## Branched Coverings of Complex Manifolds

Mitsuyoshi Kato and Makoto Namba

### Table of Contents

#### Introduction

- Chapter 1. Galois coverings
  - 1. Definition of branched coverings
  - 2. D-universal coverings
  - 3. Examples
  - 4. Existence of finite Galois coverings
- Chapter 2. Abelian coverings
  - 5. Abelian D-universal coverings
  - 6. Finite abelian coverings of projective manifolds
  - 7. Equivalence problem and automorphism groups of Kummer coverings

#### References

Introduction. The theory of branched coverings is one of good examples of amalgamation of different branches of mathematics: topology, complex analysis and algebraic geometry. See, for example, Zariski [31], Fox [6], Kato [17], Hirzebruch [11], Höfer [13], Ishida [15], Fukui [7], Gaffney-Lazarsfeld [8], etc..

It need not to be mentioned that the theory of (Galois) branched coverings is a geometric counterpart of the Galois theory of function fields.

In this article, we present a theory of Galois and abelian branched coverings of complex manifolds, emphasizing existence theorems and examples mainly along the line of Namba [22]. In the last section, we discuss the equivalence problem of Kummer coverings after Kato [18].

### Chapter 1. Galois Coverings.

1. Definition of Branched Coverings. First of all, we give a definition of branched coverings of complex manifolds. Since we treat infinite coverings as well as finite coverings, we define branched coverings as follows:

Definition 1. 1. Let M be an n-dimensional connected complex manifold. A <u>branched covering of M</u> is an irreducible normal complex space X together with a surjective holomorphic mapping  $\pi: X \longrightarrow M$  satisfying the following 4 conditions:

i) Every fiber of  $\pi$  is discrete.

- ii)  $R_{\pi} = \{p \in X \mid \pi^* : \mathcal{O}_{M,\pi(p)} \longrightarrow \mathcal{O}_{X,p} \text{ is not isomorphic} \}$  and  $B_{\pi} = \pi(R_{\pi})$  are hypersurfaces (i.e., pure codimension 1) of X and M, respectively, called the <u>ramification locus</u> and the <u>branch locus</u> of  $\pi$ , respectively. (Here,  $\mathcal{O}_{X,p}$  is the local ring of germs of holomorphic functions around p.) iii)  $\pi: X \pi^{-1}(B_{\pi}) \longrightarrow M B_{\pi}$  is a topological (i.e., unbranched) covering.
- iv) For every point  $q \in B_{\pi}$ , there is an open neighborhood W of q in M such that, for every connected component U of

 $\pi^{-1}(W)$ ,  $\pi^{-1}(q) \cap U$  consists of one point and  $\pi|_{U}: U \longrightarrow W$  is a surjective proper mapping (hence a finite mapping).

If  $R_{\pi}$  is empty, then  $\pi: X \longrightarrow M$  should be called an unbranched covering. But we call such a covering also a branched covering by abuse of language. A branched covering is said to be <u>finite</u> if every fiber is a finite set. The mapping degree of of  $\pi: X - \pi^{-1}(B_{\pi}) \longrightarrow M - B_{\pi}$  is called the <u>degree of</u>  $\pi$ . Using the <u>purity of branch loci</u> (see Fischer [4]), we have easily

Proposition 1. 2. An irreducible normal complex space X together with a surjective finite proper holomorphic mapping  $\pi: X \longrightarrow M$  is a finite branched covering, and vice versa.

Let  $\pi: X \longrightarrow M$  and  $\pi': X' \longrightarrow M$  be branched coverings of M. A morphism of  $\pi$  to  $\pi'$  is, by definition, a surjective holomorphic mapping  $\phi: X \longrightarrow X'$  such that  $\pi' : \phi = \pi$ . Thus we have the category of branched coverings of M.  $\phi$  is an isomorphism if  $\phi: X \longrightarrow X'$  is biholomorphic. In this case, we say that  $\pi$  and  $\pi'$  are isomorphic. In particular, if X = X' and  $\pi = \pi'$ , then an isomorphism is called a covering transformation of  $\pi$ . The set  $G_{\pi}$  of all covering transformations of  $\pi$  forms a group under compositions, called the covering transformation group.  $G_{\pi}$  acts on every fiber of  $\pi$ . A branched covering  $\pi: X \longrightarrow M$  is called a Galois covering if  $G_{\pi}$  acts transitively on every fiber.  $\pi: X \longrightarrow M$  is called an abelian (resp. a cyclic) covering if  $\pi$  is a Galois covering and  $G_{\pi}$  is an abelian (resp. a cyclic) group.

We denote by Sing  $\mathbf{B}_{\pi}^{}$  the singular locus of the branch

locus  $B_{\pi}$ . It can be shown that, for every point  $q \in B_{\pi}$  -  $\operatorname{SingB}_{\pi}$ , every point  $p \in \pi^{-1}(q)$  is a non-singual point of both X and  $\pi^{-1}(B_{\pi})$ . Moreover, for any sufficiently small open neighborhood W of q with a coordinate system  $(w_1, \dots, w_n)$  such that  $q = (0, \dots, 0)$  and  $B_{\pi} \cap W = \{w_n = 0\}$ , there is an open neighborhood W of W with a coordinate system  $(z_1, \dots, z_n)$  such that W is a connected component of W of W and W is locally given by

 $\pi | \mathrm{U} : (\mathrm{z}_1, \cdots, \mathrm{z}_n) \longrightarrow (\mathrm{w}_1, \cdots, \mathrm{w}_n) = (\mathrm{z}_1, \cdots, \mathrm{z}_{n-1}, \mathrm{z}_n^e),$  where e is a positive integer, (see Roan [25] and Namba [22]). For an irreducible component C of  $\pi^{-1}(\mathrm{B}_{\pi})$ , the integer e is constant for points of C -  $\pi^{-1}(\mathrm{SingB})$ , and is called the ramification index of  $\pi$  along C. (For convenience, the ramification index of  $\pi$  along an irreducible hypersurface of X which is not contained in  $\pi^{-1}(\mathrm{B}_{\pi})$  is defined to be 1.) If  $\pi$  is a Galois covering, then, for any irreducible component  $\mathrm{D}_1$  of  $\mathrm{B}_{\pi}$ , the ramification index e of  $\pi$  along irreducible components of  $\pi^{-1}(\mathrm{D}_1)$  is constant. In this case, e is called the ramification index of  $\pi$  along  $\mathrm{D}_1$ .

Let a hypersurface B of M be given. Suppose for simplicity that B has a finite number of irreducible components  $D_1$ , ...,  $D_s$ :

$$B = D_1 \cup \cdots \cup D_s.$$

Let  $e_1$ , ...,  $e_s$  be positive integers greater than one, and  $D = e_1 D_1 + \cdots + e_s D_s$ 

be a positive divisor on M.

<u>Definition 1. 3.</u> A branched covering  $\pi: X \longrightarrow M$  is

said to branch along D (resp. at most along D) if (i)  $B_{\pi} = B$  (resp.  $B_{\pi} \subset B$ ) and (ii) for every j ( $1 \le j \le s$ ) and for every irreducible component C of  $\pi^{-1}(D_j)$ , the ramification index of  $\pi$  along C is  $e_j$  (resp. divides  $e_j$ ).

For branched coverings  $\pi: X \longrightarrow M$  and  $\pi': X' \longrightarrow M$  of M, we denote  $\pi \geqslant \pi'$  or  $\pi' \leqslant \pi$  if there is a morphism of  $\pi$  to  $\pi'$ . If  $\pi \geqslant \pi'$  and  $\pi$  branches at most along D, then  $\pi'$  branches at most along D. If  $\pi$  is a Galois covering,  $\pi \geqslant \pi'$  and  $\pi \leqslant \pi'$ , then  $\pi$  and  $\pi'$  are isomorphic.

Definition 1. 4. A Galois covering  $\pi: X \longrightarrow M$  is called a <u>D-universal covering</u> if (i)  $\pi$  branches along D and (ii) for any covering  $\pi': X' \longrightarrow M$  which branches at most along D, the relation  $\pi \geqslant \pi'$  holds.

By the above remark, a D-universal covering is unique up to isomorphisms, if it exists. We denote it by

$$\tilde{\pi}: \tilde{M}(D) \longrightarrow M.$$

We now propose the following two problems:

Problem 1. When does a D-universal covering exist?

Problem 2. When does a finite Galois covering which branches along D exist?

As for a compact Riemann surface M, the problems were answered completely by Bundgaard-Nielsen [1] and Fox [5]:

Theorem 1. 5. Let M be a compact Riemann surface of genus g,  $p_1$ , ...,  $p_s$  be points of M,  $e_1$ , ...,  $e_s$  be positive integers greater than 1, and  $D = e_1p_1 + \cdots + e_sp_s$  be a positive divisor on M. Then the following three conditions are equivalent:

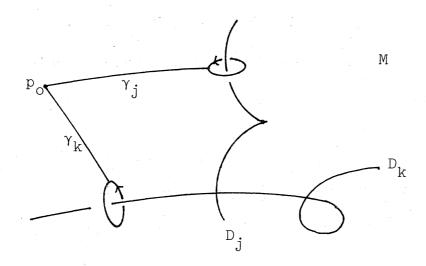
- (i) There does not exist a D-universal covering of M.
- (ii) There <u>does not</u> exist a finite Galois covering  $\pi: X \longrightarrow M$  which branches along D.
- (iii) Either (iii-1) g = 0 and s = 1 or (iii-2) g = 0, s = 2 and  $e_1 \neq e_2$ .

Example 1. 6. If M is a compact Reimann surface and  $\tilde{\pi}: \tilde{\mathbb{M}}(D) \longrightarrow \mathbb{M}$  exists, then  $\tilde{\pi}$  is an infinite covering, unless  $\mathbb{M} = \tilde{\mathbb{M}}(D) = \mathbb{P}^1$ , the complex projective line, and  $\tilde{\pi}$  is isomorphic to one of the following rational functions, (see Klein [20], Hochstadt [12]):

- (1)  $w = z^m$  (m = 1, 2, ...),  $D = m(\infty) + m(0)$ ,  $\tilde{G} = C_m$  (m-th cyclic group).
- (2)  $w = -(z^m 1)^2/4z^m$ ,  $D = m(\infty) + 2(0) + 2(1)$ ,  $\tilde{G} = D_m$  (m-th dihedral group).
- (3)  $w = (z^{\frac{1}{4}} + 2\sqrt{3}z^2 1)^3/(z^{\frac{1}{4}} 2\sqrt{3}z^2 1)^3,$  $D = 3(\infty) + 3(0) + 2(1), \tilde{G} \approx A_{ll}.$
- (4)  $w = (z^8 + 14z^4 + 1)^3/108z^4(z^4 1)^4$ ,  $D = 4(\infty) + 3(0) + 2(1)$ ,  $\tilde{G} \simeq S_{\mu}$ .
- (5)  $w = \frac{(z^{20} 228z^{15} + 494z^{10} + 228z^{5} + 1)^{3}}{-1728z^{5}(z^{10} + 11z^{5} 1)^{5}}$

 $D=5(\infty)+3(0)+2(1),\ \tilde{G}\cong A_5.$  (Here (a) is the point divisor of  $\alpha\in\mathbb{P}^1,\ \tilde{G}=G_{\widetilde{\pi}}$  and  $A_n$  (resp.  $S_n$ ) is the alternating (resp. symmetric) group of n letters.)

2. D-universal coverings. In this section, we give answers to the problems at the end of \$1, using language of fundamental groups.



## Figure 1

Take a point  $p_o \in M-B$  and fix it once for all. Let  $\gamma_j$  be a loop in M-B starting and terminating at  $p_o$ , encircling a point  $p \in D_j$  - SingB in the positive sense as in Figure 1.  $\gamma_j$  is called a <u>normal loop of</u>  $D_j$ . We identify  $\gamma_j$  with its homotopy class in  $\pi_1(M-B,p_o)$ . Let

$$J = \langle \gamma_1^{e_1}, \dots, \gamma_s^{e_s} \rangle^{\pi_1}$$

be the smallest normal subgroup of  $\pi_1(M-B,\,p_o)$  which contains  $\gamma_1^{e_1},\,\cdots,\,\gamma_s^{e_s}.$ 

Definition 2. 1. A subgroup K of  $\pi_1(M-B, p_0)$  with  $J \subset K$  is said to be D-faithful if the following condition is satisfied: If  $\gamma_j^d$  belongs to K, then  $d \equiv 0 \pmod{e_j}$  for every  $j \ (1 \leq j \leq s)$ .

For every point  $p \in SingB$ , take a sufficiently small ball W (with respect to a metric on M) with the center p such that  $\pi_1(W-B) \cong \pi_{1,\log p}(M-B)$ , (the local fundamental group at p). Let

$$i_*$$
:  $\pi_1(W - B) \longrightarrow \pi_1(M - B, p_0)$ 

be the homomorphism induced by the inclusion mapping i: W - B  $\hookrightarrow$  M - B.

Definition 2. 2. A subgroup K of  $\pi_1(M-B, p_0)$  with  $J \subset K$  is said to be <u>locally cofinite</u> if  $i_{*}^{-1}(K)$  is a subgroup of  $\pi_1(W-B)$  of finite index for every point  $p \in Sing B$ .

Theorem 2. 3. For any covering  $\pi: X \longrightarrow M$  which branches at most along D,  $K = \pi_*(\pi_1(X - \pi^{-1}(B)))$  contains J and is locally cofinite. Conversely, for any locally cofinite subgroup  $K \ ( \supset J )$  of  $\pi_1(M - B, p_o)$ , there exists a unique (up to isomorphisms) covering  $\pi: X \longrightarrow M$  which branches at most along D such that  $\pi_{\#}(\pi_1(X - \pi^{-1}(B))) = K$ . In this case,  $\pi$  branches along D if and only if K is D-faithful.

For the proof of the converse, we construct a topological covering  $\pi': X' \longrightarrow M-B$  such that  $K = \pi_*^1(\pi_1(X'))$ , and then we extend  $\pi'$  to

$$\pi : X \longrightarrow M$$

using a theorem in Grauert-Remmert [9], (see also Grothendieck-Raynaud [10], p.340). Topologically, this is so called a <u>Fox</u> <u>completion</u>, (see Fox[6]). See Namba [22] for detail. By

Theorem 2.3,

Theorem 2. 4. There exists a finite Galois covering  $\pi: X \longrightarrow M$  which branches along D if and only if there exists a normal subgroup K of  $\pi_1(M-B,p_0)$  of finite index which contains J and is D-faithful. The correspondence  $\pi \to K = \pi_*(\pi_1(X-\pi^{-1}(B)))$  between (isomorphism classes of) such  $\pi$ 's and such K's is one-to-one. In this case,  $G_{\pi}$  is isomorphic to  $\pi_1(M-B,p_0)/K$ .

In fact, for such a normal subgroup K, we have  $\frac{\pi_1(W-B)}{i_*^{-1}(K)} = \frac{i_*(\pi_1(W-B))}{K \cap i_*(\pi_1(W-B))} = \frac{K \cdot i_*(\pi_1(W-B))}{K} = \frac{\pi_1(M-B,p_0)}{K}$  under the above notation. Hence K is necessarily locally

Now, put

cofinite.

$$\tilde{K} = \cap K$$

where the intersection  $\cap$  runs over all subgroups K of  $\pi_1(M-B,\,p_0)$  which contain J and are locally cofinite.  $\widetilde{K}$  is then a normal subgroup of  $\pi_1(M-B,\,p_0)$  which contains J.

Theorem 2.5. A D-universal covering  $\tilde{\pi}: \tilde{M}(D) \longrightarrow M$  exists if and only if  $\tilde{K}$  is locally cofinite and D-faithful. In this case,  $\tilde{K} = \tilde{\pi}_*(\pi_1(\tilde{M}(D) - \tilde{\pi}^{-1}(B)))$  and  $G_{\tilde{\pi}} = \pi_1(M - B, p_0)/\tilde{K}$ . Moreover,  $\tilde{M}(D)$  is simply connected.

It is easy to see that  $\widetilde{M}(D)$  is simply connected. In fact, if  $\mu: \widetilde{X} \longrightarrow \widetilde{M}(D)$  is a (topological) universal covering

of  $\widetilde{\mathbb{M}}(D)$ , then  $\widetilde{\pi} \cdot \mu : \widetilde{X} \longrightarrow M$  is a covering which branches along D such that  $\widetilde{\pi} \cdot \mu \geqslant \widetilde{\pi}$ . By the D-universality of  $\widetilde{\pi}$ , we have  $\widetilde{\pi} \cdot \mu \leqslant \widetilde{\pi}$ . Hence  $\mu$  is an isomorphism.

Theorem 2. 6. Let  $\pi: X \longrightarrow M$  be a Galois covering which branches along D. Suppose that X is non-singular and simply connected. Then  $\pi$  is D-universal. In this case,  $\widetilde{K}=J$  and  $G_{\pi}=\pi_1(M-B,\,p_O)/J$ .

In this theorem, the condition of the non-singularity of X can not be dropped, as the following example shows:

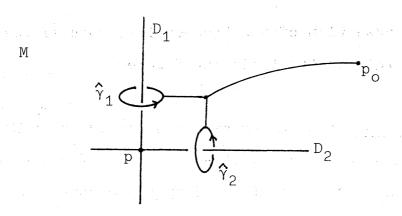
Example 2.7. Put  $M = \mathbb{C}^2$  and let (u, v) be the coordinate system on  $\mathbb{C}^2$ . Put  $D_1 = \{u = 0\}$ ,  $D_2 = \{v = 0\}$  and  $D = 2D_1 + 2D_2$ . Put  $X = \{(u, v, w) \in \mathbb{C}^3 \mid w^2 = uv\}$  and

$$\pi: (u, v. w) \in X \longmapsto (u, v) \in \mathfrak{c}^2.$$

Then  $\pi$  is a cyclic covering of degree 2 which branches along D. X is simply connected, for X is a cone. But  $\pi$  is not D-universal. In fact, putting Y =  $\mathbb{C}^2$  and

 $\mu: (x, y) \in Y \longmapsto (u, v, w) = (x^2, y^2, xy) \in X,$  the composition  $\pi \cdot \mu: Y \longrightarrow \mathbb{C}^2$  is a covering of degree 4 which branches along D and  $\pi \cdot \mu \geqslant \pi$ . (By Theorem 2. 6,  $\pi \cdot \mu$  is D-universal.)

For the rest of this section, we suppose that B is simple normally crossing.



## Figure 2

For any point  $p \in SingB$ , let  $(w_1, \dots, w_n)$  be a local coordinate system around p such that  $p = (0, \dots, 0)$  and

$$B = \{(w_1, \dots, w_n) \mid w_k = \dots = w_n = 0\}.$$

locally. Let

$$\{w_{j} = 0\} = D_{j} \quad (k \le j \le n),$$

locally, say. Let  $\hat{\gamma}_j$  be a loop in M-B starting and terminating at  $p_o$ , encircling a point of  $D_j$  - SingB near p in the positive sense as in Figure 2. Then  $\hat{\gamma}_j$  is conjugate to  $\gamma_j$  in  $\pi_1(M-B,\,p_o)$ .  $\hat{\gamma}_k$ , ...,  $\hat{\gamma}_n$  are mutually commutative. For a sufficiently small ball W with the center p, we have

$$\pi_1(W - B) = (\hat{\gamma}_k)^{\mathbb{Z}} \cdots (\hat{\gamma}_n)^{\mathbb{Z}}$$

and

$$(\hat{\gamma}_k^{e_k})^{\mathbb{Z}} \cdots (\hat{\gamma}_n^{e_n})^{\mathbb{Z}} \subset i_*^{-1}(J) \subset \pi_1(W - B).$$

Hence J is locally cofinite, so that  $\tilde{K} = J$ . Thus

Theorem 2. 8. If B is simple normally crossing, then a D-universal covering  $\tilde{\pi}: \tilde{M}(D) \longrightarrow M$  exists if and only if J is D-faithful. In this case,  $J = \tilde{K}$  and  $G_{\tilde{\pi}} = \pi_1(M - B, p_0)/J$ . Moreover, if (under the above notation),  $(\hat{\gamma}_k)^2 \cdots (\hat{\gamma}_n)^2 = i_*^{-1}(J)$  for every point  $p \in SingB$ , then  $\tilde{M}(D)$  is non-singular.

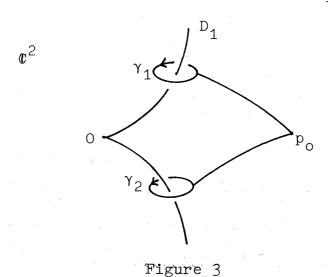
The last assertion of the theorem is a special case of Kato [17], as well as the following theorem.

Theorem 2. 9. Let B be simple normally crossing. Let K be a normal subgroup of  $\pi_1(M-B,p_0)$  of finite index which contains J and is D-faithful. Suppose moreover that, for any point  $p \in SingB$ , K satisfies the following condition: (under the above notation)

if  $\hat{\gamma}_k^{d_k} \cdots \hat{\gamma}_n^{d_n} \in K$ , then  $d_k \equiv 0 \pmod{e_k}, \cdots, d_n \equiv 0 \pmod{e_n}$ . Then the irreducible normal complex space X is non-singular, where  $\pi: X \longrightarrow M$  is the finite Galois covering which branches along D and corresponds to K under Theorem 2. 4.

3. Examples. It is not easy in general to apply the results of \$2 to concrete examples. (Even the calculation of  $\pi_1(M-B,\,p_0)$  is not easy.) In this section, we discuss two examples.

Case 1. Put  $M = \mathbb{C}^2$ ,  $B = D_1 = \{(x,y) \in \mathbb{C}^2 \mid x^3 = y^2\}$ ,  $\ell$ : a positive integer greater than 1, and  $D = \ell D_1$ .



As is well known,  $\pi_1(\mathbb{C}^2-B,\,p_0)$  is isomorphic to 3rd braid group  $B_3$ ; taking the loops  $\gamma_1$  and  $\gamma_2$  as in Figure 3, we have

$$\pi_1(\mathbb{C}^2 - B, p_0) = \langle \gamma_1, \gamma_2 | \gamma_1 \gamma_2 \gamma_1 = \gamma_2 \gamma_1 \gamma_2 \rangle$$
.

Here the right hand side means the group generated by  $\gamma_1$  and  $\gamma_2$  with the generating relation  $\gamma_1\gamma_2\gamma_1=\gamma_2\gamma_1\gamma_2$ . Since  $\gamma_2=(\gamma_2\gamma_1)^{-1}\gamma_1(\gamma_2\gamma_1)$ ,  $\gamma_2$  is conjugate to  $\gamma_1$ . Let J be the smallest normal subgroup of  $\pi_1(\mathbb{C}^2-B,\,p_0)$  containing  $\gamma_1^{\ell}$  (and so  $\gamma_2^{\ell}$ ). Then

$$\pi_1(\mathbb{C}^2 - B, p_0)/J = G_{\ell} = \langle a, b \mid a^{\ell} = b^{\ell} = 1, aba = bab \rangle$$
 by the correspondence:  $\gamma_1 \longmapsto a, \gamma_2 \longmapsto b$ . We identify these groups through the isomorphism.

The cyclic covering

$$\pi_{\ell}: X_{\ell} \longrightarrow M = c^2,$$

corresponding to the kernel of the homomorphism

$$f_{\ell}: G_{\ell} \longrightarrow \mathbb{Z}/\ell \mathbb{Z}, (f_{\ell}(a) = f_{\ell}(b) = 1)$$

is given by

$$\pi_{\ell}: X_{\ell} = \{(x,y,z) \in \mathbb{C}^3 \mid Z^{\ell} = x^3 - y^2\} \longrightarrow M = \mathbb{C}^2$$

$$(x,y,z) \longmapsto (x,y)$$

and branches along  $D = \ell D_1$ . But  $\pi_{\ell}$  is <u>not</u> D-universal.

The following argument on the structure of  $\mbox{G}_{\mbox{\sc loop}}$  was informed by Mr. Mizutani. See also Coxeter [2]. First of all,

Lemma 3. 1. c =  $(aba)^2$  is an element of the center  $Z(G_{\boldsymbol{\ell}})$  of  $G_{\boldsymbol{\ell}}$ .

Next, consider the Schwarz' triangular group

$$G(2, 3, \ell) = \langle S, T | S^2 = T^3 = (ST)^{\ell} = 1 \rangle,$$

and the homomorphism,

$$g: G_{\ell} \longrightarrow G(2, 3, \ell)$$

defined by g(a) = ST and g(b) = TS.

Proposition 3. 2. The following sequence is exact:

$$1 \longrightarrow \langle c \rangle \longrightarrow G_{\varrho} \xrightarrow{g} G(2, 3, \ell) \longrightarrow 1$$

From this proposition, we have the following table:

| l   | ord(c) | G(2, 3, 1)     | <sup>G</sup> ℓ                                                                   | ord G <sub>2</sub> |
|-----|--------|----------------|----------------------------------------------------------------------------------|--------------------|
| 2   | 1      | s <sub>3</sub> | s a s s s s s s s s s s s s s s s s s s                                          | 6                  |
| 3   | 2      | A <sub>4</sub> | SL(2 <b>, Z</b> /3 <b>Z</b> )                                                    | 24                 |
| 4   | 4      | Sų             | $G_{\mu}/Z(G_{\mu}) \simeq S_{\mu}$ , $Z(G_{\mu}) \simeq \mathbb{Z}/4\mathbb{Z}$ | 96                 |
| 5   | 10     | A <sub>5</sub> | SL(2, <b>Z</b> /5Z)×( <b>Z</b> /5 <b>Z</b> )                                     | 600                |
| 6   | œ      | infinite group | nfinite group infinite solvable group                                            |                    |
| ≥ 7 | ∞      | infinite group | infinite unsolvable group                                                        | ∞                  |

If  $\ell$  satisfies  $2 \le \ell \le 5$ , then (under the notations of §2)  $\tilde{K} = J$  and there exists a D-universal covering

$$\tilde{\pi} : \tilde{M}(D) \longrightarrow M = \mathbb{C}^2$$
.

In this case,  $\tilde{\pi}$  is a finite Galois covering such that  $G_{\widetilde{\pi}} = G_{\ell}$ . Moreover, we have  $\tilde{M}(D) = C^2$  and  $\tilde{\pi}$  is the composition

$$\widetilde{M}(D) = \mathbb{C}^2 \xrightarrow{\mu} X_{\ell} \xrightarrow{\pi_{\ell}} M = \mathbb{C}^2$$
,

where µ is the projection

$$\mu : \widetilde{M}(D) = \mathbb{C}^2 \longrightarrow X_0 = \mathbb{C}^2/H$$

where H is a finite subgroup of  $GL(2, \mathbb{C})$ . The origin of  $X_{\mathbb{Q}}$  in this case is called the <u>Klein singularity</u>, (see Pinkham [24]).

If  $\ell = 6$ , then we have

Proposition 3. 3. The kernel of  $f_6: G_6 \longrightarrow \mathbb{Z}/6\mathbb{Z}$  ( $f_6(a) = f_6(b) = 1$ ) is given by  $\langle a^{-1}b, ab^{-1} \rangle$  and is isomorphic to  $N = \left\{ \begin{pmatrix} 1 & i & j \\ 0 & 1 & k \\ 0 & 0 & 1 \end{pmatrix} \middle| i, j, k \in \mathbb{Z} \right\}$ .

The isomorphism is given by

$$a^{-1}b \longmapsto \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, ab^{-1} \longmapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

We identify  $ker(f_6)$  with N through the isomorphism. For any positive odd integer r,

is a normal subgroup of  $G_6$  of index  $6r^3$  and is D-faithful. Hence

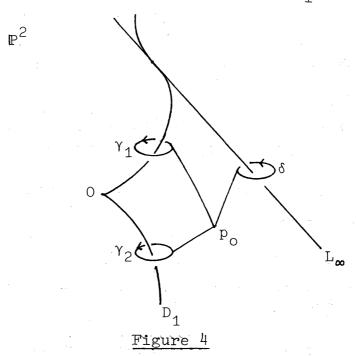
<u>Proposition 3. 4.</u> For any positive odd integer r, there is a Galois covering  $v_r: Y_r \longrightarrow M = \mathbb{C}^2$  of degree  $6r^3$  branching along  $6D_1$ .  $v_r \leq v_r$ , if and only if r|r'.

$$\bigcap_{r:\text{odd}} N(r) = \{1\},\$$

We have

Proposition 3. 5. If  $D = 6D_1$ , then there <u>does not</u> exist a D-universal covering of  $M = \mathbb{C}^2$ .

Case 2. Put  $M = \mathbb{P}^2$  (the complex projective plane),  $B = D_1 \cup D_2$ ,  $D_1 = \text{the closure in } \mathbb{P}^2$  of the affine curve  $\{(x, y) \in \mathbb{C}^2 \mid x^3 - y^2 = 0\}$ ,  $D_2 = L_\infty$  (the line at infinity),  $\ell$ , m: positive integers greater than 1, and  $D = \ell D_1 + m D_2$ .



Taking the loops  $\gamma_1$ ,  $\gamma_2$  and  $\delta$  as in Figure 4, we have

$$\pi_1(M - B, p_0) = \langle \gamma_1, \gamma_2, \delta | \gamma_1 \gamma_2 \gamma_1 = \gamma_2 \gamma_1 \gamma_2 = \delta^{-1} \rangle$$
.

Let J be the smallest normal subgroup of  $\pi_1(M-B,p_0)$  which contains  $\gamma_1^\ell$ ,  $\gamma_2^\ell$  and  $\delta^m$ . Then

$$\pi_1(\mathbb{P}^2 - B, p_0)/J = G_{\ell,m}$$
,

where

$$G_{\ell,m} = \langle \alpha, \beta, \delta | \alpha^{\ell} = \beta^{\ell} = \delta^{m} = 1, \alpha \beta \alpha = \beta \alpha \beta = \delta^{-1} \rangle,$$

$$(\gamma_{1} \longmapsto \alpha, \gamma_{2} \longmapsto \beta, \delta \longmapsto \delta).$$

Let  $G_{\ell}$  be the group in Case 1. There is a surjective homomorphism

$$h : G_{\ell} \longrightarrow G_{\ell,m}$$

defined by  $h(a) = \alpha$  and  $h(b) = \beta$ .

For simplicity, we assume that m is a positive <u>even</u> integer. Then the following sequence is exact:

$$1 \longrightarrow \langle c^{m/2} \rangle \longrightarrow G_{\ell} \xrightarrow{h} G_{\ell,m} \longrightarrow 1.$$

In particular, if the pair (l, m) is one of the following table:

| - in the second | R | 2  | 3   | 4 | 5   |
|-----------------|---|----|-----|---|-----|
|                 | m | .2 | .4. | 8 | 2.0 |

then  $G_{\ell,m} \stackrel{\sim}{=} G_{\ell}$  and there exists a D-universal covering  $\tilde{\pi} : \tilde{M}(D) \longrightarrow M = IP^2 \quad (D = \ell D_1 + mD_2).$ 

In this case,  $\tilde{\pi}$  is a finite Galois covering such that  $G_{\tilde{\pi}} \cong G_{\ell,m} \cong G_{\ell}$ .

If  $\ell = 6$ , then we have by Proposition 3. 3,

<u>Proposition 3. 6.</u> For any positive integer m such that m  $\equiv$  2 (mod 4), there is a Galois covering  $\phi_m: Z_m \longrightarrow \mathbb{P}^2$  of degree  $6(m/2)^3$  branching along D =  $6D_1 + mL_{\infty}$ .  $\phi_m \leqslant \phi_m$ , if and only if m|m'.

On the other hand, since the sequence

$$1 \longrightarrow \langle c \rangle / \langle c^{m/2} \rangle \longrightarrow G_{\ell,m} \longrightarrow G(2,3,\ell) \longrightarrow 1$$

is exact, we have in particular (putting m = 2),

$$G_{\ell,2} = G(2,3,\ell).$$

Putting  $\ell=2$ , we identify  $G_{6,2}$  with G(2,3,6) through the isomorphism. It is well known that G(2,3,6) has the normal subgroup L such that

G(2, 3, 6)/L 
$$\simeq$$
  $\mathbb{Z}/6\mathbb{Z}$ ,  
L  $\simeq$   $\mathbb{Z} \oplus \mathbb{Z}$  (the direct sum).

Identifying L with  $\mathbf{Z} + \mathbf{Z}$  through the isomorphism, consider, for any positive integer q, the normal subgroup

$$L_{q} = \{(j, k) \in \mathbb{Z} \oplus \mathbb{Z} \mid j \equiv k \equiv 0 \pmod{q}\}$$
 of index  $6q^{2}$  of  $G(2, 3, 6)$ . Since

$$\bigcap_{\mathbf{q}} L_{\mathbf{q}} = \{1\} ,$$

we have

<u>Proposition 3. 7.</u> If  $D = 6D_1 + 2L_{\infty}$ , then there <u>does not</u> exist a D-universal covering of  $\mathbb{P}^2$ .

By another method (see Namba [23]), we can show

Proposition 3. 8. For any positive integer k, there exists a finite Galois covering  $\pi: X \longrightarrow \mathbb{P}^2$  branching along D =  $6kD_1 + 2kL_{\infty}$ .

4. Existence of Finite Galois Coverings. As for Problem 2 in \$1, it is desirable to give (sufficient) conditions for the existence without using language of fundamental groups. Theorem 1.5 is such a theorem. In this section, we give such theorems.

Let  $L_1$ , ...,  $L_s$  be distinct lines on  $\mathbb{P}^2$  and put  $B = L_1 \cup \cdots \cup L_s$ . Put

$$\Delta = \{ p \in B \mid m_p(B) \ge 3 \},$$

where  $m_p(B)$  is the multiplicity at p of the curve B.  $\Delta$  is a finite point set.

Theorem 4. 1. Suppose that  $L_j \cap \Delta$  is non-empty for every j ( $1 \le j \le s$ ). Then, for any postive integers  $e_1$ , ...,  $e_s$  greater than 1, there exists a finite Galois covering  $\pi: X \longrightarrow \mathbb{P}^2$  branching along  $D = e_1L_1 + \cdots + e_sL_s$ .

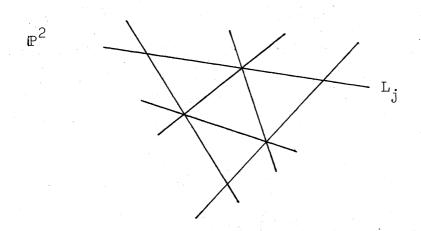


Figure 5

See Kato [16] for the proof of the theorem. We generalize the theorem as follows:

Theorem 4. 2. Let M be an  $n (\geq 2)$  dimensional projective

manifold and  $D_1$ , ...,  $D_s$  be distinct irreducible hypersurfaces of M. Suppose that there are fixed component free linear pencils  $\Lambda_1$ , ...,  $\Lambda_t$  on M such that (1) every  $D_j$  is a member of some  $\Lambda_k$  and (ii) every  $\Lambda_k$  contains at least three  $D_j$ 's as its members. Then, for any positive integers  $e_1$ , ...,  $e_s$  greater than 1, there exists a finite Galois covering  $\pi\colon X\to M$  branching along  $D=e_1D_1+\cdots+e_sD_s$ .

Note that Theorem 4. 1 follows from Theorem 4. 2, putting  $M = \mathbb{P}^2$ ,  $D_j = L_j$  ( $1 \le j \le s$ ) and  $\Lambda_k =$  the linear pencil given by the projection with the center point  $p_k \in \Delta$ . See Namba [22] for the proofs of Theorem 4. 2 and the following theorem:

Theorem 4. 3. Let  $C_1$ , ...,  $C_s$  be distinct irreducible conics on  $\mathbb{P}^2$  such that, for any  $C_j$ , there is a  $C_k$  which is tangent to  $C_j$  at two distinct points. Then, for any positive integers  $e_1$ , ...,  $e_s$  greater than 1, there exists a finite Galois covering  $\pi: X \longrightarrow \mathbb{P}^2$  branching along  $D = e_1D_1 + \cdots + e_sD_s$ .

 $\mathbb{P}^2$ 

Figure 6

# Chapter 2. Abelian Coverings.

5. Abelian D-universal coverings. Let M be an n-diemensional connected complex manifold. Let B = D<sub>1</sub> U··· UD<sub>s</sub>, D =  $e_1^D_1$  + ··· +  $e_s^D_s$ , p<sub>0</sub>  $\in$  M - B,  $\gamma_j$  (1  $\leq$  j  $\leq$  s) and J =  $e_1^D$  ···,  $\gamma_s^{e_s} > \pi_1$  be as in §1 and §2. Put  $\hat{J} = J \cdot [\pi_1(M-B, p_0), \pi_1(M-B, p_0)]$ ,

where [G, G] is the commutator subgroup of G. Then we can easily prove the following lemma.

Lemma 5. 1. 
$$\pi_1(M - B, p_0)/\hat{J} = H_1(M - B; \mathbf{Z})/(\mathbf{Z}(e_1\gamma_1) + \cdots + \mathbf{Z}(e_s\gamma_s)).$$

Here  $H_1(M-B; \mathbb{Z})$  is the first homology group of M-B and  $\mathbb{Z}(e_1\gamma_1)+\cdots+\mathbb{Z}(e_s\gamma_s)$  is the subgroup of  $H_1(M-B; \mathbb{Z})$  generated by  $e_1\gamma_1, \cdots, e_s\gamma_s$ , which are regarded as elements of  $H_1(M-B; \mathbb{Z})$ .

Moreover, we can prove:

Proposition 5. 2.  $\hat{J}$  is a normal subgroup of  $\pi_1(M-B,p_0)$  which contains J and is locally cofinite.

The covering  $\pi_o: X_o \longrightarrow M$  which branches at most along D, corresponding to  $\hat{J}$  by Theorem 2.1 is an abelian covering. Moreover, for any abelian covering  $\pi: \mathcal{X} \longrightarrow M$  which branches at most along D, the relation  $\pi_o \geqslant \pi$  holds.

Definition 5. 3. An abelian covering  $\tilde{\pi}_{ab}: \tilde{M}_{ab}(D) \longrightarrow M$  is called an abelian D-universal covering if (i)  $\tilde{\pi}_{ab}$  branches

along D and (ii) for any abelian covering  $\pi: X \longrightarrow M$  which branches at most along D, the relation  $\tilde{\pi}_{ab} \geqslant \pi$  holds.

By the above consideration, if an abelian D-universal covering  $\tilde{\pi}_{ab}: \tilde{\mathbb{M}}_{ab}(D) \longrightarrow \mathbb{M}$  exists, then it must be isomorphic to  $\pi_o: X_o \longrightarrow \mathbb{M}$ . Conversely, if  $\pi_o: X_o \longrightarrow \mathbb{M}$  branches along D, then it is an abelian D-universal covering. Thus

Theorem 5. 4. There exists an abelian D-universal covering  $\tilde{\pi}_{ab}: \tilde{\mathbb{M}}_{ab}(\mathbb{D}) \longrightarrow \mathbb{M}$  if and only if the following condition is satisfied: if  $d\gamma_j \in \mathbb{Z}(e_1\gamma_1) + \cdots + \mathbb{Z}(e_s\gamma_s)$ , then  $d \equiv 0 \pmod{e_j}$  for every  $1 \leq j \leq s$ . In this case, the covering transformation group of  $\tilde{\pi}_{ab}$  is isomorphic to  $\tilde{\mathbb{G}}_{ab} = \mathbb{H}_1(\mathbb{M} - \mathbb{B}; \mathbb{Z})/(\mathbb{Z}(e_1\gamma_1) + \cdots + \mathbb{Z}(e_s\gamma_s))$ .

For example, let  $M = \mathbb{C}^2$ ,  $B = D_1$  and  $D = \ell D_1$  be as in Case 1 of §3. Then we have  $H_1(\mathbb{C}^2 - B ; \mathbb{Z}) = \mathbb{Z}\gamma_1$  and the condition in Theorem 5. 4 is clearly satisfied. In this case,  $\widetilde{\pi}_{ab} : \widetilde{\mathbb{C}^2}_{ab}(D) \longrightarrow \mathbb{C}^2$  is nothing but the cyclic covering

$$\pi_{\ell} : X_{\ell} = \{(x, y, z) \in \mathbb{C}^3 \mid Z^{\ell} = x^3 - y^2\} \longrightarrow \mathbb{C}^2$$

$$(x, y, z) \longmapsto (x, y)$$

considered in Case 1 of §3.

Let  $M = \mathbb{P}^2$ ,  $B = D_1 \cup L_{\infty}$  and  $D = \Omega_1 + mL_{\infty}$  be as in Case 2 of §3. Then we have

$$H_1(\mathbb{P}^2 - B ; \mathbb{Z}) = (\mathbb{Z}\gamma_1 + \mathbb{Z}\gamma_2)/\mathbb{Z}(3\gamma_1 + \gamma_2).$$

Hence the condition in Theorem 5. 4 is equivalent in this case to the condition:  $\ell/(3, \ell) = m$ , where  $(3, \ell)$  is the GCD of 3 and  $\ell$ . If this is the case,  $\tilde{\pi}_{ab} : \mathbb{P}^2_{ab}(\mathbb{D}) \to \mathbb{P}^2$  is a finite

covering.

In general, if  $M = \mathbb{P}^n$ ,  $D_j$  is an irreducible hypersurface of degree  $d_j$   $(1 \le j \le s)$  and  $B = D_1 \cup \cdots \cup D_s$ , then we have  $H_1(\mathbb{P}^n - B ; \mathbb{Z}) = (\mathbb{Z}\gamma_1 + \cdots + \mathbb{Z}\gamma_s)/(\mathbb{Z}(d_1\gamma_1 + \cdots + d_s\gamma_s)).$  Thus

Theorem 5.5. Let  $D_j$  be distinct irreducible hypersurfaces of degree  $d_j$  ( $1 \le j \le s$ ) of the complex projective space  $\mathbb{P}^n$ . Put  $D = e_1D_1 + \cdots + e_sD_s$ . Then there exists an abelian D-universal covering  $\tilde{\pi}_{ab}: \widehat{\mathbb{P}^n}_{ab}(D) \longrightarrow \mathbb{P}^n$  if and only if  $e_j/(d_j, e_j)$  divides

 $<e_1/(d_1,e_1),\cdots,e_{j-1}/(d_{j-1},e_{j-1}),e_{j+1}/(d_{j+1},e_{j+1}),\cdots,e_s/(d_s,e_s)>$  for every j (1  $\leq$  j  $\leq$  s), where  $(\cdots)$  and  $<\cdots>$  denote the GCD and LCM of the components, respectively. In this case,  $\widetilde{\pi}_{ab}$  is a finite covering.

As for a compact Riemann surface M, Theorem 5. 4 can be rewritten as

Theorem 5. 6. Let  $p_j$   $(1 \le j \le s)$  be distinct points on a compact Riemann surface M of genus g. Put  $D = e_1 p_1 + \cdots + e_s p_s$ . Then there exists an abelian D-universal covering  $\tilde{\pi}_{ab}: \tilde{M}_{ab}(D) \longrightarrow M$  if and only if  $e_j$  divides.

$$\{e_1, \dots, e_{j-1}, e_{j+1}, \dots, e_s\}$$

for every j (1  $\leq$  j  $\leq$  s). In this case,  $\tilde{\pi}_{ab}$  is an infinite covering if g  $\geq$  1.

Finally, as for finite abelian coverings of a complex manifold M, we have

Theorem 5.7. Let M be a connected complex manifold,  $B = D_1 \cup \cdots \cup D_s, \ D = e_1 D_1 + \cdots + e_s D_s \ \text{and} \ \gamma_j \ (1 \le j \le s) \ \text{be}$  as before. Then there exists a one-to-one correspondence  $\pi \longrightarrow K = K(\pi) \ \text{between isomorphism classes of finite abelian}$  coverings  $\pi: X \longrightarrow M$  which branches at most along D, and subgroups K of finite index of

$$\tilde{G}_{ab} = H_1(M - B; \mathbb{Z})/(\mathbb{Z}(e_1\gamma_1) + \cdots + \mathbb{Z}(e_s\gamma_s)).$$

The correspondence satisfies (1)  $G_{\pi} = \widetilde{G}_{ab}/K(\pi)$ , (2)  $\pi_1 \leq \pi_2$  if and only if  $K(\pi_1) \supset K(\pi_2)$  and (3)  $\pi$  branches along D if and only if  $K(\pi)$  satisfies the following condition: if  $d\gamma_j \in K(\pi)$ , then  $d \equiv 0 \pmod{e_j}$  for  $1 \leq j \leq s$ .

6. Finite Abelian Coverings of Projective Manifolds. In this section, we suppose that M is a projective manifold. We discuss finite abelian coverings of M. Here are two typical examples of abelian coverings.

Example 6. 1. Let  $\hat{\pi}: L \longrightarrow M$  be a holomorphic line bundle on M and  $\xi = \{\xi_{\alpha}\}$  be a holomorphic section of  $L^{\textcircled{Se}}$  (the e-times tensor product of L for a postive integer e greater than 1), where  $\xi_{\alpha}$  is a holomorphic function on an open set  $U_{\alpha}$  on which L is trivial. Suppose that the zero divisor  $(\xi)$  of  $\xi$  has no multiple component:

$$(\xi) = D_1 + \cdots + D_s,$$

where D, are distinct prime divisors. Put

$$D = e(\xi) = eD_1 + \cdots + eD_s.$$

Put

$$X = \bigcup_{\alpha} \{(p, z_{\alpha}) \in U_{\alpha} \times C \mid z_{\alpha}^{e} = \xi_{\alpha}(p)\}.$$

Then X can be considered as an irreducible normal hypersurface of the bundle space L. Put

$$\pi = \hat{\pi}|_{X} : X \longrightarrow M.$$

Then  $\pi$  is a cyclic covering which branches along D.

Example 6. 2. Let L be a holomorphic line bundle on M and  $\xi_1$ , ...,  $\xi_s$  be holomorphic sections of L. Suppose that  $D_1 = (\xi_1)$ , ...,  $D_s = (\xi_s)$  are distinct prime divisors such that  $D_1 \cap \cdots \cap D_s = \phi$ . For a positive integer e greater than 1, put

$$B = D_1 \cup \cdots \cup D_s,$$

$$D = eD_1 + \cdots + eD_s.$$

Consider the Kummer extension

$$F = C(M)((\xi_1/\xi_s)^{1/e}, \dots, (\xi_{s-1}/\xi_s)^{1/e})$$

of the field  $\mathfrak{C}(\mathbb{M})$  of meromorphic functions on  $\mathbb{M}$ . Let

$$\pi : X \longrightarrow M$$

be the <u>F-normalization of</u> M, (see Iitaka [14]). Then  $\pi$  is a finite abelian covering of M which branches along D such that  $G_{\pi} \stackrel{\sim}{-} (\mathbb{Z}/e\mathbb{Z})^{S-1}$ . The covering  $\pi: X \longrightarrow M$  is called a <u>Kummer covering</u>. In this case, we can prove that, if B is simple normally crossing, then X is non-singular.

Now, let  $B = D_1 \cup \cdots \cup D_s$  and  $D = e_1 D_1 + \cdots + e_s D_s$  be as in §1. We rewrite Theorem 5. 7 using language of rational divisors. A <u>rational</u> <u>D-divisor</u> is a rational divisor  $\hat{E}$  on M

of the following type:

$$\hat{E} = (a_1/e_1)D_1 + \cdots + (a_s/e_s)D_s + E,$$

where  $a_j$  (1  $\leq$  j  $\leq$  s) are integers and E is an integral divisor. Rational D-divisors form an additive group  $\operatorname{Div}^{\mathbb{Q}}(M, D)$ . Let  $\operatorname{Div}^{\mathbb{Q}}(M, D)$  be the subgroup of  $\operatorname{Div}^{\mathbb{Q}}(M, D)$  consisting of all  $\hat{E}$  such that

$$c_{\mathbb{Q}}(\hat{E}) = (a_{1}/e_{1})c_{\mathbb{Q}}([D_{1}]) + \cdots + (a_{s}/e_{s})c_{\mathbb{Q}}([D_{s}]) + c_{\mathbb{Q}}(E)$$
  
=  $0 \in H^{2}(M; \mathbb{Q}),$ 

where  $[D_j]$  is the line bundle determined by  $D_j$  and  $c_Q: Pic(M) \longrightarrow H^2(M; \mathbb{Q})$  is the homomorphism of rational Chern class.

Two rational D-divisors  $\hat{E}$  and  $\hat{E}'$  are said to be <u>linearly equivalent</u>,  $\hat{E} \sim \hat{E}'$ , if  $\hat{E} - \hat{E}'$  is an integral and principal divisor. Consider the additive group

$$\operatorname{Pic}_{O}^{\mathbb{Q}}(M, D) = \operatorname{Div}_{O}^{\mathbb{Q}}(M, D)/\sim.$$

Theorem 6. 3. There exists a one-to-one correspondence  $\pi \longrightarrow S = S(\pi)$  between isomorphism classes of finite abelian coverings  $\pi: X \longrightarrow M$  which branches at most along D, and subgroups S of finite index of  $\operatorname{Pic}_{O}(M, D)$ . The correspondence satisfies (1)  $G_{\pi} \cong S(\pi)$  and (2)  $\pi_{1} \leqslant \pi_{2}$  if and only if  $S(\pi_{1}) \subseteq S(\pi_{2})$ .

Theorem 6. 4. There exists a finite abelian covering  $\pi: X \longrightarrow M$  which branches along D if and only if there is a subgroup S of finite index of  $\operatorname{Pic}_{o}^{\mathbb{Q}}(M, D)$  with the following condition: for every j  $(1 \le j \le s)$ , there is an element  $\hat{E}(j)/{\sim} \in S$  such that  $(a_{j}, e_{j}) = 1$ , where

 $\hat{E}(j) = (a_1/e_1)D_1 + \cdots + (a_j/e_j)D_j + \cdots + (a_s/e_s)D_s + E,$ (E: an integral divisor).

For the proofs of the above theorems, we make use of the theory of harmonic integrals by de Rham-Kodaira [3].

For example, the cyclic covering  $\pi: X \longrightarrow M$  in Example 6.1 corresponds to

$$S = \{(a/e)(D_1 + \cdots + D_s) - aE \mid 0 \le a \le e - 1\} / \sim,$$

where E is an integral divisor on M such that [E] = L.

The Kummer covering  $\pi: X \longrightarrow M$  in Example 6. 2 corresponds to

$$S = S_{12} + S_{23} + \cdots + S_{n-1,n} + S_{n,1}$$

where

$$S_{12} = \{(a/e)D_1 - (a/e)D_2 \mid 0 \le a \le e - 1\} / \sqrt{1}, \text{ etc.}$$
  
As applications of Theorem 6. 4,

Theorem 6.5. Let  $D_1$ , ...,  $D_s$  ( $s \ge 2$ ) be linearly equivalent distinct prime divisors on a projective manifold M. Suppose that, for every j ( $1 \le j \le s$ ),  $e_j$  divides

$$< e_1, \dots, e_{j-1}, e_{j+1}, \dots, e_s > .$$

Then there exists a finite abelian covering  $\pi: X \longrightarrow M$  which branches along  $D = e_1D_1 + \cdots + e_sD_s$ .

Theorem 6.6. Let  $p_1$ , ...,  $p_s$  be distinct points of a compact Riemann surface M. Put  $D = e_1 p_1 + \cdots + e_s p_s$ ,  $(e_j \ge 2)$ . Then there exists a finite abelian covering  $\pi: X \longrightarrow M$  which branches along D if and only if, for every j  $(1 \le j \le s)$ ,  $e_j$  divides

$$\{e_1, \dots, e_{j-1}, e_{j+1}, \dots, e_s\}$$
.

Finally, we move D and consider various  $\operatorname{Pic}_{O}^{\mathbb{Q}}(M, D)$ 's. Let  $\operatorname{Div}^{\mathbb{Q}}(M)$  be the additive group of all rational divisors on M, and  $\operatorname{Div}_{O}^{\mathbb{Q}}(M)$  be the subgroup of  $\operatorname{Div}^{\mathbb{Q}}(M)$  consisting of all rational divisors whose rational Chern classes vanish. Two rational divisors  $\hat{E}$  and  $\hat{E}$ ' are said to be <u>linearly equivalent</u>,  $\hat{E} \sim \hat{E}$ ', if  $\hat{E} - \hat{E}$ ' is integral and principal. Consider the additive group

$$\operatorname{Pic}_{O}^{\mathbb{Q}}(M) = \operatorname{Div}_{O}^{\mathbb{Q}}(M)/\sim.$$

Let  $\mathfrak{C}(\mathbb{M})$  be the field of meromorphic functions on  $\mathbb{M}$ . Note that isomorphism classes of finite Galois (resp. abelian) branched coverings  $\pi: X \longrightarrow \mathbb{M}$  and (isomorphism classes of) finite Galois (resp. abelian) extensions  $F/\mathfrak{C}(\mathbb{M})$  of  $\mathfrak{C}(\mathbb{M})$  are in one-to-one correspondence under

$$\pi \longrightarrow F = C(X),$$

$$F \longrightarrow F$$
-normalization of M.

Then, by Theorem 6. 3, we have

Theorem 6.7. For a projective manifold M, there exists a one-to-one correspondence  $F \longrightarrow S = S(F)$  between the set of all (isomorphism classes of) finite abelian extensions  $F/\mathbb{C}(M)$  and the set of all finite subgroups S of  $\operatorname{Pic}_{O}^{\mathbb{Q}}(M)$ . The correspondence satisfies (1)  $S(F) \cong \operatorname{Gal}(F/\mathbb{C}(M))$  and (2)  $F_1 \subseteq F_2$  if and only if  $S(F_1) \subseteq S(F_2)$ .

Note that the class field theory for fields of algebraic functions (of one variable) asserts the dual version of this

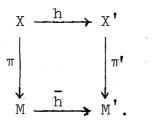
theorem, using the generalized Jacobian variety, (see Serre [27]).

The content of this section can be generalized to finite Galois coverings of a projective manifold, using language of unitary flat generalized vector bundles, along the line of Weil [30]. See Namba [22] for detail.

7. Equivalence Problem and Autonomorphism Groups of Kummer Coverings. Let  $\pi: X \longrightarrow M$  be a Galois covering of M branching along  $D = e_1D_1 + \cdots + e_sD_s$  with the covering transformation group  $G = G_{\eta}$ . In this case, we also write in this section

$$\pi : (G, X) \longrightarrow (M : D).$$

For a second Galois covering  $\pi':(G',X')\longrightarrow (M':D'),$  a biholomorphism  $h:X\longrightarrow X'$  is referred to as an equivalence, written  $h:\pi\otimes\pi'$ , if there is a biholomorphism  $\bar{h}:M\longrightarrow M'$  making a commutative diagram:



For a biholomorphism  $h: X \longrightarrow X'$ , if we put

$$G^{h} = \{h^{-1}g'h \mid g' \in G'\}.$$

Then, we have

$$h : \pi \approx \pi' \iff G = G'^h$$
.

Let  $E(\pi)$  be the subgroup of Aut(X) consisting of equivalences of  $\pi$  onto itself. We have an obvious short exact sequence:

{1} 
$$\longrightarrow$$
 G  $\longrightarrow$  E( $\pi$ )  $\longrightarrow$  Aut(M, D),

where  $Aut(M, D) = \{f \in Aut(M) \mid f^*D = D\}.$ 

<u>Definition 7. l.</u> A Galois covering  $\pi: X \longrightarrow M$  is said to be rigid, if  $E(\pi) = \operatorname{Aut}(X)$ .

Equivalence Problem. Are which kinds of Galois coverings rigid?

This problem in the case of cyclic branched coverings of  $\mathbb{P}^1$  was proposed by H. Shiga in Wakabayashi's problem session, Wakabayashi [29].

The second named author, Namba [21] showed that cyclic branched coverings of  $\mathbb{P}^1$  are rigid under some conditions. Moreover, by making use of a theorem of Matsumura-Monsky, he proved that an m-fold cyclic covering  $\pi: X \longrightarrow \mathbb{P}^n$  branching along a non-singular hypersurface of degree m in  $\mathbb{P}^n$  is rigid, provided that

- (i)  $m \geqslant 4$ , if n = 1,
- (ii)  $m \ge 3$ , if  $n \ge 2$ , and
- (iii)  $(m, n) \neq (4, 2)$ .

T. Kato [19] improved the results of Namba in the case of cyclic branched coverings of  $\mathbb{P}^1$ .

Let  $L = L_1 + \cdots + L_s$  be a reduced divisor of  $\mathbb{P}^n$  consisting of s distinct hyperplanes  $L_1$ ,  $\cdots$ ,  $L_s$ , which will be referred to as a <u>hyperplane configuration</u> of  $\mathbb{P}^n$ .

A Kummer covering

$$\pi : (G, X) \longrightarrow (\mathbb{P}^n : mL)$$

of  $\mathbb{P}^n$  branching along mL is nothing but a branched covering

obtained as the Fox completion of a covering spread  $X_{0} \longrightarrow \mathbb{P}^{n} \text{-} L \subseteq \mathbb{P}^{n} \text{ associated with a } \mathbb{Z}/m\mathbb{Z} \text{-Hurewicz homomorphism}$   $\pi_{1}(\mathbb{P}^{n} \text{-} L, *) \longrightarrow H_{1}(\mathbb{P}^{n} \text{-} L ; \mathbb{Z}) \longrightarrow H_{1}(\mathbb{P}^{n} \text{-} L ; \mathbb{Z}/m\mathbb{Z}).$ 

Thus

$$G \sim H_1(\mathbb{P}^n - L ; \mathbb{Z}/m\mathbb{Z}) = (\mathbb{Z}/m\mathbb{Z})^{s-1}$$

and G is generated by covering transformations  $g_1, \cdots, g_s$  corresponding to the normal loops  $\gamma_1, \cdots, \gamma_s$  of  $L_1, \cdots, L_s$ , respectively.

We are interested in the case where n = 2.

Let q be an r-ple point of L ; q =  $L_{i_1} \cap \cdots \cap L_{i_r}$ . Let  $\phi : B_q(\mathbb{P}^2) \longrightarrow \mathbb{P}^2$ 

be the blowing up of  $\mathbb{P}^2$  at q. Then  $\phi^{-1}(q) = E$  is a non-singular rational curve and we have a reduced divisor

$$p_1 + \cdots + p_r$$

on E, where

$$p_k = \overline{(\phi^* L_k - E)} \cap E$$

for  $k = 1, \dots, r$ .

Definition 7. 2. If a Kummer covering of E branching along  $m(p_1 + \cdots + p_r)$  is rigid, then  $(\mathbb{P}^2 : mL)$  is said to be <u>rigid at</u> q. We shall say that  $(\mathbb{P}^2 : mL)$  is <u>locally rigid</u>, if for each r-ple  $(r \ge 4)$  point q of L,  $(\mathbb{P}^2 : mL)$  is rigid at q.

In M. Kato [18], the first named author proved essentially

Theorem 7. 3. Let  $\pi: (G, X) \longrightarrow (\mathbb{P}^2 : mL)$  and  $\pi': (G', X') \longrightarrow (\mathbb{P}^2 : mL')$  be kummer coverings of  $\mathbb{P}^2$  such that L and L' are line configurations of  $\mathbb{P}^2$ . Suppose that (1)  $m \ge 6$ ,

- (2) each  $L_{\mathbf{j}}$  contains at least three singular points of L and
- (3)  $(\mathbb{P}^2 : mL)$  is locally rigid. If a biholomorphism  $h: X \longrightarrow X'$  exists, then  $h: \pi \gg \pi'$ . In particular,  $\pi: X \longrightarrow \mathbb{P}^2$  is rigid.

Since the Kummer covering  $\pi:(G,X)\longrightarrow (\mathbb{P}^n:mL)$  is an abelian mL-universal covering, it follows that a natural homomorphism

$$E(\pi) \longrightarrow Aut(\mathbb{P}^n, L) (= Aut(\mathbb{P}^n, mL), (m > 0))$$

is surjective. Thus we have

Corollary 7. 4. Under the assumption of Theorem 7. 3, we have a short exact sequence:

$$\{1\} \longrightarrow G(\tilde{Z}/mZ)^{S-1}) \longrightarrow Aut(X) \longrightarrow Aut(\mathbb{P}^2, L) \longrightarrow \{1\}.$$

The following results about rigidity of a Kummer covering  $\pi:\,X\longrightarrow\mathbb{P}^1\quad\text{branching along}\quad m(p_1+\cdots+p_s)\quad\text{are known:}$ 

Theorem 7. 5. (1) if  $\chi(X) \ge 0$ , i.e., either s=2 or s=3 and  $m \le 3$ , then  $\pi$  is not rigid.

- (2) if s = 3 and  $m \ge 4$ , then  $\pi$  is rigid (see Namba [21]).
- (3) if  $s \ge 4$  and  $m \ge 5(s-1)$ , then  $\pi$  is rigid (see M. Kato [18]).

- Therem 7. 6. (Sakurai-Suzuki [26]). Suppose that  $\chi(X) < 0$ ,  $s \ge 4$  and that for any subset P' of  $\{p_1, \dots, p_s\}$  with  $\#P' \ge 4$ ,  $Aut(\mathbb{P}^1, p') = \{1\}$ . Then  $\pi$  is rigid.
- Remark 7. 7. Recently, Sakurai is improving the result above extensively. He has announced in February, 1987, that  $\pi$  is rigid, if  $\chi(X) < 0$  and  $m \ge 11$ . It is plausible that  $\pi$  is rigid, if  $\chi(X) < 0$ , i. e., Aut(X) is finite.

The proof of Theorem 7. 3 is based on the following facts:

- (I) If X is a surface of general type, then Aut(X) is finite.
- (II) The covering transformation group G is generated by 'complex reflections'  $g_1$ , …,  $g_s$  of the surface X.
- (III) If a finite unitary reflection group of  $\mathbf{c}^2$  contains a unitary reflection of order  $\geq 6$ , then if is abelian, refer to Shephard-Todd [28].

#### References

- [1] S. Bundgaard-J. Nielsen, On normal subgroups with finite index in F-groups, Math. Tidsskrift B, 1951, 56-58.
- [2] H. Coxeter, Factor groups of the braid group, Proc. Fourth Canad. Math. Congress, 95-122.
- [3] G. de Rham -K. Kodaira, Harmonic integrals, Lec. Notes, Inst. Adv. Study, Princeton, 1950
- [4] G. Fischer, Complex analytic geometry, Lec. Notes in Math., 538(1976), Springer.

- [5] R. Fox, On Fenchel's conjecture about F-groups, Math. Tidsskrift B, 1952, 61-65.
- [6] F. Fox, Covering spaces with singularities, Lefschetz symposium, Princeton Univ., 1957, 243-262.
- [7] T. Fukui, Irregularites of branched abelian coverings over the complex projective plane, to appear.
- [8] T. Gaffney-R. Lazarsfeld, On the ramification of branched coverings of  $\mathbb{P}^n$ , Inv. Math. 59(1980), 53-58.
- [9] H. Grauert-R. Remmert, Komplexe Räume, Math. Ann., <u>136</u> (1958), 245-318.
- [10] A. Grothendieck-M. Raynaud, SGA 1, Lec. Notes in Math., 224(1971), Springer, 311-343.
- [11] F. Hirzebruch, Arrangements of lines and algebraic surfaces, Prog. in Math. 36(1983), Birkhäuser, 113-140.
- [12] H. Hochstadt, The functions of mathematical physics, John Wiley & Sons, New York, 1971.
- [13] T. Höfer, Ballquotienten als verzweigte Überlagerungen der projektiven Ebene, Dissertation Bonn, 1985.
- [14] S. Iitaka, Algebraic geometry, Springer, 1982.
- [15] M. Ishida, The irregularities of Hirzebruch's examples of surfaces of general type with  $c_1^2 = 3c_2$ , Math. Ann., 262 (1983), 407-420.
- [16] M. Kato, On the existence of finite principal uniformizations of  $\mathbb{CP}^2$  along weighted line configurations, Mem. Kyushu Univ., 38(1984), 127-132.
- [17] M. Kato, On uniformizations of orbifolds, Advanced Studies in Pure Mathematics  $\underline{9}(1986)$ , Homotopy Theory and Related Topics, 149-172.

- [18] M. Kato, On biholomorphisms between some Kummer branched covering spaces of complex projective plane, to appear in "A Fete of Topology" Papers in honor of Professor I. Tamura, Academic Press Inc.
- [19] T. Kato, Conformal equivalences of compact Riemann surfaces, Japan J. Math., 7(1981), 281-289.
- [20] F. Klein, Gesammelte mathematische abhandlungen, II, 1973, Springer.
- [21] M. Namba, Equivalence problem and automorphism groups of certain compact Riemann surfaces, Tsukuba J. Math., <u>5</u>(1981), 319-338.
- [22] M. Namba, Branched coverings and algebraic functions, to appear in Research Notes in Math., Longman Science & Technical.
- [23] M. Namba, A class of differential equations of Fuchsian type, to appear in Tohoku Math. J.
- [24] H. Pinkham, Singularités de Klein, Springer Lec. Notes, in Math., 777(1980), 1-20.
- [25] S. Roan, Branched covering spaces, Chinese J. Math.  $\underline{7}$  (1979), 177-206.
- [26] K. Sakurai- M. Suzuki, Equivalence problem and automorphisms of some abelian branched coverings of the Riemann sphere, to appear.
- [27] J. Serre, Groupes algébriques et corps de classes, Hermann Paris, 1959.
- [28] G.C. Shephard-J.A. Todd, Finite unitary reflection groups, can. J. Math.,  $\underline{6}(1954)$ , 274-304.
- [29] I. Wakabayashi, (Editor), Collected problems on functions of several complex variables and related areas, Sugaku 32

(1980), 161-187, (in Japanese).

- [30] A. Weil, Généralisation des fonctions abéliennes, J. de Liouvilles, <u>17</u>(1938), 47-87.
- [31] O. Zariski, Collected papers, vol. III, 1978, 123-212.

Department of Mathematics Kyushu University, Fukuoka, Japan

and

Mathematical Institute, Tohoku University, Sendai, Japan