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Fourier Eisenstein transform on the space of rational

binary quadratic forms
Fumihiro SATO (Rikkyo Univ.)
§ 0. 1Introduction

Put G = GL(2,Q) and T = GL(2,Z). Let X ©be the

set of nondegenerate rational symmetric matrices of size

2: X = {z € M2,Q); tm =z, det$'¢ 0}. The group G
acts on X via m]————»gmtg (z € X, g € G). We put

Xg = (T € X3 (—detav:)l/2 € K\Q}
for a quadratic field K and

Xg = (z € X; (-detn)!/? e @5,

Then X is decomposed into G-stable subsets as follows:

X = U X)) U X,.
K:quadratic K Q

Let  #(G,T) be the Hecke algebra of G with
respect to T Cand (NN (resp. TQ(F\XK), K = a
quadratic. field or @) the space of finite C-linear
combinations of characteristié functions of TI'-orbits in
X (resp; XK). The space  $(I'\X) becomes: an
#(G,I')Y-module and

FINX) = ( @ 9(r\xK)> e y(r\xg)
K:quadratic

is a diregt sum of sub #(G,I)-modules. Our aim is to
describe the %(G,fi-mbduie étructure of Ce(rN\xX)
explicitly. It is obvious that we need fo consider the
sub #(G,T)-modules Q(F\XK)‘(K = a quadratic field or Q.

We can see that each V(F\XK) is a free X(G,I')-module of
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infinite rank. To see this, we introduce a Kkind of
integral transform, which we call the Fourier Eisenstein
transform, defined by taking the zeta functions of binary
quadratic forms as a Kkernel function. Here the =zeta
functions of binary quédratic forms’play a similar role
to that of-zonal-spherical functioné in the theory of the
Satake transform of p-adic groups ([S1], [M11).

In this note we consider only the case K = Q and
at the end of the note we shall give a brief ihdication
how the result should be modified in the case of
quadratic fields as well as a discussion on a possible
generalization to'higher dimensional symmétric spaces.

Finally we note that an analogous problem has been
investigated by Y.Hirbﬂaka in [Hl for the Vspace of
nondegenerate symmetric matrices over a p-adic number.

field.

§ 1. Fourier Eisenstein transform

1.1. For an g € XQ we denote by <zl[ul = tumu
u é Q2) the binary quadratic form corresponding to the

matrix . . Put
-8

g "3 2
Zg (@) = S sgn(xlul)® |zrull ldet z|
ueZz
zlU1=0 ;
(s = (s,,8,) € €*, g = 0,1) and o
_ -8 cos(ns,/2)Z (m)]
. 1 ’ A | 0,8 "
E () = E () =n s, . : ’ ,
X 51’*2 | 1 [S1n(n81/2)21’8(z)
where A = (Al,xz) is a variable which relates with 8
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by _ .
8, = 12 - 11 + 1/2
32 = - 12 + 1/2.
Fundamental properties of the zeta function ‘ZS g(¥) can,
be summarized as follows:
Proposition 1. (i) Z8 NED is  absolutely
convergent for Re Sl > 1.
(ii) VA (x) has an analytic continuation to a

€,s8
meromorphic function of 8 in c?.

(iii) The following functional equation holds for any <z
€ XQ:

o _ {1 0).a
g, *1($) = (o _1) By @)

2’ 1°72
1;2; Let ﬂ(d,r) be the Hecke algebra of G with
respect to TI. The underlying vector’space of #(G,I"
is by definition the space of all finite C-linear
combinations of’chéracteristic functions of double cosets
in TI\G/T. Denote by [g] (g € ) the charactefisfié
function of the double coset TIgrl. The multiplication
of [91] and [92] :in K(C,f) ‘ié defined as follows:
Decompose the doublé coset ngr into léft coSets‘
'ki :
ngr = '9 gijr (i = 1,2)
J=1
and put

m(g,,9,5kR) = #{(J,,7,); 97j1gzjzr = kY (h € G).
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Then

[91]'[92] = z m(gl,gz;h)[h].
FTRCErNG/T

Let Cw(F\XQ) be the space of all F-invariant
C-valued functions on XQ and V(F\XQ) its subspace of
functioné which vanish outside some finite union of
F-orbits in XQ. For & € Cm(F\XQ). and g € G, we
define the action of [g] on & by

-1t -1

k
(lglxd)(x) = 2 ®(g. z°g. ),
. i i
i=1
k .
where Tglr = U gir (disjoint union). Then it is easy
i=1

to see that Cm(F\XQ) becomes an #(G,T)-module and
Q(F\XQ) is its X(G,T)-submodule.
t

1.3. Since ZS,S( Yry) = Ze’s(m) for any vy € I,

we may regard Z8 g(¥) as a function in Cé(F\XQ).

Proposition 2. ‘There erists a C-algebra

homomorphism @, of ®W,I' into € satisfying
(f*Ze’S}(m) ='wx(f?'ze,s($)
for all f € RWG,IN. For any prime number p,
s -2X -2
10 _ 2 1 2
mk([(o p)]) = p~(p +p )
and for any mon-zero rational number a,
3-2(x,+x.)
a o _ 1 72
@x([(o a]]) = lal .
Denote by - R the restricted tensor product
—211 —2A2 12(11+12)

® ClIp + p » P ‘ 1, where p runs through
ol . .
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all ratidnal primes. Thenvit is known that mi gives
rise to an algebra isomorphism of #(G,') onto ®R.
For an T € XQ let Ghm (€ 9(F\XQ)) be the‘_

characteristic function of TI'-orbit containing <.

Definition. For a b = 2 ¢, ehm . € Q(F\XQ)
i

(mi € XQ) we call

F8(¢)(k) = E c; ZS,S($i) (g = 0,1)

the Fourier Eisenstein transform of ®.

Proposition 3.
(i) F8<f*¢) = wl(f)~F8(®) (f € G, TH, & € Q(F\XQ)).
(ii) FS(QI) = F8(¢2) if and only if ¢1 = mz
P, € 9(F\XG)).

1.4. ,For positive’rational numbers r and q, we

denote by ch the characteristic function of the

q,r
M-orbit containing r~(? é). Let N be a positive

integér. We define an eqﬁivalence’relation on (Z/ W™
as follows: '
TNy &S 2T=y or y‘l (z, ¥y € (Z/ NSy,

Then the set

reQ, r>o0, Nel, N 21
{ehy,y o3 m=0, it N =1, }
m€E Z/N)HI~, if N =2

forms a C-basis of Q(F\XQ).
For a primitive Dirichletz character X with

conductor fx, we define a linear mapping
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TX:Q(F\XQ) —— y(F\XQ)

by‘
1 b x (o) ch
om/N,r’

= @(f N~
X X
ae(l/(fo))

Tx(ehm/N,r)

where @( ) stands for the Euler function.

Proposition 4.

= 0 unless fx divides N.

(i) TX(Chm/N,r)
(ii) Tx = TE and TxoTx = Tx.

For any primitive Dirichlet characters k and

(iii)
= 0 unless Xx = ¢ or V.

TXOTW = Tonx =
with the action

commutes of WG, T on

(iv) Tx

Q(F\XQ).

For a square free positive integer m, we put

y(F\XQ)X’m = %(G,F)'Tx(ehl/fx’m).

It is obvious that Q(F\XQ)X m ='9(F\XQ)§ -

For a primitive Dirichlet character

Theorem. (i)
x, Set Sx = 0 or 1 according as x(-1) =1 or -1.

For o € Q(F\Xg)x’m, set
8,72 -8, A %, _
Fe.n® = ng(m)~2 fp m @O /LCs ), X0L(8,,X),
where L(8,x) 1is the Dirichlet L—functioﬁ‘ Then FX a<®’

is in R and the mapping

Fx,m:V(F\XQ)X’m — R



i3 a linear isomorphism and the following diagram 1is

commutative:
%
£WG,T) % g(r\XQ)x,m ——— 9(F\XQ)X’m
o X Fxon l = Feom l =
R x R nultiplication y R

Imn particular 9(F\XQ)x,m i8 a free %(G,F)—moduLe’ of
rank 1.

(ii) Let ¥ be the set of all Dirichlet characters.
Then as #(G,I')-modules, we have the decomposition

P(\K) = @ ® St
a x€X/~ m:square free Q'x,m

where the equivalence relation ~ on ¥ is defined by
X~y & x=¢ or V.

Thus Q(F\XQ)‘ is8 a frée #(G,I)-module of infinite rank.

Remark. For a ¢ € Q(F\XQ)x?m, we ha?e F8(¢) = 0,

i # .
if ¢ 8x

The proof is based on the following explicit

calculation of the Fourier Eisenstein transform: namely

the zeta functions of binary quadratic forms.

Proposition 5. For a positive rational number r, a

positive integer N and an integer m with (N,m) = 1,
we have |
2-g, =-g.-28, -3
_ 1 1 2 1
Fs(chm/N,r)(A) = 2 r N
_, .28, | _
X X om ~ M z X(ML(s,,x)L(8;,X).
MIN x:mod M

x(-1>=(-1)

201
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§ 2. Remarks

2.1. For a quadratic field K, we can define a
Fourier Eisenstein transform of Q(F\XK) by using zeta
functions of binary quadratic forms (irreducible over Q).
An analogue of the intertwining operator Tx is
obtained from characters of the class groups of orders of
K and we can get a structure theorem of Q(F\XK) guite
similar to the theorem above.

If K 1is an imaginafy quadratic field, Mautner [M2]
obtained essentially the same result, though he employed
the formulation in terms of PGL(2) rather than GL(2).
However, since he reduced the things to the local case,
the role played by the zeta functionsvof binary quadratic

“forms is not clear in his work.

2.2. It is likely that the result of this paper can
be generalized to higher dimensionai {(not necessarily
Riemannian) reductive symmetric spaces defined ovef Q.
In a general case a kernel function of the Fourier
Eisensﬁein transform will be Eisenstein series of the
type introduced in [S3]1 <(see also [S2]1, [S541). " In
particular, if Eisehstein series has an Euler product
expansion; then the theory of the Fourier Eisenstein
transform wiil be a synthesis of local theories (theory
of spherical functions onv symmetric spéces over p-adic

number fields). Such examples are supplied by



(i) G = GL2n), X

GL(2n)/Sp(n)

the space of nondegenerate
alternating forms.

(i) 6 =Gy x Gy, X =Gy xG/6G) =Gy,

where GO isva simply connected Chevalley group over Q.
The corresponding local theory is given‘by [HS]1 for the
first example and by the theory of zonal sphericasl
functions on p-adic reductive groups ([S1]1, [M1l) for the

second example.
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