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" Introduction. The theory of branched coverings is one of good

examples of amalgamation of different branches of mathematics
topology, complex analysis and algebraic geometry. See, for
example, Zariski [31], Fox [6], Kato [17], Hirzebruch [11],

Hofer [13], Ishida [15], Fukui [7], Gaffney-Lazarsfeld [8], etc..
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It need not to be mentioned that the theory of (Galois)
branched coverings is a geometric counterpart of the Galois
theory of function fields.

In this article, we present a theory of Galois_and abelian
branched coverings of complex manifolds, emphasizing existence
theorems and examples mainly along the line of Namba [22]. In
the last section, we discuss the equivalence problem of Kummer

coverings after Kato [18].

Chapter 1. Galois Coverings.

1. Definition of Branched Coverings. First of all, we
give a definition of branchéd coverings of complex manifolds.
Since we treat infinite coverings as well as finite coverings,

we define branched coverings as follows:

Definition 1. 1. Let M be an n-dimensional connected

complex manifold., A bfandhed'covering of M is an irreducible

normal complex space X together with a surjective holomorphic
mapping 7w : X — M satisfying the following 4 conditions:

i) Every fiber of m 1is discrete.

i1) R_.={p€ex | n*

m QM,W(p) — Ux,p is not isomorphic}

and BTT ﬂ(Rﬂ) are hypersurfaces (i.e., pure codimension 1)

of X and M, respectively, called the ramification locus and.

the branch locus of T, respectively. (Here, Ok,p is the

10calring'of germs of holomorphic functions around P.)

iii) 7 @ X - W_l(Bﬂ) —> M - B 1is a topological (i.e.,

unbranched) covering.

iv) For every point g € Bﬁ, there is an open neighborhood

W of g 1in M such that, for every connected component - U of
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ﬂ_l(W), T g)NU consists of one point and U-— W is

W!U
5 surjective proper mapping (hence'a\finite mapping).

If R 1is empty, then 7 : X —> M should be called an
unbranched covering. But we call such a covering also a branched
coverihg by abuse of language. A branched covering is said to
be finite if every fiber is a finite set. The mapping degree of -

o -1 i
of m:X-m (B ) —M- B, 1s called the degree of .

Using the purity of branch loci (see Fischer [U4]), we have easily

Proposition 1. 2. An irreducible normal complex space X
together with a surjective finite proper holomorphic mapping

T : X -—> M ds a finite branched covering, and vice versa.

Let m: X — M and 7' : X' —> M be branched cover-—
ings of M. A morphism of 7 to w' 1is, by definition, a

surjective holomorphic mapping ¢ : X — X' such that g =T,

Thus we have the category of branched coverings of M. ¢ is

. . t .
an isomorphlsm if ¢ : X — X is biholomorphic. In this

case, we say that 7 and ' are isomorphic. In particular,

L] ' 3 3 . .
if X =X and 7w = 7m', then an isomorphism is called a cover=

ing transformation of mw. The set GTr of all covering transfor-
mations of 7  forms a group under compositiohs, called the

covering transformation group. GTr acts on every fiber of .

A branched covering 7 : X —> M 1is called a Galois covering
if GTr acts transitively on every fiber. @ ¢! X —» M is

called an abelian (resp. a cyclic) covering if m 1is a Galois

covering and GTT is an abelian (resp. a cyclic) group.

We denote by Sing BW_ the singular locus of the branch

3



locus B.. It can be shown that, for every point q € BTr - Sinng

™ )

every point p € w—l(q) is a non-singualr point of both X and
n—l(Bﬂ), Moreover, for any sufficiently small open neighborhood
W of g with a coordinate system '(Wl’ cesy, wn) such that

q= (0, **+, 0) and B“ﬂ W= {wn= 0}, there is an oben neigh-
borhood U of p with a coordinate system (zl, e, zn) such
that U 1is a connected component of n (W), p = (0, ***, 0)

and w 1s locally given by

e
WlU : (Zla"'szn) — (Wl"f"wn) = (Zla"‘azn_lazn)s

where e 1s a positive integer, (see Roan [25] and Namba [22]).
For an irreducible component C of w"l(Bﬂ), the integer e 1is
constant for points of C - ﬂ"l(SingB), and is called the

ramification index of m along C. (For convenience, the

ramification index of 1m along an irreducible hypersurface of
X which is not contained in ﬂpl(Bﬂ) is defined to be 1.) If
7 1is a Galols covering, then, for any irreducible component

Dl of BW, the ramification index e of 1w along irfeducible

—1(D

components of is constant. In this case, e 1is called

1)
the ramification index of w along Dl‘
Let a hypersurface B of M be given. Suppose for sim-

plicity that B has a finite number of irreducible components

Dl’ -+, D

s‘:
1ot s*

Let ey, **"» €4 be positive integers greater than one, and

D = elD1 + - + est

be a positive divisor on M.

Definition 1. 3. A branched covering = : X —> M 1is
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said to branch along D (resp. at most along D) if (i) B, =B

(resp. BﬂC B) and (ii) for every J (1 < J < s) and for every
irreducible component C of. w!l(Dj), the ramification index

of m along C is ej (resp. divides ej).

For branched coverings 7 : X — M and 7' : X' — M of
M, we denote m =2 7n' or 7' <7 if there is a morphism of =
to m'. If @ >7' and 7 branches at most along D, then '
branches at most along D. If 7w 1is a Galois covering, m = m'

and m < 7', then 'm and 7m' are isomorphic.

Definition 1. 4. A Galois covering T :X —= M is called

a D-universal covering if (i) T branches along D and (ii)

for any covering w' : Xf —> M which branches at most along D,

the relation 7w =2 7' holds.

By the above remark, a D-universal covering is unique up

to isomorphisms, i1f it exists. We denote 1t by
T : M(D) — WM,

We now propose the following two problems:

Problem 1. When does a D-universal covering exist?

Problem 2. When does a finite Galois covering which

branches along D exist?

As for a compact Riemann surface M, the problems were

answered completely by Bundgaard-Nielsen [1] and Fox [5]:
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Theorem 1. 5.  Let ‘M be a compact Riemann surface of

genus g, pl, "', Dy be points of M, €1 v, ey be positive
integers greater than 1, and D = e,p + e +‘eSpS be a positive
divisor on M. Then the following three conditions are equivalent:
(1) There does not exist a D-universal covering of M,

(11) There does not exist a finite Galois covering m : X — M
which branches along D.

(iii) Either (iii-1) g =0 and s =1 or (iii-2) g = 0, s=2 and

ey X €se

Example 1. 6. If M is a compact Reimann surface and

7 : M(D) — M exists, then T ‘is an infinite covering, unless

M = M(D) = Pt

, the complex projective line, and 7 is isomorphic
to one of the following rational functions, (see Klein [20],
Hochstadt [12]):
(1) w=2z" (m=1, 2, «++),
D = m(e) + m(o), G = C, (m-th cyclic group).
(2) w=-(z" - 1)% /85", | |
D = m(») + 2(0) + 2(1), G = Dm (m-th dihedral group ).
3) w= (z" 2/37° - 1)3,
D = 3(=) + 3(0) + 2(1), G = A).
(B) ws= (28 ¢ 1bg"

+ 2/§z2 - 1)3/(24

v 1)3/1082% (2" - 1YY,

D = U(x) +3(0) + 2(1), G = 5.

5) (229 = 228215 & 4ouz10 4 228, + 1)3
W= 5,10, 1.5 _ <45 )
=-1728z7(z7 "+ 11z” - 1)
D = 5(=) + 3(0) +2(1), & = Ag.
(Here (o) 1is the point divisor of a € Pl, G = G. and A (

resp. Sn) is the alternating (resp; symmetric) group of n

letters.)



2. D-universal coverings. In this section, we give

answers to the problems at the end of §1, using 1énguage of

fundamental groups.

Figure 1
Take a point P, E.M - B and fix it once for all. Let Yj be
a loop in M - B starting and terminating at Py encircling a

point p € Dj ~ SingB din the positive sense as in Figure 1.

Yj is called a normal loop of Dj' We identify Yj with its

homotopy class in ﬂl(M - B, po). Let

a e ™
1
J:('Yl 1, sy, -YS >

be the smallest normal subgroup of wl(M - B, po) which
bains y. L, - °s
contains vy, 7, > Yo oo

Definition 2. 1. A subgroup K of

1
J CK 1dis said to be D-faithful if the following condition

(M - B, po) with

J
every J (1 <j < )

is satisfied: If y.d belongs to K, then d = 0 (mod ej) for
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For every point p € SingB, take a sufficlently small ball

W (with respect to a metric on M) with the center p such that

nl(w - B) = (M - B), (the local fundamental group at p).

"1,lec,p
Let

iy wl(w - B) — wl(M - B, po)

be the homomorphism induced by the inclusion mapping i : W - B

CsM - B.

Definition 2. 2. A subgroup K of (M - B, po) with

1
J CK 1is sald to be locally cofinite if i;l(K) is a subgroup

of ﬂl(w - B) of finite index for every point p € Sing B.

Theorem 2. 3. ©For any covering m : X —> M which branches

at most along D, K = ﬂ*(ﬂl(x - ﬂ_l(B))) contains J and is
locally cofinite. Conversely, for any locally cofinite subgroup
K (©2J) of ﬂl(M - B, po),thereexists a unique (up to isomor-
phisms} covering w : X — M which branches at most along D

such that mg(m (X - 771(B))) = K. 1In this case, m branches

along D if and onliy if K dis D-faithful.

For the proof of the converse, we construct a topological
covering m' : X —= M - B such that K = ﬂ*l(ﬂl(X')), and

then we extend ' to
T X — M

using a theorem in Grauert-Remmert [9], (see also Grothendieck-
Raynaud [10], p.340). Topologically, this is so called a Fox

completion, (see Fox[6]). See Namba [22] for detail. By

8
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Theorem 2.3,

Theorem 2. 4. There exists a finite Galols covering 7 : X

_» M which branches along D if and only if there exists a
normal subgroup K of 'ﬂl(M - B, po) of finite index which
contains J and is D-faithful. The correspéndence T > K=
W*(ﬂl(x —'ﬂul(B))) ‘between (isomorphism classes of) such 7's

and such K's is one-to-one. In this case, G1T '1s isomorphic to

m (M - B, pO)/K'

1
In fact, for such a normal subgroup X, we have
m(W=B) 3y (my(W=B))  K-dg(m(¥-B)) _m (M-B,p,)
Z T XNi - - ‘

under the above notation. ‘Hence X is necessarily locally
cofinite.
Now, put
K =NEK,
where the intersection N runs over all subgroups X of

wl(M - B, po) which contain J and are locally cofinite. K

is then a normal subgroup of wl(M - B, po) which contains J.

- Theorem 2. 5. A D-universal covering 7 : M(D) — M

exists if and only if K is 1oca11y_éofinite and D—faithful.
In this case, K = %*(wl(ﬁ(D) - %_1(B))) and G = wl(M - B, po)/ﬁ.

Moreover, M(D) is simply connected.

It is easy to see that M(D) is simply connected. In

fact, if u : X —> M(D) is a (topological) universal covering
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of M(D), then w-p : X — M is a covering which branches
along D such that T+uy = . By the D-universality of %, we

have . T*u < . Hence u 1s an isomorphism.

Theorem 2. 6. Let m : X — M be a Galois covering which

branches along D. . Suppose that X 1is non-singular and simply

~

connected. Then w is D-universal. In this case, K =J and

¢ = m (M~ B, p )/J.

In this theorem, the condition of the non-singularity of

X can not be dropped, as the following example shows:

Example 2. 7. Put M= ®2 and let (u, v) Dbe the coordinate

system on c?. Put D, = {u= 0}, D, = {v =10} and D = 2D, +

Put X = {(u, v, w) € ¢3 ]w2 = uv} and

2D2.

T : (u, v. w) € X +— (u, v)€E®2.

Then 1w 1s a cyclic covering of degree 2 which branches along
D. X dis simply connected, for X 1is a cone. But 1w 1is not

D-universal. In fact, putting Y = ®2 and

2 2
n: (x, y9) €Y +—— (u, v, w) = (x°, vy, xy) € X,

the composition m7-pu : Y —— CZ is a covering of degree U which
branches along D and v~ﬁ = T. (By Theorem 2. 6, w+u is

D-universal.)

For the rest of this section, we suppose that B 1is simglé

normally crossing.




| D,
M
Figure 2»
For any point p € SingB, let (w,, ***, w ) be a local coordi-
nate system around p such that p = (0, ***, 0) and
B={<Wl’ ---, Wnr)lwkz.-.zwr].:O}'
locally. Let
,'{Wj = 0} = Dj (k <3 <n),

locally, say. Let §j be a loop in M-B starting and termina-
ting at Pyo encircling a point of Dj -~ SingB near p 1in the

positive sense as in Figure 2. Then . ?i is conjugate to Yj

"~

in wl(M - B, po). ?k, cer, Y are mutually commutative. For

n

a sufficiently small ball W with the center p, we have

m - B) = (3% e ()7
and

e e
k\Z ~
) cee (v

- MT cate) cn (- B).

(Yk

Hence J 1s locally cofinite, so that X = J. Thus

Theorem 2. 8. If B is simple normally crossing, then

a D-universal covering T o ﬁ(D) —» M exists if and only if

J is D-faithful. TIn this case, J = K and G~ Zm (M - B, p_)/J.

~ %k 7 ~ ©n z
Moreover, if (under the above notation), (yk ) (Yn )

i;l(J) - for every point p € SingB, then M(D) 1is non-singular.

11



The last assertion of the theorem ié a special case of

Kato [17], as well as the following theorem.

Theorem 2. 9, Let B Dbe simple normally crossing. Let

K Dbe a normal subgroup of my (M e‘B, po) of finite index which
contains J and is D-faithful. Suppose moreover that, for
any point p € SingB? K satisfies the following condition
(under the above notation)
d d

k A N

it ¥, ct ¥, €K, then d, = O(mod e ), -+, d =0(mod e).

k
Then the irreducible normal complex space X 1is non-singular,
where 7w : X —> M 1s the finite Galois covering which branches

along D and corresponds to K under Theorem 2. L.

3. Examples. It is not easy in general to apply the results of

§2 to concrete examples. (Even the calculation of ﬂl(M - B, pd)

is not easy.) In this section, we discuss two examples.

2

Case 1. Put M =¢, B=D 2

;= xy) ec [x3 = yg}, L

a positive integer greater than 1, and D = QDl.

Dy
e ,
Yq
0 P,
Yo



As is well known,.'rrl(c2 - B, po) is isomorphic to 3rd bra
“group B3 ; taking the loops Yl and y2 as in Figure 3,
have
T (€% = By D) =<¥qs Yo | Y1¥o¥q = VoYY >
1 > Yo 12 '2 17271 2'1'2° "
Here the right hand side means the group generated by Yq
Yo with the generating relation Y1YoY1 T YoYYoo Since
1 . R )
(y2y1) YfY2Yl)’ Y, 1s conjugate to Yq- Let J  be the

normal subgroup of ﬂ1(®2 - B, pO) containing YlQ (and
L
Y2 ). Then
2 - L 9 |
m (¢° - B, p )/J = Gy =<a, bla =Db =4, aba = bab >

21!

id

we

and
Y, =
smallest

SO

by the correspondence: Yq l— a, Yo > b. We identify

these groups through the isomorphism.
The cyclic covering

2

correspoﬂding to the kernel of the homomorphism
fo @ G —— /%7, (fy(a) = fp(b) = 1)
is given by
me: Xo = {(X,YQZ)?ECB [ZQ = x5 - yz} s u =

(x,¥,2) b——— (x, ¥)

and branches along D = QDl. But m, is not D-universal.

The following argument on the structure of GQ was

informed by Mr. Mizutani. See also Coxeter [2]. First of all,

Lemma 3. 1. ¢ = (aba)® 1is an element of the center

of GQ.

13

Z(GQ)
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Next, consider the Schwarz' triangular group

62, 3, ) =<s, 7| s?=13=(sm =15,
and the homomorphism,

g 1 G —— G(2, 3, %)

defined by g(a) = ST and g(b) = TS.

Proposition 3. 2. The following sequence 1s exact:

1 — <c> — Gy —£ ,a(2, 3,28) — 1

From this proposition, we have the following table:

2 |ord(e) G(2, 3, %) Gy ord Gy |
2 1 83 ‘ v S3 ‘ ‘ n 6
3 2 A4 SL(2, Z/37) 24

6/7(Gy) = Sy,

7(G)) = 2/47

5 10 o A5 , SL(2, Z/57Z)x(Z/5Z) 600
6 0 infinite group infinite solvable group 0
=17 o infinite group infinite unsolvable group o

If & satisfies 2<8f <5, then (under the notations of

§2) X = J and there exists a D-universal covering

% : M(D) —> M = ¢°.

In this case, T 1s a finite Galois covering such that Gﬁ =G
’ 2

Q .

Moreover, we have M(D) = € and T is the composition

- i)
M(D) = €° —B+-XQ B S R

b

14
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where 1w 1s the proJection

u o M(D) = €% — Xp =,C?/H,

where H 1s a finite subgroup of = GL(2, €). The origin of Xy

in this case is called the Klein singularity, {(see Pinkham [24]).
If 2 = 6, then we have

Proposition 3. 3. The kernel of f6 : G6 — Z/67

(f6(a) = f6(b) = 1) is given by f<a—lb, ab~ 1> and is isomorphic
to N = 1 1 J
0 1 k i, j, k € 2
o 0 1 '
The isomorphism is given by
1 0
-1 -1
a b b 0 1 0 ab — (0 1
o 0 1/, | 0 0

We identify ker(f6) ‘'with N through the isomorphism. For any

positive odd integer r,

1 J
N(r) = 0 1 k{ €N i=j =k =0 (mod r)
' 0 0 1

is a normal subgroup of G6 of index 6r3 and is D-~-faithful.

Hence

Proposition 3. 4. For any positive odd integér r, there

is a Galois covering v_ : Y — M= 02 of degree 6r3

if and only if rl|r'.

r r
branching along 6D1. v, < va

15
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Since /f\ N(r) = {1},
r:odd

We have

Proposition 3. 5. If D = 6D1, then there does not exist
a D-universal covering of M = 2.

Case 2. Put M = Pz (the complei projective plane), B =
DlU D2, Dl = the closure in Pz of the affine curve
{(x, y)ezcgl x3 - y2 = 0}, D, = L, (the line at infinity), 2,m:

positive integers greater than 1, and D = 2D, + mD,.

Figure 4

Taking the loops Y1 Yo and &8 as in Figure U4, we have

-1

T (M = B, D) =<7v¥ys You S|Y1YoY] = YoYqY, = 8 7>

Let J be the smallest normal subgroup of wi(M - B, pé) which
contains yf R y; and &". Then B

2 -
'ﬂ'l([P - B, po)/J GQ ,m s

16



where

T R TN Py N

3
(Yl — Oy Yo b— B, §}—= §).
Let GQ be the group in Case 1. There is a surjective homomor-
phism

defined by h(a) = a and h(b) = B.
For simplicity, we assume that m 1s a positive even integer.
Then the following sequence 1is exact:

. . ’ o

In particular, if the pair (2, m) 1is one of the following

table:
L] 2 1 3 'l 5
m{| 2 | 4 | 8 | 20
then GQ - = GQ and there exists a D-universal covering
3

% : M(D) ——s M = [P° (D = 2D, + mD,).

~

In this case, T -isia finite Galois covering such that GﬁiiGQ m
. 3

GQ.
If % = 6, then we have by Pfoposition 3. 3;
‘ Proposition 3;'6. For any positive integer m such that
m=z= 2 (mod‘u), there is a Calois covefing ¢m‘$ Zﬁ —_— Pz of

degree 6(m/2)3 branching along D = 6D1 +mL,. ¢ < ¢, if

and only if m|m'.

17
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On the other hand, since the sequence

1 —— <C> /<ﬂm/25.-—+”GQ ﬁ‘-+ GC2,3,2)?—+ 1

3

is exact, we have in particular (putting m = 2),

~

Gg o, = G(2,3,2).

A

Putting ¢ = 2, we identify G6 5 with @(2, 3, 6) through
-]
the isomorphism. It is well known that G(2, 3, 6) has the
normal subgroup L such that
a(2, 3, 6)/L = 17/61,
L=7Z®7 (the direct sum).

Identifying L with Z + Z through the isomorphism, consider,

for any positive integer q, the normal subgroup

Lq={(j,k)€Z®Z[jEkEO (mod g)}

of index 6q2 of G(2, 3, 6). Since

MN1n =11},
q q

we have

Proposition 3. 7. If D = 6D1 + 2L_, then there does not
2

exist a D-universal covering of [P.
By another method (see Namba [23]), we can show

Proposition 3. 8. For any positive integer k, there exists

a finite Galols covering w : X —_— P2 branching along D =

6kD, + 2KL,.

18
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4, Existence of Finite Galols Coverings. As for Problem 2

in 81, it is desirable to give (sufficient) conditions for the
existence without using language of fundamental groups. Theorem
1.5 -~ 1s such a'theorem. In this section, we give such theorems.

Let Ll’ ...’-Ls be distinct lines on E2 and put B =
L,V - U LS.' Put |

A={pe€B| mp(B) > 3},

where mp(B) is the multiplicity at p of the curve B. A is

a finite point set.

Theorem 4. 1. Suppose that Ljﬂ A is non-empty for every

jo(1<j <s). Then, for any postive integers €15 "'t €g

greater than 1, there exists a finite Galois covering = : X —>
2

P branching along D = elL1 + ... + eSLS.
P2
L.
J
Figure 5

See Kato [16] for the proof of the theorem. We generalize the

theorem és follows:

, Theorem'u.‘2. Let M be an n (2 2) dimensional projective

19
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manifold and Di, ety Ds ‘be distinct irreducible hypeéersurfaces

of M. Suppose that there aré.fixed component free linear pencils

Al’ s oo At on M 'such that (1) every Dj- is a member of some
Ak and (ii) every Ak contains at least three Dj’s as its
members. Then, fbr any positive integers eq» Tt eg greater

than 1, there exists a finite Galois covering 7:X — M branch-

ing along D = elD1 + e+ est'

Note that Theorem 4. 1 follows from Theorem 4. 2, putting
M = Pz, Dj = Lj (1 < j<s) and Ak = the linear pencil given

by the projection with the center point Py € A. See Namba [22]

for the proofs of Theorem 4. 2 and the following theorem:

Theorem 4. 3. Let -Cl, ety CS be distinct irreducible

conics on P2 such that, for any Cj’ there is a Ck which is

tangent to Cj at two distinct points. Then, for any positive

integers el, T, g greater than 1, there exists a finite
Galois covering 7w : X ——»‘Pg branching along D =‘e1D'1 + ... F
est‘
Pz
C.

20
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- Chapter 2. Abelian Coverings.

5. Abelian D-universal coverings. Let M be an n-

diemensional connected complex manifold. Let B = D1LJ-~-LJDS,
= e v M - < i< =
D e;D; + + eD, py €M - B, Vs (1 <3 <s) and J
ey ey m
<Yy L Ttts g2 1 be as in §1 and 82. Put
3

J = J'[WI(M“B, po)g ﬂl(M—Ba po)jb

where [G, G] is the commutator subgroup of G. Then we can
easily prove the following lemma.

Lemma 5. 1. 7o (M - B, po)/3 =

(
1
. Hl(M - B; Z)/(Z((elvl) + + Z(e vg)) -

Here Hl(M - B; Z) 4is the first homology group of M-B and

Z(elyl) + e + Z(esYs> 1s the subgroup of Hl(M‘- B 3 7)

generated by €1Y1s """ €4Ygs which are regarded as elements

of Hl(M - B; 7).

Moreover, we can prove:

Proposition 5. 2. 3 is}a normal subgroup of wl(M - B; po)

which contains J  and is locally cofinite.

The covering WO : XO —> M which branches at most along

D, corresponding to 3 by Theorem 2. 1 is an abelian covering.

Moreover, for any abelian covering 4 : ¥ —3% M which branches

at most along D, the relation T 2 1 holds.

Definition 5. 3. . An abelian covering #_,, : M_ (D) — M

is called = an abelian BFuniVErsal covering - if (1) T,p Pranches

21
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along D and (ii) for any abelian covering m : X — M which

branches at most along D, the relation 7« > 1 holds.

ab

By the above consideration, 1f an abelian D-universal

covering T : Mab(D) —> M exists, then it must be isomorphic

ab

to LS Xo — M. Conversely, if Ty Xo —> M branches along

D, then it i1s an abelian D-universal covering. Thus

Theorem 5.7R. There exists an abelian D-universal covering

ﬁab : Mab(D)v——e M if and only if the following condition is

satisfied: Aif dyj € Z(e ) e+ Z(e v ), then d = 0 (mod ej)

1Y1

for every 1 < j < s. 1In this case, the covering transformation

S

group of %ab is isomorphic to éab = Hl(M - B Z)/(Z(elyl) +
+ Z(eyy)).
For example, let M = 02, B = D1 and D = QDl be as in
Case 1 of 83. Then we have Hl(C2 - B3 Z) = Zyl and the
condition in Theorem 5. U4 is clearly satisfied. In this case,
ﬁab : ggéb(D) — 02 is nothing but the cyeclic covering

3 2

R A A A A R S e
(%X, ¥, 2) V— (%, ¥)

considered in Case 1 of 8§3.

Let M = Pz, B = D1U L, and D = QDl + mL_ be as in

Case 2 of 8§3. Then we have
2 -
Hi(P® - B 3 7) = (Zyy + Zv,)/Z(3y; + v,).

Hence the condition in Theorem 5, 4 is equivalent in this case
to the condition: &£/(3, %) = m, where (3, 2) is the GCD of

—~
3 and 2. If this is the case, ﬁab :‘Pib(D)+5P2 is a finite

22



covering.
In general, if M = Pn, Dj is an irreducible hypersurface
of degree dj (1 € j<s8) and B = D1U "'kJDS, then we. have .

Hl(En - B Z ) = (Z’Yl + e +Z‘YS)/(Z(dlY1 + e 3 dSYS)>'
Thus , : -

Theorem 5. 5, Let Dj be distinct irreducible hypersurfaces
of degree dj (1 <j <s) of the complex projective space P
Put D = elD1 + - + eSDS. Then there exists an abelian D-

N\
universal covering T : Pnab(D) — P" if and only if

ab
e. d., e. diVldeS

<ep/(dy,eq)57m sey 1/(d5 gsey q)sey,0/(d5 058509057 e/ (dgseq)>

for every j (1 <j <&s), where (--+) and <...> denote the
GCD and LCM of the components, respectively. In this case,

s
m

ab is a finite covering.

As for a compact Riemann surface M, fheofem-B. I can be

rewrlitten as

Theorem 5. 6. Let pj (1 < j<s) be distinct points on

a compact Riemann surface M of genus g. Put D = e IR

1P
e Py Then there exists an abelian D-universal covering

=

ab': Mab(D) —> M if and only if ,ej divides.

<e

1’ o--’ e

j=1° ©5+1° "7 €57

for every j (1 <J < s). In this case, ﬁab is an infinite

covering if g = 1.

Finally, as for finite abelian coverings of a complex mani-

fold M, we have

23



Theorem’S. 7. Let M be a connected complex manifold,

1 171

as before. Then there exists a one~to-one correspondence

B=DU: - W, D=e Do+ «o- + e,D, and Yy (1 <3 <s) be

T —> K = K(m) between isomorphism classes of finite abelian
coverings w : X —» M which branches at most along D, and

subgroups K of finite index of

G, = Hy(M - B; 2)/(Z(e

~ab lyl) oot Z’(es\(s))‘

The correspondence satisfies (1) G1T - Gab/K(v), (2) ﬂl< T

if and only if K(ﬂl)D K(nz) and (3) 7 branches along D

if and only if K(w) satisfies the following condition: if

ay..

3 € K(m), then d = 0 (mod ej) for 1 <j <s.

6. Tinite Abelian Coverings of Projective Manifolds. In

this section, we suppose that M 1s a projective manifold. We
discuss finite abelian coverings of M. Here are two typical
examples of abelian coverings.

0N

Example 6. 1. Let # : L — M be a holomorphic line
®e

bundle on M and & ='{Ea} be a holomorphic section of L
(the e-times tensor product of L for a postive integer e
greater than 1), where ga is a holomorphic function on an

open set Ua on which L i1s trivial. Suppose that the zero

divisor (&) of & has no multiple component:

(E) = Dl + e+ DS’

where Dj are distinct prime divisors. Put

D = e(?) = eDl + .- + eDS.



lql]
3
.

Put

X = g{(p, Zq) S UuXC | Z, = Ea(p>}.

Then X can be considered as an irreducible normal hypersurface

of the bundle space L. Put
T = f| DX —s M.

X

Then 7w d1is a cyclic covering which branches along D.

Example_6. 2. Let L be a holomorphic line bundle on

M and El, vee, g be holomorphic sections of L. Suppose that

S
D, = (El), "tt, Dy o= (is) are distinet prime divisors such that
Dy N "'f“DS = ¢. TFor a positive integer e greater than 1,
put
= DU-
B = Dy uD,

D=2eD, + -+ + €D
Consider the Kummer extension
_ /e .. 1/e
Fo= €0 ((E/EDYS, -0, (8, 178D
of the field ¢€(M) of meromorphic functions on M. Let

mT: X —> M

be the F-normalization of M, (see Iitaka [14]). Then = is.

a finite abelian covering of M which branches along D such

that G = (2Z/e Z)Swl. The covering m : X — M is called a

Kummer covering. 1In this case, we can prove that, if B 1s

simple normally crossing, then X is non-singular.

) ‘= U?--- ; . 3 - e
Now, let B D1 \JDS and D elD1 + - + e Dy

be as in §1. We rewrite Theorem 5. 7 using language of rational

2 . - > b . . & ' Y
divisors. A rational D-divisor is & rational divisor E on M
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of the following type:
E = (al/el)D1 + e+ (as/eS)DS + E,

where aj (1 <j <s8) are integers and E dis an integral divisor.
Rational D-divisors form an additive group DiVQ(M, D). Let
DivOQ(M, D) be the subgroup of Din(M, D) consisting of all
£ such that |

co(E) = (ag/e)eg(IDy1) + -+ + (ag/e eg(IDD) + co(B)
0 € BN ;5 Q),

where [Dj] is the line bundle determined by Dj and

cq ¢ Pic(M) — H2(M’3 @) is the homomorphism of rational Chern

class.

A

Two rational D-divisors E and E' are said to be linearly

"~

equivalent, ﬁ ~ ﬁ'; if E - E' 1is an integral and principal

divisor. Consider the additive group

PicoQ(M, D) = DivOQ(M, D)/~ .

Theorem 6. 3. There exists a one-to-one correspondence

T —> S = S(m) betwéen isomorphism classes of finite abelian
coverings 1w : X ?~+ M which branches at most along D, and
subgroups S of finite index of PicoQ(M, D). The correspondence
satisfies (1) GTr = S(w) and (2) Ty < T, if and only if

S(T\'l) CS('sz).

Theorem 6. 4. There exists a finite abelian covering
m : X —> M which branches along D 1f and only if there is a
subgroup S of finite index of ‘PicoQ(M, D) with the following
condition: for every J (1 <j < s), there is an element
ﬁ(j)/«ﬁES such that (aj, ej) = 1, where
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)

E(3) = (al/el)Dl + oo+ (aj/ej)Dj + -e- 4 (a /e )D, + E,
(E : an integral divisor).

For the proofs of the above theorems, we make use of the
" theory of harmbnic‘integralsfby de Rham-Kodaira [3].
For example, the cyclic covering m : X —+ M 1in Example

6.1 corresponds to
s = {(a/e)(Dy + *-* + D) - aE | 0 <a<e -1}/ ~,

where E 1is an integral divisor on M such that [E] = L.
The Kummer covering m : X —> M in Example 6. 2 corre=

sponds to
B % S-12 * S23 + "’,+ Sn—l,n * Sn,l.’
where

S,, = {(a/e)D; = (a/e)D, |0 <a<e -1} /a, etc..

As applications of Theorem 6. 4,

Theorem 6. 5. Let Dl’ srey Dy (s 2 2) be linearly

equivalent distinct prime divisors on a projective manifold M.

Suppose that, for every J (1 < J < 8), ej divides

<e o'o,

>.
1° ®s

ej—l’ ej+1, ceey,
Then there exists a finite abelian covering m : X — M which
branches along D % elD1 + e+ est’

Theorem 6, 6. Let Py> "°"»> Py be distinct points of a

compact. Rilemann surface M., Put D = e + e+ ey Py> (ej =>2).

1P1
Then there exists a finite abelian covering = : X —> M which
branches along D if and only if, for every J (1 < J < s), ej
divides
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Finally, we move D and consider various PicOQ(M, D)'s.
Let _DiVQ(M) be the additive group of all rationalldivisors on
M, and DivOQ(M) be the subgroup of Din(M) consisting of
all rational divisors whose rational Chern classes vanish. Two

rational divisors £ and £' are said to be linearly equivalent,

£ . E', if B - E' is integral and principal. Consider the
additive group
PicoQ(M) = Dion(M)//\,.
Let C(M) Dbe the fieid of meromorphic functions on M.
Note that isomorphism classes of finite Galois (resp. abelian)
branched coverings 1w : X —s> M and (isomorphism classes of)
finite Galois (resp. abelian) extensions F/C(M) of €(M) are

in one-to-one correspondence under

T — F = €(X),
F — F-normalization of M.

Then, by Theorem 6. 3, we have

Theorem 6. 7. TFor a'projective manifold M, there exists

a one-to-one correspondence F —s S = S(F) between the set of
all (isomorphism classes of) finite abelian extensions F/¢(M)
and the set of all finite subgroups S of PicOQ(M). The
correspondence satisfies (1) S(F) = Gal(F/C(M)) and (2)
Flc F2 1fvand only if S(Fl)c ;(Fg).

Note that the class field theory for fields of algebfaic

functions (of one variable) asserts the dual version of this
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theorem, using the generaligzed Jacobian variety, (see Serre [27]).
The content of this section can be generalized to finite
Galoils coverings of a projective manifold, using language of

unitary flat generalized vector bundles, along the line of Weil

[30]. See Namba [22] for detail.

7. Equivalence Problem and Autonomorphism Groups of Kummer

Coverings. Let 7w ¢+ X —— M be a Galois covering of M Dbranch-
ing along D = elDl + s + esDS with the covering transformation
group G = Ge. In this case, we also write in this section
m : (G, X) — (M : D).
For a second Galois covering w' : (G', X'")——(M' : D'),

a biholomorphism h-: X — X'  1s refered to as an equivalence,

written h : mRsm', 1If there 1s a biholomorphism H ¢t M — M

making a commutative diagram:

]

M__I}___*M,
h X

]

For a biholomorphism - — X, if we put

gD {h_lg'h | gt €aG'},

fl

Then we have ; ‘ v ,
"h: 1w <i::> G = G'h-

Let E(m) be the subgroup of Aut(X) consisting of
equivalences of 7 onto itself. We have an obvious short exact

seguence:

{1} G > E(m) . Aut (M, D),

29
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: *
where Aut(M, D) = {f € Aut(M) | £ D = D}.

" Definition 7. 1. A Galois covering m : X —> M dis said

to be rigid, if E(w) = Aut(X).

rigid?

This problem in the case of cyclié branched coverings of
Pl was proposed by H. Shiga in Wakabayashi's problem session,
Wakabayashi [29].

The second némed author, Namba [21] showed that cyclic
branched coverings of Pl are rigid under some conditions,
Moreover, by making use of a theorem of Matsumura-Monsky, he
proved that an m-fold cyclic covering 7 : X‘?~+ P branching
along a non-singular hypersurface of degree m in Pois rigid,
provided that
(i) m>UL, if n =1,

(i1) m >3, if n > 2, and
(1i1) m, n) ¥ (4, 2).

T. Kato [19] impro#ed the results of Namba in the cése of
cyclic branched coverings of Pl.

Let L =1L, + -+ + L, be a reduced divisor of P’ con-
sisting of s distinct hyperplanes Ll’ Tty Ls’ which will be

refered to as a hyperplane configuration of Fn;

A Kummer covering
m: (G, X) —— (F" : mL)

of P! branching along mL is nothing but a branched covering

30



oo

obtained as the Fox completion of a covering spread

‘Xo—f+ P~ L CP" associated with a Z/mZ-Hurewicz homomorphism
n N n : o n ‘ '
ﬂl(P - L, ¥) — H1<P‘ -L 3 7Z) — Hl(P - L 3 Z/m7).
Thus

6= H " - L 2/m2) = (Z/m2)°

and G 1s generated by covering transformations 81> "5 &g
corresponding to the normal loops Yis s Yg of Ll’ ey, LS,
respectively.

We are interested in the case where n = 2,

Let Q@ be an r-ple point of L j; g = Li-ﬂ teen Li .

Let ¢ = BQ(E2)'F~+ P

be the blowing up of P2 . at q. Then ¢'1(q) = E 1is a non-

singular rational curve and we have a reduced divisor
g + o . @ +
Py Pp

on E, where

_ ¥
pk"(d)Lk_E)nE

Definition 7. 2. If a Kummer covering of E branching
| 2

along m(pl + o0 + pr) is rigid, then (P
2

: mL) dis said to

be rigid at q. We shall say that  (P : mL) is locally rigid,

if for each r-ple (r = 4) point q of L, (EZ : mL) is rigid

at gq.

" In M. Kato [18], the first named author proved essentially
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Theorem 7. 3. Let = : (G, X) — (P2 : mL) and

T o (G, X')v——+:(P2 :mL') be kummer coverings of P2” such.

that L and L' are line configurations of Tz. ~Suppose that

(1) m > 6,

(2) each Lj» contains at least three singular points of L:
and

(3) (P°

: mL) 1is locally rigid.
If a biholomorphism h : X —— X' exists, then h : 7 n'.

In particular, m : X —> Eg is rigid.

: n
Since the Kummer covering = : (G, X) — (P : mL) 1is an
abelian mL-universal covering, it follows that a natural homomor-

phism
B(1) — Aut (B, L) (= Aut(E", mL), (m > 0))

is surjective. Thus we have

Corollary 7. 4. 7Under the assumption of Theorem 7. 3, we

have a short exact sequence:

{1} — o( = (/n2)>1) — Aut(X) —> Aut (P, L) — {1}.

The following results about rigidit&'of a Kummer covering

T : X — Pl branching along »m(pl'+ coe +‘ps) are known:

‘Theorem 7. 5. (1) if x(X) >0, i.e., either s = 2 or

s =3 and m < 3, then m 1s not rigid.
(2) if s =3 and m >4, then. 7 1is rigid (see Namba [21]).
(3) if s >4 and m>5(s - 1), then 7 is rigid (see M. Kato

[187).
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Therem 7. 6. (Sakurai-Suzuki [26]). - Suppose that x(X) < 0,

s 2 4 and that for any subset P' of '{pl, RN ps} with

#p' =4, aut(PL, p'). = {1}. Then = is rigid.

Remark 7. 7. Recently, Sakurai is improving the result

above extensively. He has announced in February, 1987, that
m is rigid, if x(X) < 0 and m = 11. It is plausible that

m 1s rigid, if x(X) < 0, i. e., Aut(X) is finite.

The proéf‘of Theorem 7. 3 is based on the following facts:
(I) If X 1is a surface of. general type, then Aut(X) is finite.
(ITI) The covering transformation group G is generated by
'complex reflections' 81 Tty By of the surface X.
(ITI) 1If a finite unitary reflection group of 02 contains a
unitary reflection of order =6, then if is abelian, refer

to Shephard-Todd [28].

References
[1] S, Bundgaard-J. Nielsen, On normal subgroups with finite
index ih F-groups, Math. Tidsskrift B, 1951, 56-58.
[2] H. Coxeter, Factor groups of the braid group, Proc. Fourth
Canad. Math. Congress, 95—122.
[3] G. dé Rham ~K. Kodaira, Harmonic integrals, Lec. Notes,
~ Inst. Adv. Study, Princeton, 1950
[M]‘ G. Fischer, Complex analytic geometry, Lec. Notes in Math.,

538(1976), Springer.

33



2

)
o

5]

(6]

[7]

[8]

(9]

[10]

[11]

[121]

[13]

[14]

[15]

(16]

[17]

R. Fox, On Fenchel's conjecture about F-groups, Math.
Tidsskrift B, 1952, 61-65.

F. Fox, Covering spaces with singularities, Lefschetz
symposium, Princeton Univ., 1957, 243-262.

T. Fukui, Irregularites of branched abelian coverings
over the complex projective plane, to appear.

T. Gaffney—R. Lazarsfeld, On the ramification of branched
coverings of P", 1Inv. Math. 59(1980), 53-58.

H. Grauert-R. Remmert, Komplexe R&ume, Math. Ann., 136

(1958), 245-318.

A. Grothendieck-M. Raynaud, SGA 1, Lec. Notes in Math.,
224(1971), Springer, 311-343.

F. Hirzebruch, Arrangements of lines and algebraic surfaces,
Prog. in Math. 36(1983), Birkhduser, 113-140.

H. Hochstadt, The functions of mathematical physics,
John Wiley & Sons, New York, 1971.

T. Ho6fer, Ballquotienten als verzweigte ﬁberlagerungen
der projektiven Ebene, Dissertation Bonn, 1985.

S. Iitaka, Algebraic geometry, Springer, 1982.

M. Ishida, The irregularities of Hirzebruch's examples of

2

surfaces of general type with cq

= 3c¢,, Math. Ann., 262

(1983), Lo7-420.

M. Kato, On the existence of finite principal uniformi-
zations of ®P2 along weighted line configurations, Mem.
Kyushu Univ., 38(1984), 127-132.

M. Kato, On uniformizations of orbifolds, Advanced Studies

in Pure Mathematics 9(1986), Homotopy Theory and Related

Topics, 1L9-172.

34



no
Al

[18] M. Kato, On biholomorphismsvbetwéen some Kummer ‘branched
covering spaces of complex projective plane, to appear'in
"A Fete of Topology" Papers in honor of Professor I. Tamura,
Academic Press Inc.

[19] T. Kato, Conformal equivalences of compact Riemaﬁn sur-
faces, Japan J. Math., 7(1981), 281-289.

[20] F. Klein, Gesammelte mathematische abhandlungen, IT,
1973, Springer.

[21] M. Namba, quivalence problem and automorphism groups of
certain compact Riemann surfaces, Tsukuba J. Math., 5(1981),
319-338. |

[22] M. Namba, Branched coverings and algebraic functions,
to appear in Research Notes in Math., Longman Science &
Technical.

[23] M. Namba, A class of differential equations of Fuchsian
type, to appear in Tohoku Math. J.

[24] H. Pinkham, Singularités de Klein, Springer'Lec.‘Notes,
in Math., 777(1980), 1-20.

[25] S. Roan, Branched covering spaces, Chinese J. Math. 7
(1979), 177-206. |

[26] K. Sakurai- M. Suzuki, Equivalence problem and automor-
phisms of some abelian branched coverings of the Riemann
sphere, to appear.

[27]1 J. Serre, Groupes algébriqueé et corps de classes,
Hermann Paris, 1959.

[28] G.C. Shephard-J.A. Todd, Finite unitary refléction groups,

- Can. J. Math., §(1954), 274-304.
[29] 1I. Wakabayashi, (Editor), Collected problems on functions

of several complex variables and related areas, Sugaku 32

35



2

24

(1980), 161-187, (in Japanese).
[30] A. Weil, Généralisation des fonctions abéliennes, J. de
Liouvilles, 17(1938), 47-87.

[31] O. Zariski, Collected papers, vol. III, 1978, 123-212.

Department of Mathematics
Kyushu University, Fukuoka, Japan

and

Mathematical Institute,
Tohoku University, Sendai, Japan

36



