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Keview of 4., Hatcher and J. wagoner's paper
'Feeudo-1sotopies of Compact Manifolds'!
( Part 1 )

.
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marina Tienkol:

As this paper by L. Hatcher and J. wagoner, published in 1973
(astérisque 6, Soc. Waih. de lrance), seems to be little known, we
felt that it might be of some significance to give a rough summary
of the paper at the symposium on Whiteheau groups and transformation

groups.

What is the prohlem to be solved in lialcher-viagoner's paper?

Let M be a smooth compact manifold with boundary 9M and dim i = n.

i omap It (11,OM) xI ———> (MJol) X I is called a pseudo-iesotopy of

(K/oM), if it satisfies the following lwo conditions
1. f is a diffeomorphism
2. £|Hx 0 = id : NXC——= MxO and
fl9 MXI : DMxI ——= MxI is an isolopy
Tet ¥ = I'(M/AM) denote the group of pscudo-isotopies of (M,/9M). The
rultiplication in P is the composition of maps and P is given the
C” topology.

The problem is to compute7YO(P).

The simply connected case

1f M is simply connected, we have the following result.

Theorem: If dim 1'25,9M =¢ and W%(M) = 0 then ﬂ“o(r) =

This Theorem was proven by Jean Cerf in his paper 'la otratification

- R . . 4 . /7 .
Laturelle des sspacces de Lonctions Differentisbles Lieelles et le



1héoreme de la Pseudo-Isotopie' (1970, 1LES Nr. 39).

The non simply conmected case

Latcher-Yiagoner try Lo solve the non simply connected case. Lhey
show that in this case 7YO(P) can be relalea to algebraic L-theory.

The exact statement is as follows.

Theorem: If n2 7 then it exists a surjective homomorphisi

2: ™ O(iﬁ‘)-—_——_>wh2(~1r11»1 )

Vhat is Wh,. ?
Z

Jiet R denote an associative ring with 1. Then the Steinberg group St

of R is the group with the following presentation:

the generators of St(R) are symbols xij(r), where 1€ 1,j < o0
i# ]
re R

these generators are subject Lo the following lhree relations

v )] a = X.. S
1. Aij(r, Xij( ) YlJ(r+ )

]

2. commutator [xij(r), xkl(s):] 1 if j# kend 1 #1

3. commutator [?ij(r)’ le(sgl = xil(rs) if 1+ 1
Let G1(R) = 1im GL (n,R), where GL(n,k) is the group of nxn invertib
o0
matrices over R, and lel L(R) denote the subgroup of GiL(k) generated

bty the elementary matrices

Then we gel a canonical surjective homomorphism

mw : 5t(R)————= (k)

XlJ(I’)}_“—‘} elJ(r)
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KZ(R) is defined to be the kernel of 7.
_ def
K.(R) = ker o™
1t is not too difficult to show that KerW is precisely the centler
of S5t(KR). "hus EK,(K) is an abelian group. 1f K is a group ring,
<
R = z[G] , then we can define a subgroup wiic) of 5t(R) as follows:
W(iG) is the suwbgroup generated by the words
| ¥ T = s i ! —0‘)_1-\ b i v 1L I ¢ ) 1 3
wij(—g) = Xij( £) in(+b ) AijL,é), with g€ G and i # j.

Finally Ehg(G) is defined to be
Whe (G) = }{‘Z(OD'D/kt:z(:’,[(-:])r\\v(‘i(}) .

Cerf's functional approach to pseudo-isotopies

Eatcher-wzgoner make use of Jerf's functional approach. to the
psevdo-isotopy problem, '
let F = { C® function f: Mx 1l —s1 | £(Mx0) = ¢, f(x1) = 1, { is
CAhe projection on@ MxI and f has no critical points near
I.x0 and 1"-?-)(1}_
The base point in‘F is the standard projection p: MxI——m= 1 .
By Jjoining each function f in ¥ linearly to the base point p
f+ t(p -f) , 0£t&1 ,
we see Lhat F is contractible.
lLet & = {:f:]“X1—~+>I lf has no critical points) C F .
Irom the homotopy exact sequence of the pair (¥,1) we get
m(l‘,u,p)_;;?’o(m .
Consider the following map T between P ana B
W P = .
fi—-——————>p°f—1
fAs I is a diffeomorphisw this map is well defined. The inverse

imapge of the standard projection p under this map is



ﬂ'-1(p) = the space of isotopies of MxI which-are the
‘identity on X0

qr—j(p) is contractible.

Lemma : 3 5: E————= P such that fes = idE

(VY rex pes(£)™ = £ )

Idea of the proof:

Fix a Riemannian metriCéLon MXI. Let I be an element of - ana
think of the vector field graquf on MxI. as f has no critical
pointé, the solution curves of this vector field run from MxO
to MY1. For every xeM, s(f) is’ﬁefined to wap the interval {xxI
to the solution curve of gra%&f starting at (x,0) in the following

Way .

s(1)
? (x,1t) s(f) maps (x,t) to

y, with f(y) = t

]

Irom this Lemra we get « homeomorphism belwcen I and.ﬂ’1(p)>(E.

(0] (‘.’} (X ’ O\)\/

=~ —

P = 7 (p)XE

G > (s(pe™")7de, pu™h)
s(f)el «= | (B, 1)

Thus we have the rollowing bijections

T_(B) U () TV, (F,5,0) -
Iusﬁlxlﬁ is & group, these bijections induce a group structure on
(&) and T (1,&,p).

This is Cerf's functional approach to the pseudo-isotopy problem.
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Replacing the pair (t,o) by @ homotopy equivalent pair (F,E)

o construct the desired homomorphjsmzzlz'71(h,m,p)———> Mh?(ﬁHM)
it is not enough lto consider only smoolh functions belween MXI
and I. The pair (¥,E) is replaced by a homotopy equivalent pair

Fa YR L o "
(F,E), where F, E are defined to be

Pay
E,

]

(7+1,4) |feF,éLis a Kiemannian metric on MxI, y is a vector
field on MXI which is gradient like for f with respect to[H§
N .

E

]

{(z,f,éd |IEE,dLis a Riemannian metric on MXI, Zis a vector
field on MxXI which is gradient like for f with respect tol&&
Kemark: The vector Iieldz’is gradient like for f with respect to
the metriclLif it satisfies the following two conditions:
1. I p is a criticel point of [ thena nbd U of p such that ¥ xeU
n(x) = gradﬂf(x) |
( This iwplies that Lhe vector field vanishes ot the critical
point p )
co IT x is wolb 2o critica] point ol f wnd if ?X: (—666)——f—€> IxI
ie & solntion curve of Llhe vector field‘z ¥
through x, then we have a(fovx) (0)>0
( This means that the solutizn curve does not run inside the -
level surface of f containing x, but is transverse to the level

suriace containing x)

I{ we {1ix a Kiemannian metriCﬂ,on.MxI, we get a homotopy equivalence

(l‘vL,p>—]j'L% (i“,lﬂ,/}}) ’ % = (grad/u,p,p,(u,)
£} = (gradzu,,i‘,f,/u.)

. A A . . .
( sZvery triple (1,1}{&) in (F,kE) is joined to (ngU/hf,f,/u) in

1wo sleps:

(n ,1,m) = (prad.f, T, u)  grada t. ) )
- Y& (Lbradﬂf ! (1—L>Z’fyfdﬂ', Qﬁ— (SLQMﬂliyjj;igg /h’ ’Zuo
0L t £ where M= b +(1-1)
04 1 £ 1 . ¢
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rwo concepts which play a central role in the construction of

5w, (F,E,D) ——— Wny (M)

Let {(Lt’ft’(%)} 02141 represent an element in ﬁ}(ﬁ,@,%).

1. we look at the functions {ft} 0Lt and define the

graphic of {f 3 = \\,/ critical values of f C IxI
t t
tefo, T

2. For each t info,1]we look at the critical points or I, and

at the vector field Qt‘ Let p be a critical point or T,. Then
' the stable manifold W(p) and the unstable manifold WY(p) of p

are aerinea as follows:
W(p) def {xeMxl |the solution curve oi"f&t passing through x
‘runs into' pj
W*(p) def {XEMXI lthe solution curve oIZt passing through x
'comes out of! pj
( 'runs into' p ('comes out of' p) means the following. II?DX
is a solution curve ot 7t passing through % then S}}gfx(s) =P
(glimp,(s) = p ))

Bxample of crucial importance for the construction of

A AN A
23:571(E,E,p)—————e> Wh,(m,M)

Let m{n+1 be the kuclidean space with the standard Riemannian
metric. Consider the one-parameter family

£ : R4 R, (-12t41)
(X1,-....,Xn+1)|-—9 -X1

-xz- x2+ 2 + + tx
2 @00 0™ i Xi"'1 -oo.xn xn+1 n+1

ana let Zt = gradft.
If we omit the first n coordinates this family has the folliowing

shape:
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n+1

1< 0 t =0

n+1

The origin (0,...,0)

is a degenerate
critical point.
In this case the
origin is callea
birth-point. (If

we change the
direction of the
parameter t, the
origin is called
death-point.)

The graphic of ft :

a b n+1

£>Q
a:(o,...,o,ffg)

b=(o,...,o,J§3

a is a non-degenerate
critical point of index i+1

b is a non-degenerate

critical point of 1index i




The shape of the stable and unstable manifolds:

casel: t = o
W(o) = Rl oxixn+1£.o}

w¥(o) = oxRP'ix {xn+12.é}

let d be a positive real number, and let Ld=f;1(d) be a level
surface above the critical point o and L_d=fg1(-d) pe a level
surface below the critical point o. Then

WQo)ﬂL_d ~ i-dimensional closed disc and

W*(o)rYLd ~ (n-i) - dimensional closea disc.

[Rn-i

*
W'(o)nl
Vr (0) d xn+1

Y
/
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casel: t>o0

W(b) = Rixox{gn+1=f%j |
W) = oxR™% [xn+12.-‘/%3

w(a) = [Rxoxi L*;

w¥(a) = oxR*” X{’n+1 /f}

If L = f (o) is a level surface between a and b, then

Lr\w*(b)a;sn‘ ana LNw(a)sst,

n+1

Law* (b )ss? 1

LnW(a)xst

The important thing here

is that the two spheres
intersect transversely in
one point.




In the picture of case2 it is difficult to see what happens in
the level surrace above a and the level surface below b. Here 1s
another picture which makes it easier to understand the situation.

Think of S'x I with the height function. Then gradually deform

s1x I, but still think of the height function.

-

o

S1x I, height function

1. If L is a level above a, then
F(WE®)N L) = W (a)n L

2. If L is a 1eve1.be10w b, then
2(W(a)n L) = W(b)NL

3., It 'L is a level petween a and b,

then

wia)nL = st , w¥(b)nL = s,

index o

w(a)aw*(b)nL = {1 point}

transverse
intersection
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