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" Existence of equivariant h—cobordisms

with given Whitehead torsions

Ak P A AT (Chiguho Acke)

In the present paper, we prove an equivariant
version of the existence theorem of an h-cobordism with
a given torsion. Let G be a Lie group acting properly
and smoothly on smooth manifolds W and M "which is a
submanifold of W, and we suppose that M,/G and VW/G
are compact. We note that G, M and V¥ are possibly

non-compact.

Theorem 1 (G-Existence Theorem). Let G be a Lie

group and M be a G-manifold as above. Suppose that M
satisfies the conditions (1) and (2.
(1> (Codimension 2 3 condition).

1f MHi, D MHig, then

dim MHi, - dim Hi, nG-MHjgy > 3

for any pair of components MHi, and MHjg.

(2) (Higher dimension condition),

dim Mj o /WgoH; 2 5 for any components MHi, .
Then for each ¢ € WhgM), there exists a
G-h—cobordism (W;M,M’) such that =« (W,M = c.

Thé notlons appeared in above theorem will be

defined below in §2 and § 3.



In (58) S.Illman introduced a general equivariant
simple homotopy theory when G is a compact Lie group.
Furthermore he defined the equivariant Whitehead group

Who(X) of a finite G-CW complex X and the equivariant
Whitehead torsion 1t (f) € Whg®X) of a G-homotopy

equivalence f +: X > Y between finite G-CW complexes.
The group Whg(X) is defined in a geometric way in
analogy with the geometric definition of the ordinary
Whitehead group. In (4) H.Hauschild gave an algebraic
description of Whg (XD, To prove thebexistence theorem
we take advantage of thiis method that it gives the chain
complexes from which the torsion invariants are to be
computed, see § 4. By the analogous‘method, S. Illman
proved that equivariant Whitehead torsion is a
combinatorial invariant in (6). This is impotaﬁt to
know since equivariant Whitehead torsion is not a
topological invariant.

In (1), Araki and kawakubo proved an equivariant
version of the s—cobordism theorem when G is a compact
Lie group and M is a compact G-manifold.

Unfortunately the G—s—cobordism theorem does not hold in
general, so they need to add some assumptions for the
theorem. These results hold under our situation, and we
can replace these assumptions with the conditions (1)
and (2) above in the Theorem 1. It follows from the G-s
—cobordism theorem and Theorem 1 that the G—h—éobordism
is unique for a given Whitehead torsion. So we can
classify G-h—-cobordisms in terms of the equivariant

Whitehead torsions.
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§ 2. Preliminaries

We denote by Gy the isotropy group of G at
XEM, i.e., Gy = (g€G|lgx =x1}. For any isotropy
group Gx, we denote by (Gx) the conjugacy. class of
Gy in G, and we call it type of x. Since M/G is
compact, there is a only finite number of isotropy
types, as we now prove:

We prove by induction on the dimention of M.
Suppose that dim M = 0, there is a only finite number
of isotropy types, since a compact O-dimensional
manifold M/G <consists of finite number of points.
Next we assume that it holds for the case where the
number of the dimension of M is less than k. Let M
be an arbitrary smooth G-manifold with dimension k
such that M/G is compact. It follows from the slice
theorem that an open tubular neighborhood of any orbit
space is G-diffeomorphic to G XSy, where Sy is a
slice of x. Then we have an open covering of M ;

{ GX(ySx ' xe¢ M» and an open covering of M/G;
»(( G X, Sx )7 G ) xeM Since M/G is compact we can

choose a finite number of 'x € M such that

{C G XG5Sy /G ) is also an open covering of M/G.



So it is enough to show that there is an only finite
number of isotropy types appearing in G><GXSX. We now
dencte

v = ‘GXGXSX.
The isotropy group of G at (g,v) &€ » is of form as
follows,

Geg,vy = 8 Gdy g™
Since Gy acts Sy linearly, we have that

Gy = Gty
for any t@&F® e R , i. e.,

Geg,vd = Gqg, tvd

for any t&E0) e R . As is well known, there is a G-
invariant Riemannian metric on v, see (8). ILet SCw»)
be a unit sphere bundle. Obviously we have that

{ type appearing in 9+ )
= { type appearing in S(»)> } U { Gy }.
SCv») is a k-1 dimensional smooth G-manifold. Thus we
have shown that there is a finite number of isotropy
types appearing in S(#%). It follows the result.
Then we denote
(G) | xeM} = {(Hp, Hod, -+, (HdY.
It is ﬁossible to arrange {((H} in such an order that
H{d> D (Hj) implies i<j, where (H{d) > (Hj) means
that a conjugate of Hj is contained in Hj.
Next we recall the definition of so called the
Kawakubo filtration of (G,M), M =My D Mg D =+ DMy
in (2), which consists of G-manifolds with corners such

that



{(Gy) | x €M} ={CH, Hiywpd, =, Y
as follows. We may identify the equivarianf norﬁal
bundle vq1 of MCHD g My with an open tubular
neighborhood of M{) in M; and impose a G-invariant
Riemannian metric on %1, see (6). Concerning the
metric on v 1, we set

Mg = M- (1),
where v 1Ce)> stands for the open disk bundle of
radius ¢ in % 41. Note that

{(Gy) | xE€E Mo} = ((Hod), (H3), -+, (Hp)).
Suppose that we get a filtration M = My D> Mo > -+ DM
of M such that |

(G | xEMP=tHP, Hysp), -, HY.
We may identify the equivariant normal bundle v ; of
MO in M; with an open tubular neighborhood of
M;HD in M; and impose a G-invariant Riemannian
metric on v - Concerning the metric on v i, we set

Mi+1 = My— % ; (D).
Note that

{(Gy | x€Mj+1) = (Hispd, Hysd, - Hd) .
This completes the inductive construction.

Putting Xj; = G\M;, we have a filtration

X =X12X9D =+ DXy of X.

Let H; be an isotropy group appearing in M. Ve

denote
MHI> = (xeM |Gy = Hi )
MAHD = xeM| (G = HpY = ¢-M<Hi>
‘MH = { xeM|hx = x for any h€&Hj ).



Let MHi= 4%Lﬂﬁk be the decompositions of MHt into
connected components.. We denote by WHi the quotient
group of the normalizer of H; in G by H;. The WH;
-—action on MHU induces the WHi~action on the set of
connected compoﬁents of MHi, Taking WH; orbits of
the induced action, we get a decomposition
M = J;LWHyMHE(;
as a tqpological sum of WH;-subspaces, where MHQZ’S
are connected components of MHi. We denote
WoH; = (wewH; | w-Mli, c MR
which is a closed subgroup of WHj. Then we put
Mj o = M;NM<Hi>
Xio = X;NXHO  where xHD | = MHED g,
It is easy to see that
xHD = M<Hl>a /W Hy,
Xia = Mjq /VWoHj.
We now replace M by W, and consider two conditions.
(1>’ (Codimension > 3 condition).
1f wHig > wHig, then
dim wHi, - dim wHi, NG -wHjgy > 3
for any pair of components WHQx‘and WHﬁg‘
(2)' (Higher dimension condition).
dim wj(x//wtxHi 2 6 fqr/any components WHQZ.
Note that Hj is a maximal isotropy group appearing in
V. If W satisfies the conditions (1)’ and (2)’, the
G—s—cobordism theorem holds. Furthermore an equivariant
version of the s—cobordism theorem holds under our

situations that G  is a Lie group acting properly and



smoothly on smooth manifolds M and W, -and that M/G
and W,/ G  are compact.

(WM, M is called a smooth G-h—-cobordism, if W

1

is a d—manifold with boundary W = MIM Jd{disjoint
union) and the inclusion maps

i: M > W and i’: M - W
are G-homotopy equivalences. Then we consider other

conditions.
(1) (Codimension 2 3.condition).
1f MHi, o MHig, then
dim MHL, - dim oHiy, nc-Miigy 2 3
for any pair of cbmponents MHﬂl and MHJB.

(2> ((Higher dimension condition).

dim Mj o /WoH; 2 5 for any components MHL .

It should be noted that a G—-h—cobordism (Wi;M, M

satisfies the conditions (1)’ and (2)* if and only if it

satisfies the conditions (1) and (2).

§ 3. Equivariant Whitehead torsions

In this section we first define the equivariant

Whitehead group Whg M for a smooth G—manifold M and

try to decompose WhgM), refer to (3).
For a compact Lie subgroup H of G, (G/H xDn
is a G—space together with'é proper G—action.

G/7H) XD is called an n=G-cell, and is called

(isotropy) type of the n-G-cell KL/}iX)D“; Here DN



is a unit n—disk of RM™, and G -acts DU trivialy.
By a finite relative G-CW complex (V,M>, we shall mean
a G—space togéther with a proper G—action such that V
is obtained from a smooth G-manifold M by attaching a
finite number of G-cells. We now consider the set,’
Ag D = (W, M | (V,M is a finite relative G-CW
complex, and M is a G~deformation
retract of V }.
Let (V{,M> and (Vg,M> be elements of AgO. If
there is a formal G-deformation from V; to V2\ we
write legvz. This is clearly an equivalence relation
and we let T (V, M denote the equivalence class of
(V,M). An addition of equivalence classes is defined by
setting
T (Vi,M) + 1 (Vo,M) = ¢ (VILAVZ' M
where VILQVZ_ is the disjoint union of V; and Vg
identified by the identity map on M.

The equivariant Whitehead group for a smooth G-
manifold M is defined to be the set of equivalence
classes with the given addition and is denoted Whg M)}

Whg M) = Ag D /~

and a element <t (V,M) of Whg(M) is called the
Whitehead G—torsion of V, M.

If f : My = Mg is a G-map, we define

fg ¢ WhgMpd = Whg (M9)
. w W
Tt (V, M) = ¢ (VL4M2,M2).

It is known that fy = g if f, g : My = Mo are G-

homotopic, refer to (3). Let r : V - M be the G-



retraction and M. be the mapping cylinder of r. Ve
put

M, = M/~
where ~ means an equivalence relation that MXTI and
M ?gentified by the projecﬁion map p MXI —= M
Then we have

-t (V,MpD =g ot MV,
refer to (33. So WhgO is an abelian group.

Now we review an algebraic decompogition,of
Whg M. We have a Lie group I'j, for each WHi,,
satisfying the following short exact sequence;

1 > =myMHE> > Ty, > W oH; - 1.

Then we have that ’ ‘

Whe M = 1L Whe M, (Hp))
(H;)

g(Hi)WhWHl.(MHF, {e}) (see (4))
;(#Ji_)’ , VhwH; CWH; MHI, | (e}

;G#). o Whig He MHi, |, (e})

;(}il)’ v T MM L te))
E(ﬂ.il),avzhélg(nocria>), (see (1))

where
Whg M, (Hpd) = (¢« (V,M)E.WhG(M)I GO=CMH

for any x&€V-M}.



§4. Proof of G-Existence theorem

At first we will show that

L wn (z (T ;.0 = 11 wh Cmy Xy o)),
H, o alg 0 ia HpD ) alsg 1 ia
Lemma 2. If M satisfies the codimension > 3

condition (1) above, then there is a natural
isomorphism,

3 w1 (Xjg) @ wolT g,

Proof. It follows from the codimension 2 3
condition (1), and definition of Mj , that
ryMHL ) = 2  MSHT> ) = =g My 0.
Since T j, acts freely on the universal covering space
Mi, of Mj, and since WyH; acts freely on Mj 4,
we have a fibration |

H > Mie @ Tia

to
\
MHa D Mjgq © Vel
{
Xia

From tﬁe homotopy exact sequence
S M) 2 (T \Hj ) 2T a) 2 mglM; 0
I | 1 | n
(1} w1 X o) {0}

follows the result.

10



Thus we can write that g=. 1L . t 4, for
' ‘ : HP, '

Tia € Whaleglzm®&jqed).
Néw, each ‘Mi(x ig'a pfincfpal. W(xHi—bundle over

Xi - Let V be a W, H;-CW.complex such that
T (Vu My o) € Why Hy Mj 4. {ed). Note that a fixed point
free formal W(lHi—deformatioﬁ of -the total space
(V,Mj o) induces a unique formal deformation of
VW Hy, My /WeHDD = (K, Xy 4> and vice versa. Tt
"follows that the pfojection'mép Mi o = Xj a..induces
an isomorphism

¢ :WhyoHMj o+ {e3) = Wh (g (Xj 40 = Whalg(m 1 &Xj g2

Then we have

Lemma 3. The inclusion map n My bﬂha
induces an isomorphism
7 x: WhyoHy Mi o - {e3) = Why, p M, (e))

for any o and i, making the following diagram commute.

M % .
WhyoHy M o » (€))7 Why_ . ofi, , (e))
l ¢ 1 ¢

Whapg(m g (Xj o)) B Whpyg(mo(T g2

Here Q x is an isomorphism induced by the isomorphism
8 obtained in Lemma 2 and ¢ is appeared in

algebraic decomposition, in. (2).

Proof. For any t (V,Mj o) € VWhy,y; Mj o, (e}), the

image - ¢ C7 (V,M{ 4)) is nothing but the torsion T (C)

11



b -
to

of the chain complex C = (Cj};

C; = HRIUK; o, RITTUR; o>

I

HiC UL = (X 40 XEdyp, 1l m{(X;4) X3EID
=1, . m f('-:l,"',m (

Z((n X)) ®fedy,elg, = ,ed
where K is the universal covering of K, K  is the
underlying topological space of the j—skeleton of K,
EJ is a j—cell of K - ﬁi(x’ and m is the number of j-—
cells which are contained in K = X; 4.

On- the other hand
mxCr (VM o)) = « (VUM ML) e why y (g, te)),
Hence ¢ 17x(Ct (V,M; 42> is the torsion t (C’) of
the chain complex -C* = {C’

it

c'; = HyWJudHi, , ¥i-ly§Hi,)

=Hj( 1L Fiaxgjk’k=l"u" I‘iaxaifik))

k:l’..-,m , ", m

zuzo(ri(,)u&(;il,-‘--,Ea‘m},

where Vj‘ is the underlying topolog}cal space of the
WoHj—i-skeleton of V, EJ is a j-cell of VJUBMH,
which is a lift of Ej, and m is the number of
WoHj—j-cells which are contained in V = Mj,, see (2).

It suffices to prove that Oxt (C) = 7 (C’). Put

"

- CTy Hj(VJUMia, Vi—luM; oo

Il

HyC L Ty XEJy, LL mriaxaﬁdkn

k=1, ==, m k=1, -

I

Z(mg(T o)) ® iy, —, 8.
Let G «,0 be the component of 'y« including the
unit element. Since V/'Fi o0 is a covering space of

K and n1(V/ T ;40 s trivial, we may regard R as

12



the quotient space of V by the action of I e,0 Let
q : V> K be the quotient map. Then we may.regard q
as a fiber preserving map between the I ; ,-bundle V¥
and the n 1 (X5 ¢ )-bundle R which have the same base
space K._ The resfriction of q to Mia is a fiber
prese‘rving map between the sub I‘i'a—bundle Miva and
the sub = (X 4)-bundle gi o SO we have the following_
commutative diagram between two exact sequenhces.

- w1 M) 2 m XD 3 7 o(T o) -

{ I L f

5 21 &) 2 w1 ) 125 mg(m1Xjg)) =

Thus f:z2qg(l 42 2 zmoglm X g2)=xm1W®&;4) is the
isomorphism o~ L. The action of 71®Xia) on X can
be identified that of mg(Iljg) via the‘homomorphism

Fie 7 Fia,O\‘Tiaz'v’“O(Fia)
which is induced by é. So the quotient map ¢q induces
a Z(mg(I'j g))~homomorphism- qy : C"j5 = C;, if we
vregard C; as a Z(mg(T j 4))-module via £f. On the
other hand we have an excision isomorphism |
ig C"j - C’j induced by the inclusion map
VUM; o ™ VUubHi, , since

(Vi UMy (Wi~ UM o, »

=V Uﬁﬂia}é{<vi“1) U dHte, .

We may identify two Z(=mg(I'j 4))-modules C’j; and
C"; by iﬁ 

We now put t (C) = (ajp) € Whyjg(m|(Xj,4)) where

alk€Z(m 1 (Xj42). Let T and 3 be isomorphisms

13



between the integral group rings induced by { and 2,
respectively, Then .
G (o (V,Mj g0) = (I 1cape))

= (SYaik)J € Whyjglmg(T o).

This completes the proof of Lemma 3. a

We now construct an (n+tl1)-dimensional smooth G-
manifpld ¥ with t (W,M) = ¢, where dim M = n,. From
the higher dimension cdndition‘(2), we have an
h—cobordism (Y; , ;X5 4) with T Vi asXjg? T T4
Yy o is obtained from X;, XI by attaching handles of
indices 2 and 3 -to X; 4, X {1}, see (8, where
I = 0,1, Let

ria * Yia = Xjq
be a smooth retraction. We have an induced smooth
bundle r*(G:Mj,). By the projection

i ° r*(G°Mi ) 2 G-My .,
we have again an induced bundle T i a”‘(v ia (172)),

where Y i a/2> is a closed tubular neighborhood of

GMj,. Note that =z 4% (% ;4 (1/2)) is an (+1)-

dimensional smooth G—-manifold. Let
Irig' = Trjg |Xjqe XI
ig T Tig !ria,*«}Mia)'

Then we have that

rio @G M) D rjg ¥G M) =GMyp, XI
Tig F(Y i (1720 D niq'*wiau/z))
v g (172) X1

and a commutative diagram with fiber bundles in the

14



vertical:
vig (1/72) « 7y a*(v i (172)) D = a'*("ja (172

1 ! .
T 3 .
G M o S SRR (RS VIR D rye ¥FG My
{ \J
ri o
Xi« - Yia

By the definition of the Kawakubo filtration, we have

M = U » @D) = 1l » . a1y J/ ~
HpD, ot Hp), o
MXI = vy, (DXIT =l = %y, (1)) /~X]T
HPD, et @ GEP L
and thus

W=l (a0 v g (/20U "% Cw i (1Y /~ X1
Hp, @

(see figure 1).

TT.‘: ( Die (—2.')>
V*(G'M[Q)

_x

ni:(ub‘w('yf)) Uﬂ"n‘: ( Lo (D) )

figure 1.
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By smoothing the corners, we may assume W to be
smoo th.
Finally we will show that T (W, M) = ¢. ¥We put

W =(H'7L<ria*(c-mja>u Big ¥ (v (D) /~XI.
i), e

Since v ;o4 (1/72) <collapses to G-M;, for all i and

a, (W,M. collapses to W', M), (compare figure 2).

o (6-Mia)

r=xy -~ 7
| = &
| 1
l\ /l
- - T + . + - -t
[ ! ' '
| ] 1 |
I 1 ! !
- - - i N g 1 e -
A
G-Mio

¥ p)y—

IR mliniadiie slalilies |
) -|
! [
| i
] 1]
~— = t---q9 st --=- -
! ) r ]
! ] ) |
l§ { 1 '
— d 1
G-Mio _ GMie
Tia (Vi (4)) UTia (Liall)) Fio (6-Mis) UTT ¥ (Lia(h)
Figure 2.
Thus we have
By Lemma 2, we get
c WM = £ 5o
(H{), « '©
This completes the proof of Theorem 1. (]

i6



In the ‘same manner as in the non equivariant case,

we can prove

Theorem 4 (G-Uniqueness Theorem). Let WysM, M

and (Wo;M,Mo) be two G-h—-cobordisms which satisfy the
conditions (1) and (2) above. If = (W, M) = ¢ (Mg, M),
then we have a G—-diffeomorphism

Wi = Wo rel M.

So we can classify G-h—cobordisms in terms of the

equivariant Whitehead torsions.
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