Let G be an abelian group. A mapping f: ω ---> G will be called transitive iff

$$f(a,c) = f(a,b) + f(b,c),$$

for any $a_{\omega}b$ and $b_{\omega}c$.

If $f: \omega \longrightarrow G$ is a transitive mapping then we denote by [f,]

(in the case G = R) the mapping from ω to F(R) defined by

$$[f,](a,b)(r) = f(a,b)r - rf(a,b),$$

for awb and r ϵ R. Clearly, [f,_] is transitive too.

We shall say that f is <u>trivial</u> if there exists a mapping $\sigma\colon \ I_n \xrightarrow{---} G \ \text{such that}$

$$f(a,b) = \sigma(a) - \sigma(b),$$

for any awb. Moreover, we shall say that f is $\underline{quasi-trivial}$ (in the case G = R) if [f,_] is trivial.

Every trivial transitive mapping from $\boldsymbol{\omega}$ to R is quasi-trivial, but the converse is not necessarily true.

<u>Proposition 7.1.</u> Let $f: \omega \longrightarrow R$ be a quasi-trivial transitive mapping. Then there exists a unique mapping $\tau\colon I_n \dashrightarrow F(R)$ such that

- (1) $[f,_](i,j) = \tau(i) \tau(j)$, for all $i\omega j$,
- (2) $\tau(t) = 0$, for $t \in T_{\omega}$.

Moreover, $\tau(1), \ldots, \tau(n)$ are inner derivations of R.

Definition 7.2. The relation ω is called <u>regular over an abelian</u> group G if every transitive mapping from ω to G is trivial.

8. The graph $\Gamma(\omega)$ and homology groups. Let \div be the equivalence relation on I_n defined by: $x \div y$ iff x ωy and y ωx . Denote by [x] the equivalence class of $x \in I_n$ with respect to \div and let I_n' be the set of all equivalence classes. We define a relation ω' of partial order on I_n' as follows:

$$[x]\omega'[y]$$
 iff $x\omega y$.

We will denote the pair (I'_n, ω') by $\Gamma(\omega)$ and calle it the graph of ω . Elements of I'_n we calle <u>vertices</u> of $\Gamma(\omega)$ and pairs (a,b), where $a\omega'b$ and $a \neq b$, <u>arrows</u> of $\Gamma(\omega)$.

Let us imbed the set of the vertices of $\Gamma(\omega)$ in an Euclidean space of a sufficiently high dimension so that the vertices will be

linearly independent.

If a_0, a_1, \ldots, a_k are elements of I' such that $a_i \omega' a_{i+1}$ and $a_i \neq a_{i+1}$ for $i=0,1,\ldots,k-1$, then by (a_0,a_1,\ldots,a_k) we denote the k-dimensional simplex with vertices a_0,\ldots,a_k . The union of all 0,1,2 or 3-dimensional such simplicies we will denote also by $\Gamma(\omega)$. Therefore, $\Gamma(\omega)$ is a simplicial complex of dimension ≤ 3 .

Let $C_k(\omega)$, for k=0,1,2,3, be the free abelian group whose free generators are k-dimensional simplicies of $\Gamma(\omega)$. We have the following standard complex of abelian groups:

$$0 \longrightarrow C_3(\omega) \xrightarrow{\partial 3} C_2(\omega) \xrightarrow{\partial 2} C_1(\omega) \xrightarrow{\partial 1} C_0(\omega) \longrightarrow 0$$

where

$$\partial_1(a,b) = (b) - (a),$$

$$\partial_2(a,b,c) = (b,c) - (a,c) + (a,b),$$

$$\partial_3(a,b,c,d) = (b,c,d) - (a,c,d) + (a,b,d) - (a,b,c).$$

Then $H_1(\Gamma(\omega)) = \text{Ker} \partial_1/\text{Im} \partial_2$, $H_2(\Gamma(\omega)) = \text{Ker} \partial_2/\text{Im} \partial_3$ and (by the Kunneth formulas)

$$H^{1}(\Gamma(\omega),G) = Hom(H_{1}(\Gamma(\omega)),G),$$

for an arbitrary abelian group G.

III DERIVATIONS IN SPECIAL SUBRINGS

9. Examples of derivations. Let $P = M_n(R)$ be a special subring of $M_n(R)$.

Example 9.1. Assume that f: ω ----> R is a quasi-trivial transitive mapping and denote by Δ^f the mapping from P to P defined by

$$\Delta^{f}(B)_{pq} = B_{pq}f(p,q) + \tau_{f}(p)(B_{pq}),$$

for B ϵ P, p ω q, where τ_f is the mapping τ from Proposition 7.1. Then Δ^f is a derivation of P. Moreover Δ^f is inner if and only if f is trivial.

Example 9.2. Let $\delta = \{\delta_t; t \in T_\omega\}$ be a set of derivations of R. Denote by Θ_{δ} the mapping from P to P defined by

$$\Theta_{\delta}(B)_{pq} = \delta_{t}(B_{pq}),$$

for B ϵ P,pwq, where t ϵ $T_{_{(1)}}$ such that pWt.

Then Θ_{δ} is a derivation of P. Moreover, Θ_{δ} is inner if and only if δ_{t} is inner for any t ϵ T_{ω} .

10. A description of D(P). Let P = $M_n(R)_{\omega}$ be a special subring of $M_n(R)$. The following theorem describes all derivations of P.

Theorem 10.1. Every derivation d of P has a unique representation:

$$d = d_A + \Delta^f + \Theta_{\delta},$$

- where (1) d_A is an inner derivation of P with respect to a matrix A ϵ P such that $A_{pp} = 0$, for p=1,...,n,
- (2) f: ω ----> R is a quasi-trivial transitive mapping and Δ^f is the derivation from Example 9.1,
- (3) $\delta = \{\delta_t; t \in T_\omega\}$ is a set of derivations of R and Θ_δ is the derivation from Example 9.2.

The next theorem describes special subrings which are NS-rings.

Theorem 10.2. The following conditions are equivalent

- (1) P is an NS-ring,
- (2) R is an SN-ring and the relation ω is regular over Z(R).
- 11. R-derivations of M $_n(R)_{_{\textstyle \, \omega}}$. Let P = M $_n(R)_{_{\textstyle \, \omega}}$ be a special subring of M $_n(R)$.

Example 11.1. Let $f: \omega \longrightarrow Z(R)$ be a transitive mapping and denote by Δ^f the mapping from P to P defined by $\Delta^f(B)_{pq} = f(p,q)B_{pq}$, for B ϵ P and p ωq . Then Δ^f is an R-derivation of P. Moreover Δ^f is

inner if and only if f is trivial.

Theorem 11.2. Any R-derivation d of P has a unique representation $d = d_{\Delta} + \Delta^{f},$

where (1) d_A is an inner derivation of P with respect to a matrix $A \in P$ such that $A_{ij} \in Z(R)$ for $i,j=1,\ldots,n$, and $A_{ii} = o$ for $i=1,\ldots,n$,

(2) f: ω ----> Z(R) is a transitive mapping and Δ^f is the derivation from Example 11.1.

Theorem 11.3. The following conditions are equivalent

- (1) P is an NS-ring over R,
- (2) ω is regular over Z(R).

Corollary 11.4. If d and δ are R-derivations of R then the derivation $d\delta$ - δd is inner.

Corollary 11.5. If d is an R-derivation of P then d(Z(R)) = 0.

Corollary 11.6. If d is an R-derivation of P and U is an ideal of P then D(U) U.

12. An example of non-inner R-derivation. For n \leq 3 every relation ω (reflexive and transitive) on I_n is regular over any group. Therefore (by Theorem 11.3), in this case any special subring of $M_n(R)$ has only inner'R-derivations. For n=4 it is not true. Let ω_0 be the relation on $I_4 = \{1,2,3,4\}$ defined by the graph

that is, ω_0 = {(1,1),(2,2),(3,3),(4,4),(1,3),(1,4),(2,3),(2,4)} . Denote by $S_4(R)$ the special subring of $M_4(R)$ with the relation ω_0

Then we have

$$S_4(R) = \begin{bmatrix} R & 0 & R & R \\ 0 & R & R & R \\ 0 & 0 & R & 0 \\ 0 & 0 & 0 & R \end{bmatrix}.$$

Consider the mapping d: $S_4(R) \longrightarrow S_4(R)$ defined by

Then d is an R-derivation of $S_{L}(R)$ and d is not inner.

In [1] there is a description of the group $D^R(S_4(R))$. Note one of the properties of R-derivations of the ring $S_4(R)$.

Corollary 12.1. If d_1 and d_2 are R-derivations of $S_4(R)$ then the composition d_1d_2 is also R-derivation of $S_4(R)$.

13. A description of regular relations. Let $P = M_n(R)_{\omega}$ be a special subring of $M_n(R)$.

We know, by Theorem 10.2, that P is an NS-ring if and only if R is an NS-ring and the relation ω is regular over Z(R). We know also, by Theorem 11.3, that P is an NS-ring over R if and only if the relation ω is regular over Z(R).

In this section we give some sufficeient and necessary conditions for the relation $\boldsymbol{\omega}$ to be regular over an abelian group.

We may reduce our consideration to the case where ω is connected (that is, for any a,b ε I_n there exist elements a₁,...,a_r ε I_n such that a = a₁, b = a_r and a_i ω a_{i+1} or a_{i+1} ω a_i, for i=1,...,r-1), because it is easy to show the following

Proposition 13.1. Let G be an abelian group. The relation ω is regular over G if and only if every connected component of ω is regular over G.

The next proposition says that we may also reduce our consideration to the case where $\boldsymbol{\omega}$ is a partial order.

<u>Proposition 13.2.</u> ω is regular over G if and only if ω (see Section 8) is regular over G.

Now we may give a description of regular relations.

Theorem 13.3. Assume that ω is a connected partial order. The following properties are equivalent:

- (1) ω is regular over some non-zero group,
- (2) ω is regular over every torsion-free group,
- (3) ω is regular over some torsion-free group,
- (4) ω is regular over Z,
- (5) $H_1(\Gamma(\omega))$ is finite,
- (6) $H^1(\Gamma(\omega),G) = 0$, for any torsion-free group G.

Theorem 13.4. Assume that ω is connected partial order. The following properties are equivalent:

- (1) ω is regular over any group,
- (2) ω is regular over Q/Z,
- $(3) H_{1}(\Gamma(\omega)) = 0,$
- (4) $H^1(\Gamma(\omega),G) = 0$, for any group G.

Theorem 13.5. Assume that ω is connected partial order, such that the order of the group $H_1(\Gamma(\omega))$ is equal to m>1. Let G be an abelian group. The following properties are equivalent:

- (1) ω is regular over G,
- (2) G is an m-torsion-free group,
- (3) $H^1(\Gamma(\omega), G) = 0$.

Corollary 13.6. Let $P = M_n(R)$ be a special subring of $M_n(R)$. The

following properties are equivalent

- (1) Every R-derivation of P is inner,
- (2) The relation ω is regular over Z(R),
- (3) $H^{1}(\Gamma(\omega), Z(R)) = 0.$
- 14. Examples. Let P = $M_n(R)_{\omega}$ where
- a) $n \leq 3$, or
- b) the graph $\Gamma(\omega)$ is a tree, or
- c) the graph $\Gamma(\omega)$ is a conne (that is, there exists b ϵ I_n such that bwa or awb for any a ϵ I_n), in particular $P = M_n(R)$ is the ring of n \times n matrices over R, or P is the ring of triangular n \times n matrices over R.

Then every R-derivation (or every drivation, if every derivation of R is inner) of P is inner.

By Theorem 13.5 it follows that there exist relations ω which are regular over some groups and which are not regular over another groups. In the paper [1] there is an example of such a relation ω (for n=17) that if R is 2-torsion-free ring then P = $M_n(R)_\omega$ is an NS-ring over R, and if char(R) = 2 then P = $M_n(R)_\omega$ is not an NS-ring over R.

IV HIGHER DERIVATIONS IN SPECIAL SUBRINGS

15. An example of higher derivations. Let $P = M_n(R)_{\omega}$ be a special subring of $M_n(R)$, S a segment of N, and let $\underline{d} = \{d^{(t)}; t \in T_{\omega}\}$ be a family of derivations of order s (where $s = \sup(S)$) of the ring R.

Denote by $_{\Theta}(\underline{d})$ the sequence (d $_m$) $_{m\ \epsilon\ S}$ of mappings from P to P defined by

$$d_{m}(A)_{ij} = d_{m}^{(v(i))}(A_{ij}),$$

for m $_{\epsilon}$ S, A $_{\epsilon}$ P, where $_{\upsilon}$: I $_{n}$ ---> T $_{\omega}$ is the mapping: $_{\upsilon}$ (p) = t iff $_{p\overline{w}t}$.

Then $\Theta(\underline{d})$ is a derivation of order s of P. If $\underline{d} \neq 0$ then the derivation $\Theta(d)$ is not an R-derivation.

In the next sections of this note we shall interesting only in R-derivations of order s of P.

- 16. Transitive mappings of order s. A sequence $f = (f_m)_{m \in S}$ of mappings $f_m : \omega \longrightarrow Z(R)$ is called a <u>transitive mapping of order s</u> (from ω to R) if the following properties are satisfied:
 - (1) $f_0(p,q) = 1$, for all $p\omega q$,
 - (2) $f_m(p,r) = \sum_{i+j=m} f_i(p,q) f_j(q,r)$, for all $m \in S$ and $p\omega q$ and $q\omega r$.

If $f = (f_m)_{m \in S}$ is a transitive mapping of order s then $f_1(p,r) = f_1(p,q) + f_1(q,r),$

for any pwqwr so, $f_1: \omega \longrightarrow Z(R)$ is a transitive mapping in the sense of Section 7.

17. R-derivations of order s. In this section we give a description of the group $\operatorname{D}^R_s(P)$.

Example 17.1. Let $f = (f_m)_{m \in S}$ be a transitive mapping of order s from ω to Z(R). Denote by Δ^f the sequence $(\Delta_m^f)_{m \in S}$ of mappings $\Delta_m^f \colon P \dashrightarrow P$ defined by the following formula:

$$\Delta_{m}^{f}(A)_{pq} = f_{m}(p,q)A_{pq},$$

for all A ϵ P and p ωq .

Then Δ^f is an R-derivation of order s of P.

Theorem 17.2. Every R-derivation d of order s of P has a unique representation:

$$d = \Delta(A) * \Delta^f,$$

where

- (1) $\underline{A} = (A^{(m)})_{m \in S} \{0\}$ is a sequence of matrices $A^{(m)} \in P \cap M_n(Z(R))$ such that $A^{(m)}_{ii} = 0$, for $i=1,\ldots,n$, and $\Delta(\underline{A})$ is the inner derivation of order s with respect to A;
- (2) f is a transitive mapping of order s from ω to R and $\Delta^{\bf f}$ is the R-derivation from Example 17.1.

Corollary 17.3. If d ϵ $D_{_{\bf S}}^R(P)$ and U is an ideal of P then d $_{_{\bf m}}(U)$ C U, for all m ϵ S.

Corollary 17.4. If $d \in D_S^R(P)$, then $d_m(Z(R)) = 0$, for all $m \in S - \{0\}$.

Corollary 17.5. Assume that there do not exist three defferent elements a,b,c ϵ I_n such that awbwc. Let d = (d_m)_{m ϵ S} be a sequence of mappings from P to P such that d₀ = id_p. Then d is an R-derivation of order s of P if and only if every mapping d_m (for m ϵ S - {0}) is an ordinary Rederivation of P.

18. <u>Integrable derivations</u>. Let $S = \{0,1,\ldots,s\}$, where $s < \infty$. Assume that S' is a segment of N such that $S \nsubseteq S'$. We say that an R-derivation $d \in D_S^R(P)$ is <u>s'-integrable</u> (where $s' = \sup(S') \le \infty$) if there exists an R-derivation $d' = (d'_m)_{m \in S'}$ of order s' of P such that $d'_m = d_m$, for all $m \in S$.

In the paper [3] there are some necessary conditions for any R-derivation of order s of P thes'-integrable, and there is an example of non-integrable R-derivation (In this example n=17 and R = Z_2). In this paper there are also proofs of the following two partial results:

Theorem 18.1. Let $s < s' \le \beta$. If $H_2(\Gamma(\omega)) = 0$ and $H_1(\Gamma(\omega))$ is a free abelian group then every R-derivation of order s of P is s'-integrable.

Theorem 18.2. Assume that the homology group $\mathrm{H}_1(\Gamma(\omega))$ is free abelian. Then

- (1) Every R-derivation of order s < 3 of P is 3-integrable.
- (2) If R is 2-torsion-free then every R-derivation of order < 5 of P is 5-integrable.
- (3) If R is 6-torsion-free then every R-derivation of order < 7 of P is 7-integrable.

References

- [1] A.Nowicki, Derivations of special subrings of matrix rings and regular graphs, Tsukuba J.Math.,7(1983),281-297.
- [2] ---, Inner derivations of higher order, Tsukuba J.Math., 8(1984), 219-225.
- [3] ---, Higher R-derivations of special subrings of matrix rings, Tsukuba J.Math.,8(1984),227-253.

Institute of Mathematics Copernicus University Torun, Poland

Department of Mathematics Shinshu University Matsumoto, Japan