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Equivariant CW complexes and shape theory

Takao Matumoto ( & AN Zr £ )

(Dept. of Math., Fac. of Sci.,'Hiroshimé Univ.)

The aim of this note is to study a disérete group quivariant
shape theory by associating a projective system of equivriant CW

complexes.

1. Introduction

Let G be a discrete group and X a G-space. For a subgroup H

of G we denote XH = { X € X; gx = X for every g € H } .

THEOREM 1. There is a functor CG from the category of
G-spaces and G-homotopy classes of G-maps into the pro-category of

the subcategory consisting of G-CW complexes so that C.(X) has the

G
universal property for equivariant shape theory with a system G-map

p: X = CG(X).

When G is a finite group, we know that a G-ANR has the G-
homotopy type of a G-CW complex and vice versa. Also any numerable
covering has a refinement of numerable G-equivariant covering. So

we have



THEOREM 2. Let G be a finite group and: X a G+-space.
(1)The equivariant ANR shapg of X-is equivalent to CG(X).
(2)The natural system map p: X - CG(X) is a shape equivalence.
Moreover,if X is a normal G-space, then pH: XH - CG(X)H is a
vshape equivalence for every subgroup H of G.
) iB) Let X and Y be normal G-spaces. Then, a G-map f: X - Y

induces an equivalence C,(£): C,(X) » C.(Y) if and only if g, xH

YH is a shape equivalence for every subgroup H of G.

The case when G is not a discrete group will be discussed
elsewhere. BRecently [16] treated the equivariant ANR shape for
compact groups. The method of Seymour[l11] which I mentioned in my

talk is useful but not enouph to define an equivariant shape theory.

2. A quick review of shape theory

The general references are [2], [4] and [8]. Borsuk developed
the theory of shape in 1968 when he was 60 years old. Actually
Borsuk(1968) defined the shape for'compact metric spaces,
Mardegié—Segal (1971) for compact Hausdorff spaces, Fox(1972) for
metric spaces, and Mardegié(1973) and K. Morita(1975) for iopological
spaces.

The most famous example is the shape of Warsaw circle WC =
(C0,y); -2¢y<1) U ((x, sin(1/x)); 0 < x ¢ 1/2m} U ((1/2m,y);

2

-2 ¢y g 0} U {(x, -2); 0 (¢ x (¢ 1/2n} c R Contracting ((0, y);
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-1 < v g 1} U {(x, sin(l/x); 0 < X { €} to a point, we get a

continuous map f: WC - S}. Although niCWC) = 0 for any.i.gto, f

seems a kind of "homotopy equivalence"” in the following senses.

(1) We have systems of decreasing neighborhoods Mi of WC and,Ni

of Sl in R2 with nN Mi = WC and N Ni = S1 such that there are

homeomorphisms f, : M, - N, with fiIMi+1 = f Fox's shape is a .

i+l’
generalization of this:.
{2) There are systems of coverings ﬂi of WC and Vi of S1

cofinal to all the coverings with ﬂi < ﬂi and fi+1 < Yi such that

+1
there are compatible isomorphisms of their nerves N(ﬂi) - N(Vi). This
implies the isomorphism of &ech (coYhomology and is generalized to the
shape in Morita's sense.

3 f*: [Sl, Kl » [WC, K] is an isomorphism for any ANR or any
CW complex K. The shape equivalence in Mardegié's sense is defined

by this condition.
Now we give an exact definition of Morita's shape or &ech system.

DEFINITION. (A, <) is an inductive set if (1) X ¢ X, (2) X < u,

B <V =2x ¢V and (3) for any x, 1A' € A there is a u € A such that x

HA
=

and X' $ u.

DEFINITION. ({XA)’ {pkk': Xl' - Xk (x

| 7aN

X')}) is called a

A

2! _g_l"b=;‘*p ~r

- projective system if (1) p)‘)L ~ id and (2) X Al’pl'l"

| S

DEFINITION. {fu}: ({Xi}, {p Y, A) - ({Yu), {q ,}, M) is

AX' uu

called a system map if there are 9:,M - A and fu: Xe(u) - Yu such
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that q_ . ,f

" u‘pe(p')x z‘fﬁpﬂ(u)i for.ulg p', 8¢u') < A and Gu) < X,

For a space X we associate a projective system of CW complexes

C(X) = ({Xx}’ {pxx‘}’ A) by ﬂ
A= (ﬂl; all numerable coverings of X} and x' > X iff ﬂk' < ﬂk’
XA = N(ﬂx) and Poyet N(ﬂl,) - N(ﬁx)’
. . . ~ o~ b X
wvhere pxx’ is defined by choosing p = pxx’ so that Ua c Up(a)' The

homotopy class of p is independent of the choice of p. Moreover,

AX!
the isomorphism class of C(X) is well defined and called the shape of

X. Here, a pointwise finite covering 4 = {Ua} of X is called
numerable if it admits a locally finite partition of unity (fa} i.e.,

a family of continuous functions;fa: X - [0, 1] with Z fa = 1 and

£ 10, 11 ¢ U, such that (f

o (0,11) is a locally finite covering of

-1
o
X. By the locally finite partition of unity {fa) subordinate to ﬂl we
have a map pl: X = XA defined by pl(x) =X fa(X)<Uu> where-(Ua> is
the vertex corresponding to Ua' A different choice of the locally

finite partition of unity gives another map contiguous t0'pl. So,

the homotopy class of pk depends only on ﬂx'

The shape associating a projective system ({Xl}, {plx'}) of the

subcategory ¥ is characterized by the following universal properties
due to Mardefic:

{1) For any map f: X » K with K € ¥ there exist a map fA: Xl - K

such that f =~ fxpx’ and

2) if flpl &~ glp)L then there is a x 2 A such that'flpkl. o gxpxx"

So, with a system map {pl}: X -» C(X) any CW shape is equivalent

to C(X).  Since ANR is homotopy equivalent to a CW complex and vice
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versa. (Cf. [4,Appendixl), any ANR shape is also equivalent tOVC(X).

3. Equivariant shape CG(X) (Proof of Theorem 1)

Let G be a discrete group and X a G-space. A numerable covering

ﬂi{Ua} of X is called a numerable G-equivariant covering if Uae U

. . _ _ -1
implies gUa—Uga € 4 and fga(X)' fa(g x) for any element g of G

‘'such that the following three sets have finite differences:

(g€G; gu=a i.e., fga= £} © (g€G; gU = U} < (g€G; gU N U, # ¢}.
The nerves of the numerable G-equivariant coverings ﬂk of X induce a
projective system C . (X)={C (X)} with a system G-map {(p,: X =

G G,Xx X

CG,A(X)} such that px zG px,k'px" The G-homotopy classes of pl and

o} are also well-defined by the ‘argument using contiguity as in the

AN

non-equivariant case.

LEMMA 3.1. The natural system G-map p: K = CG(K) is an
equivalence as projective systems of G-CW complexes and G-homotopy

classes of G-maps.

LEMMA 3.2.(Universal property for equivariant shape)

(1)For any G-CW complex K and any G-map f: X » K there exist a

and a G-map fx: CG,A(X) -» K such that f zG fxpx
(2H)I1f £ zG gkpk for any other G-map gl, then there is a v g X
such that fxva zG glplv.-

Proof of Lemma 3.2 and Theorem 1. Lemma 3.2 is a detailed
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restatement»of Theorem 1. Lemma 3.1 implies Leéemma 3.2 in a standard

way. In fact, theré are a p and a G—map q:C (K » K such‘that q is

G,u
a G-homotopy inverse to'p“. With the system G-map C,(f): C,(X) -

C.(K) we have a A and a G-map £':C,. .(X) » C u(K); Now it suffices

G X°TG,X G,
to define f1= qfi. Hereafter we assume that any system map will be

given by a level preserving morphism of systems equivalent to the

A
G,u(fk)pu 26 fx because q

X
(X) by p“.

original one. To prove (2) we note that qC

is a G-homotopy inverse to pﬁ where we denote p, for Cg

Since there is a G-homotopy inverse gq' to pﬁ for some p' > u by Lemma

. . ~ . K
3.1, we have flq CG,u'(pA) e qpu“,CG,“,

K . .
" 2 C . * "
glq CG,u"(px) G qpuu" G,u"(f) Taklng‘a v with v 2 M and v 2 u",

we see that flq CG,u'(pl)pu'v >, 8,4 CG,u"(px)pu"v'

(f). We also have

But

q CG,u'(pA)pu’v zG va QG q CG,u"(pl)pu"v , because q' and q" are
G-homotopy inverse to p;, and p;" respectively. g.e.d.

Proof of Lemma 3.1. We consider a G-map p:|S(K)| = K for the
geometric realization of the singular complex of K. Since 1s |1 =
IS(KH)I, Qe see that p is a G-homotopy equiQalence. Since a
G-homotopy equivalence induces an equivalence CG(-), the proof

reduces to the following two lemmas.

LEMMA 3.3. For a G-space X, |S(X)| admits a G-equivariant

triangulation.

LEMMA 3.4. For a G-equivariantly triangulated G-space K, p: K =»
CG(K) is an equivalence as projective systems of G-CW complexes and

G-homotopy classes of G-maps. .
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Proof of Lemma 3.3. We know that there is a G-homeomorphism
between [S(X)| and |SdS(X)| where SdS(X) is a barycentric subdivisiop
of the singular s.s. complex S(X) of X Note that the natural

quotient map q:|SdS(X)| - |SdS(X)/G| restricts to a homeomorphism on

any cell of |SdS(X)|. So,

|sds(X) /G|

Proof of Lemma 3.4. For

neighborhood Uv. Then, v sV

10

simplex if and only if Uv N
1

taking a barycentric subdivision
in the same simplex of K then gv
implies

gv = v. So, 4 = {Uv} is

take fv(x) =

(fv) is not only a bijection but alsoc a G-homeomorphism.

that fv(gx) = ?v(x) if gv = v.

the coefficient of v,

Moreover, p

lifts to a G-equivariant triangulation of [SdS(X)|. gq.

each vertex v we take

are the vertices

UV is not empty.
n

we may assume that

v and hence that

a pointwise finite

the G-map p: K -

defined by a locally finite G-equivariant partition

argument using contiguity.

also that of Lemma 3.1 and Theorem 1.

4. The case when G is a finite group

Let G be a finite group and X a G-space.

a triangulation of the regular CW complex

e.d.

an open star
of the same

If necessary by

if gv and v are
Ugv N Uv #z ¢

covering. I[f we
N(U) defined by

Note here

is G-homotopic to p

unity by the

This completes the proof of Lemma 3.4 and

q.e.d.

Then, (1) of Theorem 2

is a consequence of Theorem 1 and the fact that G-ANR has the
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G-homotopy type of a G-CW complex and a G-CW complex is a
G-ANR(Cf.[91 and [4,Appendix] or [171). Popl[l7] also treats the
equivariant shape theory for a finite group G. (2) and (3) of

Theorem 2 strengthen his result in the case that X is normal.

LEMMA 4.1. Let G = (g =e,...,& )} be a finite group. For any
numerable covering 4 = {Ua’fa} of a G-space X we have a numerable

G-equivariant covering ¥ of X such that ¥ < 4.

Proof. It suffices to take the covering V¥ consisting of

-1 -1 .
g, U, nNn ... Nng U with f_, (g,x)+--f
1 al n an ul 1 ,un
-1 -1 . . =
gi(g1 u.n ... nNn g, Ua )y cU and the sum is (2 fa ) (z fa Yy = 1.

al n o‘i 1 n

(gnx). In fact,

Note that we do not require ng N VB # ¢ implies ng = VB for the

numerable G-equivariant covering. q.e.d.

Proof of (2) of Theorem 2. Lemma 4.1 implies that p: X - CG(X)

is also a non-equivariant shape equivalence. Assume that X is a
normal space. For a subgroup H of G any numerable covering ﬂH of

the closed subspace XH extends to a numerable covering U of X i.e.,
ﬂH = {Un xH ; U € U)y. We may assume that if U n xH = ¢ then U is
not H-invariant for U € 4. So, we see that CG(X)H = CW(H)(XH) for a

1

normal G-space X where W(H) = N(H)/H and N(H) = ( g € G gHg- = H}.

Now we have proved (2) of Theorem 2 by considering XH is a W(H)-space.

q.e.d.

LEMMA 4.2. Let G be a finite group. Let X and Y be G-CW
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. H H . - .
complexes and hH. X" > Y maps with g*hH o hH,g* for every pair of

subgroups H' C gH.g:-1 where,g*(x) = gxX. Then, there is a G-map f: X »

Y such that fIXH o hH for every subgroup H of G.

Proof. Choose a family of representatives {H ..,Hn} of

1*°
conjugacy classes of subgroups of G. For G-0-cell AO X G/Hi we

define £1X° by f(v x gH./H) = ghy (v). Assume that a G-map glx" 1
i

is defined and for H = Hi there are given homotopies between flo(Ak X
H/H) and hHlo(Ak X H/H) in YH which extend the homotopies on the

boundaries as an induction hypothesis for k < n. Then, for a

n

G-n-cell 0: A" X G/H - X with H = Hi’ hHIO(SAn X H/H) is homotopic o

t]0(8A™ x H/H). We can now define f|o(A"™ x H/H) by the homotopy on

the collar and by hH on the interior. Extending f on o(An X G/H) so

that f becomes G-equivariant, fIXn satisfies also the induction

hypothesis. So, we get a G-map f: X - Y such that fIXH ~ hH'

q.e.d

Proof of (3) of Theorem 2. If f: X - Y induces an equivalence

. H, H H .
CG(f). CG(X) - CG(Y), then CG(f) : CG(X) - CG(Y) are equivalences.
H H H

This means that f : X = Y are shape equivalences by (2) of

Theorem 2._ Now suppose that fH: XH - YH are shape equivalences.

Then, also by (2) of Theorem 2 CG(f)H: CG(X)H - CG(Y)H are

equivalences, that is, there are s (H,Xx) 2 X and G-maps

. H H H __X,H
qH‘CG,u(H,A)(Y) i CG,A(X) such that qHCG,u(H,A)(f) > pk,u(H,A) and
H Y,H .
CG,A(f) qH o px,u(H,A)' By taking u(x) 2 u(H,x) for every H, we may
1

assume that p(H,x) = p(x) for any H. Note that if H' c gHg- then
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we have the following diagram:

q \ q ‘
H 9y H H 9y H H
GO S e oo s e Lot ST el ool s e
Vg v, ve, vog, Vg,
c i SH ¢ sl 5 ¢ WH SH ¢ oH L o (pH
G,u" G,u' G,u' G, G,

Here, we denote u"=(u(x)) and p'=u(x). Not necessarily g*qﬁ o~

.H H! .
qH,g* but g*chG,u'(f) qH & qH'CG,u'(f) qH,g*. This means that we

may assume that g*qH x> qH,g* for every H,H' and g by retaking u{x)

big enouph. By Lemma 4.2 we get a new G-map q:C; 0 (Y) = Co (XD

H H
such that q" =~ q, for every subgroup H of G. Note that qHCG,u(A)(f)

X,H

o pl nx) for every H. So, applying the same argument of Lemma 4.2,
X
we can get a G-homotopy between ch,u(l)(f) and P, a0 and also a
Y
G-homotopy between CG,“(A)(f)q and px,n(x)' q.e.d.
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