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HARMONIC ANALYSIS

OF ARITHMETICAL FUNCTIONS

by

John Knopfmacher

Introduction

The present article is largely an exposition of results treated
more fully and generally in the author's paper [5], in Chapter 7
of ‘his book  [4],and in the paper of W. Schwarz and J. Spilker [8].
Some further deve]opménts of this subject are discussed in the articles
of W. Schwarz and J. Spitker [9] and W. Schwarz [7]. ,

" The topicvcovered by the above heading is concerned with a kind

of analysis of elementary arithmetical functions: 4:IN — € which is
in many ways parallei to the classical analysis of certain ordinary,
continuous real or complex fdnctions in terms of periodic, or almost
periodic, functions. In fact, it is possible to view it as one special
aspecf of the widé-rénging program of abstract harmonic analysis over
general topo1ogica1'groups and semigroups. However, ffom this point
of view, it is not a>pnioﬁz obvious that the app]icatidn of such
analysis to arithmetical functions should lead to conclusions of any
great number-theoretical interest.

Although, with hindsight, it is to some extent possible to indicate
intrinsic number-theoretical reasons for expecting or seeking some
kind of "harmonic" analysis of arithmetical functions, the historical
process of discovery occurred differently. In 1918, S. Ramanujan [6]
published a'paper containing a number of remarkable formulae expwessing
some particular arithmetical functions as the pointwise convergent sums
of certain infinite trigonohetrica] series. For example, he\proved
that
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where n = 1,2,3,... and o(n) is the sum of all the divisors of n .
If one recalls that o(n)/n has the asymptotic mean-value

2

% 7 , then the above formula provides a very striking indication

of how the actual values of d(n)/n‘ fluctuate "harmonicale"'about

their mean-value. In briefer terms, this formula can be written as
n © n=l  a?

where the c&(n) are certain trigonometrical sums which Tater became
known as Ramanufan sums. ,

By means of ad hoc methods, Ramanujan and (slightly thereafter)
G.H. Hardy established certain further formulae for particular arithmetical
functions in terms of the sums cn(n), some pf which again exhibit
the fluctuations of a function 4§ with asymptotic mean value m(§)
about the value m(4) . Then, at a Tater stage, further authors began
investigations into features of harmonic analysis which seemed to explain
the existence of at least some of the special formulae; see particularly
A. Wintner [10].

The. paragraphs below outline some more recent results which: help
to explain the general significance of the Ramanujan sums in a different .
way. This way is one in which périodicity is replaced by. a concept
of evenness , which is perhaps more suitable for dealing with quctions
on a domain like I in which multiplication rather than additiqnaoften
plays a dominant rdle . The latter concept is also valuable in extending
this theory to functions on more general arithmetical semigrouﬁs thah’ A

ey
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IN, which arise elsewhere in algebraic number theory and in more
abstract areas of mathematics. Some initial steps towa}ds such a

type of "mu1tip1icatiVevharmohic analysis" were first taken by E. Cohen
(see e.g. Cohen [2]), and additional starting points were provided

By W. Schwarz and J. Spilker [8] , who introduced concepts of topology
and functioha1‘ana1ysis into the area. '

1. Topological theory of Ramanujan sums.

By definition, any complex-valued function on the set N of
natural numbers will be called an anithmetical gunction on IN .,
We shall let D denote the set of all arithmetical functions.
Under the poiht-wisekoperafions, D becomes a complex commutative
algebra with identity, which may be viewed as the unrestricted direct

product T T €, of copies € of the complex field €. It will
aeN

be convenient here to regard D as a topofogical algebra relative
to the cartesian product topology when each d%’ has the usual topology
of the complex numbers.

As indicated earlier, we shall be particularly interested in the
Ramanufan sums ¢, (nelN),

defined by

c. (a) ex p(=2nLas/n)

2
n A=n,n,s)=1

= u(i)d faeN] ,

d|(n,a)

where (%,4) = g.c.d.(n,4) and u is the Mobius function.

We shall let R denote the vector subspace of D spanned by all the
Ramanujan sums c, and for a given element Lk eIN Tlet Rk denote
the furtner subspace spanned by those functions c, with z|k .

If x|k  then (#n,a) = (n,(k,a)), and so any function 4
on 1IN which can be expressed in the form 4(a) = | = gld,n/d)[ae N]

will have the property
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(1.1) 4a) = 4((k,a)) for every aelN;

following E. Cohen [2], functions with property (1.1) will be called
even (mod k). Evidently the set Dk of all even functions (mod k)
is a subalgebra of D containing Rk . In fact it can be proved

that Dk = Rk .
It is easy to see that every even function 4 (mod#f) over
N is periodic {(mod k); hence evenness may be viewed as a restricted

form of periodicity. Nevertheless the next proposition shows that

the set R = kLJm!Rh of all even functions on IN plays an important
<

r6le in D.

(1.2) Proposition. The vector space R constitutes a dense subalgebra-
of the topological algebra 9 of all arithmetical functions on W .

Sketch Proof. Let C(X) denote the algebra of all continuous complex-
valued functions on the given topological space X. If N is regarded
as a discrete topological space, it may be deduced that the coMpact-
open topology for C({N) ='D coincides with the product topology
considéred earlier. Hence the Stone-Weienstrnass thecnem is applicable
to D ana this was used by Schwarz and Spilker [8] to derive (1.2},
with the aid of certain calculations of the values cn(a) for prime-
powers x, as well.

(1.3) Corollary. Given any {eD, ’any e>0 and any number
x>0, there exists a finite linear combination

= ,’:Z’,4’
g 9(6 €,X) Zac, (o, complex)

such that |4(a) - g(a)j< € whenever  a=x .

According to Proposition 1.7, every arithmetical function is
"nearly" even in a certain sense, while the equation Dk= Rk shows

that every even function on IN coincides with some "Ramanujan polynomial" .
If one follows the analogy with continuous functions of a real variab]e,

it then becomes reasonab1e>to investigate strongervforms of apprpximatﬁon
by means ot even Tunctioné. ”
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In the first place, note that each function c, is bounded on
. Hence R ¢ B , the Banach algebra of all bounded complex-valued

functions on IN under the wuniform norm |4l = S%Glé(a)l. In
ae

analogy with the theory of Bohr almost periodic functions, it then
appears reasonable to define an arithmetical function 4 to be
(uniformby) akmost even if and only if 4 belongs to the closure
p* of R 1in B relative to the uniform metric.

Since R 1is a subalgebra of D, it follows from this definition
that »* 1is also a Banach algebra; in fact, it is a commutative
B*-algebra. Therefore the Gelfand-Naimark theorem‘imp1ies that
p*  is isometricé]iy isomorphic to the . Banach algebra C(X) where
X is a certain compact Hausdorff space - its maximal ideal space.
The following theorem, which is independent of these remarks, gives more
precise information as to how almost even functions may be represented
by continuous functions.

(1.4) Theorem. There exists a commutative compact topological
semigroup IN* with identity, and a monomorphism t: N—>1N*
which sends IN onto a dense subset of IN*, such that the adjoint
homomorphism t* : C(IN*) — B maps C( IN*) 1somorph1ca11y

and isometrically onto »* . '

Sketch Proof. We shall outline a topological construction
introduced by Schwarz and Spilker [8]. For the construction,
first consider any prime p and regard the set {p&:n=0,1,2,...}
as a discrete topological space. Let Dl(b) denote the one-point
compactification of this space,and let pm denote the extra point

adjoined. Then ﬂv(p) becomes a commutative compact topoiogical

semigroup with identity if one uses the multiplication of prime-powers
in N and in addition lets (p )2 =p and pmpn = p’Lpd° =p  for
no=0,1,2,... . | : o

Now form the topological producf WN* = I_]_ IN( . Then

’ L - peP (p)" .

IN* is a compact topological semigroup, and the existence of unique
factorization into prime-powers for the elements of W gives rise
to a semigroub'monomorphism t:IN>IN* . By using the definition
of the product topology and Qf the topology in edch ﬁV(p),"it is

¢
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easy to verify that tT(IN) 1is dense in W* . It can then be shown
that the adjoint algebra homomorphism =1*: C(N*) — B8 is
a norm-preserving algebra isomorphism.

The above property of IN* relative to the almost even functions
on IN is directly analogous to that of the Bohrn compactification
of a topological group, or the almost periodic compactiffcation of
a topological semigroup, relative to the almost periodic functions
on the group or semigroup. Hence it is natural to call W* the
almost even compactification of W . (It may be interesting to
note in passing that adgebraically, the elements of IN* occur also
in the theory of fields, where they are sometimes called Steinitz
numbens.) The following uniqueness property of IWN* provides a further
parallel to properties of the Bohr or almost periodic compactifications.

(1.5) Proposition. Let IN denote a commutative compact topological.
semigroup with idéntity. Suppose that there exists a homomorphism
p: N—IN' of IN onto a dense subset of IN', such that the adjoint
homomorphism p:C(IN')—> B ‘gives an algebra isomorphism of
C(IN') onto D* . Then there exists a topological isomorphism

a: N'-=N* such that ap=t. |

2. A Fourier theory of almost even functions.

Recall that the:'mean-vaﬂueA of an arithmeical function 4§
is defined to be

mg) = Tin 2 % 4a)

X—> a=x
if the Timit exists. We shall next indicate how the existence of
mean-values in certain cases leads to the existence of a probability
measure v on IN* , which can then be used to initiate a Fourier
theory of almost even functions, involving a definition of inner product
which involves «ntegration over the compactification W*. In order .
to establish the existence of a suitable integral over WN*, first

consider

(2.1) Theorem. Every almost even function 4 possesses a finite
asymptotic mean-value
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Schwarz and Spilker [8] deduced this statement from the fact that
the classical Ramanujan sums are )peniodic functions of a positive
integer, but one can also avoid periodicity and this fact is useful

to know in certain situations as well.

(2.2) Corollary. There exists a regular and complete probability
measure v on a o-algebra of subsets of IN* containing all the
open sets, such that for every almost even function 4§

fexdv = m(4)

where 4* = v*~1(f)eC(W*) .

Sketch Proof. This corollary is due to Schwarz and Spilker [8]. The

proof amounts to an application of the Riesz Representation Theonem, since the
rule 4-—>m(4) and the isomorphism D*=C (IN*) clearly define a
non-negative comp1ex—lihear functional on C (IN*). The resulting

measure v then satisfies v(IN*)= fci dv = m(cl) = 1. (It can also

be proved that <t(IN) has measure zerc in  IW* )

For almost even functions, Corollary 2.2 lTeads to
(2.3) Theorem. The rule §—>4* = 1*'1(6) defines an embedding
of the Banach algebra »* of all almost even functions on IN into

the Hilbert space L2?(v) of all square-integrable functions on
IW* relative to the measure v. The (new) inner product on D* is

given by <4§,9 > = m(§-g) = fé* a%dv. A complete orthonormal subset

of L2(v) 1is provided by all the functions Cz where

C = 1 C
o et t

In terms of the above pre-Hilbert space structure on D*, it

(nelN).

now follows that every almost even function 4 has a unique

L?-convergent Ramanufan expansion

‘ ' ‘ . 1 _
4 = )LE:WF(/L}C}L, where F(n) = 300 '<4§’cn>

may be called the xn-th Ramanufan coegfictent of 4. In terms

~\N
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of this notation, the corresponding Parseval identity takes the form

<g1:6:== = o()F (n)F, (1) .
nelN ‘
In the next sections we shall consider some wider classes of arithmetical
functions 4 such that all the corresponding Ramanujan coefficients
F(n) exist, and relate these to the Lebesgue spaces Lq(v)[q;:l]
over IN* . - Some more specifically number-theoretical questions
about which functions lie in these classses, and when the Ramanujan

expansion SF(n) converges podntwise to 4, will be discussed

c
n
in the final section.

3. A Besicovitch-type Fourier theory.

Following the idea of the Besicovitch theory of ordinary almost
periodic functions, we now consider some weaker modes of approximation
by means of even functions. For this purpose, given a real-valued
arithmetical function g, first consider the upper mean-value

m(g) = 19im sup m(g,x) where m(g,x):.l % g(a). For
X—> X A=

a=X

qg=l, let 387 denote the set of all arithmetical functions 4 such
that }6|q ‘has a finite upper mean-value. Then it follows from
Minkowski's inequality that 8% is a vecton subspace of D, on
which uéﬂq = [ﬁ([éjq)]l/q behaves as a éeminqnm. As in ordinary
function theory, it is easy to deduce that ,Héﬂq:iuéﬂq.:iﬂéuw and

pcp? calcal for gz=q=1.

Now define an arithmetical function & to be afmost even
(Bq) if and only if 4 belongs to the closure g4 , of the vector
space R in 8% relative to the topology defined by uéﬂq; if q¢=1,
4 will simp1y be called afmost even (B).

(3.1) Theorem. Every almost even (B) 'function 4 possesses a
finite asymptotic mean-value m(4). In particular, 4l = m(|4])
and all the Ramanujan coefficients F(x) = (1/¢(n))m(é-c&)[¢e.ME
exist. ‘

If 4 and g aré almost even (B) functions such that
I4 - gll, =0 it is easy to see that 4 and g have the same
Bl-seminorm, and same Ramanujan coefficients. For -such and other
reasons, as in the study of Lebesque spaces Lq, we sometimes
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slur over the distinction between 8% (or BY) and: 8% (or BY) modulo
the "B-nupL® 4unctions (i.e. functions & such that uhnq = 0).

In this sense, we now state

(3.2) Theorem. For any ¢ =1, 87 and B? are complex Banach

spaces.

Sketch Proof. Since BY s closed in 8%, it is sufficient to
consider 2% here. This case can then be treated by an argument
which is analogous to the proof of Bohr and Fdlner [1] that the
classical Besicovitch almost periodic spaces are CompTete.

Now consider the following analogue of Fdlner's Cosarespondence
Theorem [3] connecting the classical Besicovitch almost periodic
spaces with the Lebesque spaces over the Bohr compactification of

the real Tine:

(3.3) Theorem. For g = 1, consider the Lebesque space Lq(v)
over the almost even compacti.fication W* of I There exists a
norm-preserving isomorphism *:Bq —>-Lq(u) such that §* = «*"1(§)
for every {(,ei)* . | :

Sketch Proof. Convergence in g% or 4 ~will be indicated by
the symbol f; . Given 4¢EBQ , there exists a sequence of even
functions g, such that 9, g>,é,. . Then (gn) is a Cauchy sequence

in 8%, and so inside L%(v) the corresponding functions

g*n = 'r*'-l_(gn) e C(IN*) satisfy
Ig*; - %1, Ulg% gdl'v [m(l,g* gjl.)] g - gl
; * * . %4y = - q * ;
since T (|gi %il ) lgi gJI . .Therefore (gn ) is a Cauchy
sequence. in Lq(v), and so it must have some Timit 4* say. Also, -

it hn.:; 4 vwhere\.hn is even, then the sequence (hﬁ) must similarly
have a limit A'equ(v); then one may verify that Hé*—,é% = 0.
Therefore, by reducing modulo "null" functions, one obtains a
well-defined linear map *: Bq—a-Lq(u) whose restriction to D* s
given by -t*7*_-  This map  can then be shown to be a norm-preserving

isomorphism.
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(3.4) Corollary. For q >1, the du‘a1 space of 8% s isomorphic
i . ) :

to BY , where q'= q/(q-1).

(3.5) Corollary. The space B? = L2?(v) 1is the Hilbert space

completion of the algebra »* of all uniformly almost even functions

on IN. The inner product on B? 1is given by

n(4+3) = [¢*5%dv .

i

<4,9 >

In order to prove the above statement about the inner product on
B2 one first needs the conclusion that, if 4<B! , then

m(§) = [¢*dv .
(3.6). Corollary. The functions

¢ = —L—c (rem)

ST Y 7)) ;
make up an orthonormal basis for the Hilbert space B? . . Hence:
(i) The Ramanujan expansion Z:F(n.)c}»t of every almost even (B?) |
function 4 1is. B?-convergent to 4 ;

(ii) if F,(n), F,(n) denote the Ramanujan vcoefficients of
b1,6, €B*  then (Parseval identity)

m(f,42) = = ¢(’L)F1(’L)F2‘(’L);
' - onelN

(ii1) every series = F(}L)cn such that = ¢(n)|F(n)|?<o is
rnelN. - nelN

the Ramanujan expansion of some 4 e B? (R{esz-Fischer theorem).

4. Pointwise ordinary convergence of e&pans'ionsv

We now associate with any arithmetical function £ on G the

Dirichlet series f(z) = = §la)aZ , where z is regarded as a
complex variable.  In particular, if ¢(a) = 1 [aeIN] then -

t(z) = t(z) is the Riemann zeta function.
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(4.1) Theorem. Let 4 and g denote arithmetical functions

such that 4(a) = ;{Y] g(d)[aeG], and g(z) is absolutely convergent
a

whenever Re z>a , for some a<1l. Then 4 1is almost even (B)
and its ~x-th Ramahujan coefficient is

1 . = -8
O3 m(4 c)L) 'beZIN gth) b

r|b

F(n) =

Further, in terms of ordinary convergence of complex numbers,

4(a) = ',LEWF(n)cn(a) ,

the right-hand series being absolutely convergent, for each
aelN.

The following functions provide examples to which Theorem 4.1 may be applied:

(i) The functions a(n) and S(n) such that a{(n) 1is the total
number of isomorphism classes of {inite abelian groups of order
n, and S{(n) is the total number of isomorphism classes of
semisimple finite nings of cardinal n;

(i1) the quotients d/dy and du/d, where we consider the div.ison
function d{(a) of a ew; ~and the unitary-divison function dy
such that dy(a) is the total number of unitary divisors of

a €N (i.e. divisors b with (b,a/b)=1) ;

(1ii) the function B on IN such that g(a) is the number of
squarne-gull divisors of aelN (i.e. divisors b such that

p?| b whenever a prime p|b);

(iv) the characteristic function q, of the set Wk of all hk-free
numbers (i.e. numbers b which are divisible by no k-th power

c’2 #1 in NN ); and lastly '

(v) the functions o(a)/a and ¢(a)/a, where

o(a) = =4 and ¢ 1is Euler's function, lead back to two of the

dla .
ondiginal trigonometrical expansions of Ramanujan referred to earlier.

More delicate number-theoretical theorems about Ramanujan coefficients

and the pointwise ordinary convergence of Ramanujan expansions for special

rr
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classes of arithmetical functions are given in the references quoted
in the introduction. It should however be mentioned that there also
exist examples of pointwise convergent Ramanujan expansions for
particular functions of interest, which do not fit within the previous
framework.

For example, in his original paper, Ramanujan [6] established
the following formulae for the divisor function d, and for the function
n(n) giving the number of lattice points (a,b) with

a?+b?=npn :-

® logk
(4.2) din) = - = —poc(n);
k=1 ;
k-1

(4.3) n(n) == é%l ég'_ T Cop-1(1)

The proofs of these formu]ae'are ad hoc ones depending on results

of roughly the same order of dffficu]ty as the Prime Number Theorem.

The fact that the formulae do not fit within the previous scheme may

be seen in the first case from the fact that d does not have a finite
asymptotic mean value, and so is certainly not almost even (B).

In the second case, although x(n) does have the mean-value m,

so that (4.3) has the same general appearance as the formulae considered
earlier, it turns out.that x(n) 1is nevertheless not even almost
periodic (B).

Perhaps, as in the general theory of trigonometrical series, there
exist "pathological® functions and expansions in the present arithmetical
setting which cannot readi]y be covered by a éystematic theory. In
any case, it remains to be seen whether or not thére'may be some deeper
conceptual explanation for such formulae as (4.2) and (4.3).

/<
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