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The number of periodic points of smooth maps

Takashi Matsuoka
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1. Introduction

In [12], Levinson obtained a result on the number of periodic
points of diffeomorphisms of a disk. He gave a classification of
periodic points and proved certain equalities between the cardinal
numbers of the classes of periodic points. His equalities were
improved by Masseral[13] and extended to compact manifolds by
Shiraiwa[16]. Recently, Dold obtained an extension of these
equalities to smooth maps on manifolds in [4] (Theorem 1 below).

In this paper, we give two applications of the Dold's equalities
to the study of periodic points of smooth maps. The first applica-
tion is concerned with the problem of whether the number N(m) of
periodic points of a given odd period m is even or odd. We give
a condition on m and on the homotopy class of the map under which
N(m) is even. This generalizes résults in [12}, [131, [16].

In the second application, we generalize some results of
Franks[71,[8] on the existence of infinitely many periodic points.

In the last section, we generalize the Dold's equalities

by making use of the notion of a Reidemeister class.

2. The Dold's equalities
Let M be a C” manifold (possibly with boundary), U an open
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set of M, and let f : U > M be a continuous map. For positive
integers m, define the iterates £ : Um + M inductively by

£ = £, U = f_T(Um_1), £M(x) = £"'(£(x)) for m > 1. Denote

by Fix(f™) the fixed point set of f™, i.e, the set of points
X € Um with fm(x) = X.

Suppose Fix(fm) is compact. Then Fix(fk) is also compact
for any divisor k of m because Fix(fk) is a closed subset
of Fix(fm), and hence the fixed point index I(fk) of fk is

defined (cf. [3]). Define an integer Im(f) by

1 (£) =] w@ (™9,
dim :

where the sum is taken over all divisors d of m and y(d)
denotes the Moebius function, i.e., p(1) =1, p(d) = (—1)k if

d 1is a product of k distinct primes, and uy(d) = 0 otherwise.

Definition 1. Set

P(m) = Fix(f") - y Fix(£),
d < m

and call an element of P(m) an m-periodic point , or simply a

periodic point, of f.

v

Now assume that £f is a C1 map. For x &€ P(d), 4 z 1, let
Dfd(x) denote the derivative of fd at x, and let a+(x) (resp.
a_(x) ) be the number of real eigenvalues ) of Dfd(x) with

A > 1 (resp. X < -1 ) (counting multiplicity). Set

n

PEE(d) { x € P(d) | a+(x), a (x) are even },

PEO(d) { x € pP(d) | a+(x) is even, a (x) 1is odd },
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POE(d) = { x&€ P(d) | a+(x) is odd, a (x) 1is even },
Poo(d) = { x € P(d) | a+(x), a (x) are odd },

Nop(d) = # Ppp(d), Npo(d) = # Ppq(d)

Nygp(d) = # Pyp(d), Noold) = # Pyy(d),

NE(d) = NEE(d) + NEO(d), No(d) = NOE(d) + Noo(d).

A fixed point x of £ is simple if the derivative
Dfm(x) does not have 1 as an eigenvalue.
In [4, pages 431-432], Dold proved the following result

(in a somewhat implicit form) :

Theorem 1(Dold). et £f : U+ M be a C1 map defined on an
open subset U of a manifold M, and let m be a positive
integer. Suppose that £™  has only finitely many fixed points
and that every fixed point of £ is simple and contained in the

interior Int M of M. Then

I.(f)

NE(m) - No(m) if m is odd,

NE(m) - No(m) + 2(Noo(m/2) - NEO(m/Z)) if m is even.

In some special cases, this theorem was prdved and was applied
to the study of periodic solutions of periodic differential systems
by Levinson [12, Section 61, Magsera[13], Shiraiwal[16]. In [4]
Dold used this theorem to prove that m divides thé number
Im(f) for any continuous map f defined on an open set of an ENR
with Fix(fm) compact. (This result was also obtained by Zabreiko
and Krasnosel'skii[17], [11, Theorem 31.4].) In Sections 3 and 4,

we shall give two other applications of Theorem 1.
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3. The first application
Throughout this section, we assume that M 1is a compact
manifold.

et £f : M>» M be a continuous map.

Definition 2. A positive integer n is an Lz—geriod of
f if

Lo (£1+7) - L,(£%) for amny iz 1,

2

where L2(fl) denotes the mod 2 reduction of the Lefschetz
number L(f°) of f-. We denote the minimal L,-period by a(f).

The following proposition clearly implies that qo(f) always

exists and is an odd number:

Proposition 1. Let p be a prime number and A a square
matrix with entries in Z/pZ. Then there exists a positive
integer n such that for any i =z 1,

i

tr A1+n = tr A

and that n 1is not divisible by p.

Proof. Since {Al} is a finite set, there exist positive

iz21
. I T+k .
integers I and k such that A = A . Then for any i =z I,
al = AIAl—-I _ AI+kA1~I _ Al+k.

Let 1 be a positive integer. Then, gi z I for some power ¢

of p. Since

(3.1) tr BP = tr B



for any J =z O and any square matrix B with entries in »Z/pZ
([2, Proposition 5],[15, Lemmal), we have

ig + gk _ tr A(1+k)q - tr Al+k.

tr A* = tr a*9 = tr A
Hence k 1is a period for { tr A} }i . 1° Decompose .k as nr,
where n is not divisible by p and r 1is a power of p. Then,
by (3.1), for any i,

tr AT - tr A

Thus n 1is also a period, and the proof is completed. g.e.d.

Given an m-periodic point x of £, we call the set

{ fl(x) ] iz 1} an m-periodic orbit of f. As an application

of Theorem 1, we have :

Theorem 2. Let £ : M5> M be a C1 map and m an odd
number with m > 3. Suppose that every fixed point of £ is
simple and containedtin Int M. Suppose also thaf |
m 1is divisible by a(f)2 or by a prime number p‘ which is

congruent to 2% modulo a(f) for some i z 0. Then, the number

N(m) of m-periodic orbits of f is even.
Proof. By the assumption, # Fix(fm) < o, Hence by Theorem 1,

N(m) = # P(m)/m = 2 No(m)/m + Im(f)/m.

Hence, it is sufficient for the proof to show that the mod 2

reduction Im 2(f) of Im(f) is equal to zero. Let a = a(f).
’ . .

Suppose first a2 | m. Then y(d) = 0 unless d | m/q .

Therefore, since Lz(fk) = Lz(fa) for any multiple k of g,



I (f) = u(d) L (fm/d) = ( p(d) ) L, (£%) = o.
m,2 2 2
d | m/a d m/o
Suppose m 1is divisible by a prime p with p = 2t (mod a)
for some i. Decompose m as m = pjk, where j, k z 1 and
k is not divisible by p; Then
p) pl 1
. . . i
Since a 1is a period for the sequence {Ik,Z(f )}121’
ps 2is
Ik,2(f ) = Ik,z(f ) for s z 0.
Ps :
Hence by (3.1), Ik,Z(f ) = Ik,Z(f) for s z 0.
Therefore by (3.2), Im;Z(f) = 2 Ik,Z(f) = 0. ‘ g.e.d.
Let b(M) be the maximum of the Betti numbers of M. It is
easy to show that if b(M) = 1 (resp. 2) then a(f) = 1 (resp.
1 or 3). Hence, by Theorem 2, we have:
Corollary. Let m be an odd number. Assume that b(M) = 1,

m 2z 3 or that b(M) =2, m2 5. Let £ : M> M be a C1 map
and suppose that every fixed point of £ is simple and contained

in Int M. Then N(m) is even.

In the case where f is a diffeomorphism of a disk, this

corollary has been obtained by Levinson[12], Masseral[13].

Theorem 2 follows from Shiraiwal16, Theorem 3] in the case where

f 1is a diffeomorphism with L(f) = L(fl) for any 1i.

When b(M) 2z 3, the condition for N(m) to be even does not



gseem simple in many cases. For example, let M be a disk with 3
holes. Suppose a 3 X 3 matrix (aij) representing the homomorphism
f, H1(M 7 2) > H1(M ; 2) is given by aij = 0 or 1 according as
i+ 3 £3 or i+ j > 3 respectively. Then a(f) = 7 and the
computation of Im(f) shows that, for m odd, N(m) is odd if and
only if m = ri or 7ri, where r is a prime number satisfying r =

3,5,6 (mod 7).

4. The existence of infinitely many periodic points

In this section, we shall generalize some theorems of Franks

in [71,[8]. Here we assume the following conditions:
i) M is a compact manifold and f : M > M is a C1 map.
ii) f®  has only simple fixed points for any m 2z 1, and £

has no periodic points on the boundary of M.
iii) All non-zero eigenvalues of £, : H, (M ; Q) » dA,(M ; Q)

are n-th roots of unity for some n > 0.
For a positive integer r and i z 0, let y{(i,r) be the

number of eigenvalues ) of f*i : Hi(M ; Q) » Hi(M ; Q) which are

r-th primitive roots of unity (counting multiplicity) and set

(-1 y(i,r)/o(x),
0

<
I
IV~

r i
i
where ¢(r) ‘denotes the Euler function. For a positive integer

a, let
y(f, a) = ] ulr/a) v .,
: r
where the sum is taken over all odd numbers r dividing n and

u(r/a) means 0 if r is not divisible by a. Let
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Nab(m) = Nab(m)/m for a,b = E, O.

Theorem 3. Let a be an odd number and let i(a) denote

the smallest i

v

0 such that 2'a  does not divide n.

(A%

Then for any i i(a) - 1, we have

N 3 S J
(NOE(Z a) - NEE(Z a))

= i = i _
NEO(Z a) - NOO(Z a) = y(f,a) + .

I o~

]
As immediate consequences of Theorem 3, we have:

Corollary 1. Let a be an odd number. Suppose that

y(f,a) > NEE(2Ja) or y(f,a) < -
j=0 J
Then f has infinitely many periodic points.

= J
NOE(Z a).

Wo~18

0

Corollary 2. Let a be an odd number satisfying v(f,a)

= 0, and let i(a) be as in Theorem 3. Suppose that

v

. i i .
i) NEE(Z a) = NOO(2 a) = 0 for any i 0, or

v

.. i i .
ii) NEO(Z a) = NOE(Z a) =0 for any i 0.

Then we have

( Ngp(23a) + Ng(23a))

[ e B

_ i — i
NEO(Z a) + NOO(Z a) =

3j 0
for any i 2 i(a) - 1. 1In particular, if f has a 21a—periodic
point for some i z i(a) - 1, then it has infinitely many periodic

points.

Corollary 1 has been proved by Franks [7] in the case where

a =1, NOO(Zl) =0 for any i, and M is a circle, a sphere, a



closed interval, or a disk. Clearly vy(f,a) = 0 if i(a) = 0.
Hence, Corollary 2 has been proved by Franks [8, Theorem C]

in case of i(a) = 0.

Proof of Theorem 3. Using Theorem 1, we can prove the

following equalities by induction on 1i:

= i = i
(4.1) NEO(Z a) - NOO(Z a)

1 . .
= E (NOE(zja) = ﬁEE(zja) + I

j (£))
3 0 27a !
where fk(f) = Ik(f)/k. Hence it is sufficient to show that if
i
i 2 i(a) - 1, then Y I (f) = y(f,a). For r 2z 1, let A
i =0 2la
be the set of all r-th primitive roots of unity. For 3j 2z 1, let
lb(r, J) = z >\J ’
A€ A
r
1
M (m) = = % p(d) ¢(r, m/d).
r m
d|lm
Clearly we have:
(4.2) Im(f) = % Y, Mr(m).
rin
Also we have:
Lemma. For m, r z 1, Mr(m) = u{r/m).
Proof. We prove this lemma by induction on the number s(m)
of primes dividing m. If s(m) = 0, then m =1 and the lemma

is trivial. Assume the lemma holds for any r and any m such
that © s(m) 1is less than an integer s. Let r, m 2z 1 and
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suppose s(m) = s. Decompose m and r as m = plm', r = pjr',

where m', r', i 2 1, j2 0, and p is a prime which does not

divide m', r'. Let v =min{i, j} and w=min{ i - 1, 35 }.

For any k, we have

Y(r, km) =9 (r", m) ¢(xr)/d ("),

where r" = r/(r,k), because the k times power of an r-th primitive
root of unity is an r/(r,k)-th primitive root of unity. Hence,
by the induction hypothesis, we have

i_lm'/d')}

]

Si=

(4.3) M_(m) % p(a') { v(r, pim'/d') -V(r, p
d'{m'

M _(m')yo -M __(m") o 1}
rp rp

313

p hutr /m ) wp V) o, - w3 ™™ 0}
where & = 6(p°)/ o(p’ V), o, = 6(pI)/ 0(p V).

If m does not divide r, then we can assume pl does not divide r.
Therefore, v = w and by (4.3) Mr(m) = 0. If m divides r,
then v =1 and w =1i - 1. Hence by (4.3), Mr(m) = u(r/m).

Thus the proof is completed. g.e.d.

n(r/27a)
0

Now let 1 z i(a) - 1. By (4.2) and Lemma, since

[l o

= 0 for r even, we have

i i .

YOOI L (f) = v, I u(x/2a) = (£, a).
= rin Jj

Thus the proof is completed.
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5. An extension of Theorem 1
Let M be a connected manifold and f : M - M a continuous

map. Let u be a path in M with f£(u(1)) = u(0).

Definition 3. Two elements a and b of ﬂ1(M, u(1))
are equivalent if there exists an element ¢ of WT(M, u(1))
such that b = ca(u,f,(c)) ", where wu, : m, (M, u(0)) > m (M, u(1))
and f_ : W1(M, u(1)) - ﬂ1(M, u{(0)) are the homomorphisms induced
by u and £f respectively. Dénote the set of equivalence
classes by R(f, u). An equivalence class is called a Reidemei-

ster class (e.g. [51]).
Define a map ¢u : Fix(f) » R(f, u) by
6,(x) = [h(feh) 'ul,

where h 1is some path in M from u(l) to x. This map is

clearly well defined. For o &€ R(f, u), set

Fix (f) = ¢;1(a).

Since M is an ENR, this is an isolated set of fixed points.

If Fixa(f) is compact, we denote by Ia(f) the fixed point

index of Fixa(f) for the map f£. Ia(f) is a homotopy invariant
in the sense that if ft : M> M 1is a homotopy with {J Fix(ft)

t
relatively compact then Ia(f) is independent of t for each

o (Fadell and Husseini[5, Theorem (3.5)]).

For a positive integer m, let u, = (fm_1ou)...(fou)u

and denote R(f", um) simply by R(E™). For o« € R(f") and a,b

E,O0, let Pa (m, a) be the set of x & Pab(m) with ¢u (x)

b
m
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= o and let Nab(m, a) = # Pab(m, o). For a positive integer 4,
define a map ¢d : R(fm) > R(fdm) by
Zm(

gld-MImayy,

¢d([a]) = lag™(a)g a)...

where g = u, £, : ™, (M, u(l)) ~» n1(M, u(l)). Then for

o € R(EM), Fix (£7) C Fixq)d(a)(fdm), since ¢ud (x) = 046 (x))
m m

for x € Fix(fm). For a € R(fm) with Fixa(fm) compact, let

m/d

(5.1) I (f, a) = u(d) § I, (f ),
m d%m B 8

where the inner sum is taken over all elements B of R(fm/d)

with @d(B) = 0. Then we have an improvement of Theorem 1 (in

case of U =M and M connected):

Theorem 4. Let M be a connected manifold and f : M > M
a c! map. Fix a path u in M with £f(u(1)) = u(0). Let m be
a positive integer and o an element of R(fm). Suppose Fixa(fm)
consists of a finite number of simple fixed points contained in

Int M. Then,

Im(f, a)
= NE(m, a) - No(m, o) if m is odd,
= Np(m, a) - Ny(m, a) + 2 ) (Nyo(m/2, B) - N (m/2, B))

B

if m is even,

where the sum is taken over all elements B of R(fm/z) with

QZ(B) = Q.

The proof of this theorem is similar to that of Theorem 1

([4, pages 431-432]) and is omitted.
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In the case where f 1is a diffeomorphism of an annulus
jsotopic to the identity, this theorem becomes a result of
Kawakami[10], which was applied to the study of periodic systems.

Now we give two examples of the computation of Im(f, a).

Example 1. If the Euler characteristic of M 1is =zero,
n1(M) is abelian, and f is homotopic to the identity, then

clearly R(f™) = m,(M) and I (f, a) =0 for any m, a.

Example 2. We give an example where N1(M) is not abelian
and f is not homotopic to the identity. Let M be a disk
with n holes and f : M+ M a continuous map. For simplicity,
we assume that f has a fixed point X Let u be the constant
path at Xg- Identify the fundamental group of M with the free
group Fn generated by n generators XpreserX - Let Bn be the
braid group on n strings, 01,...,0n_1 the generators of Bn’
and p : Bn > Aut(Fn) the homomorphism defined by (cf. [1, (1.14)1)

-1

(5.2) P03 (x5) = Xy%; 1%; if 4 o= i,
=Xi ifj=i+1,
= Xj otherwise.

We assume that there exists o & Brl such that p(0o) : Fn > Fn
coincides wifh the homomorphism £, : Fn > Fn induced by f.

Let Z[t] Dbe the ring of integer polynomials on the variable t and
its inverse. For d z 1, define a homomorphism Td: Z{tl > z2[t]

by Wd(t) = td. For 0 € Bn’ let B(0) be the reduced Burau matrix
of o [1, p. 125]. Then tr B(o) is an element of Z[t]. Define a

map e ¢ R(f) » Z Dby e(a) = j1 + e 4 jr' where o =

- 13 -
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[xi eoe X, ]. Then we have

Proposition 2.

m/d)

I DI (f,a)th = -7 w@ ¥y0tr B™D),
dim

i€ Z o
where the second sum is taken over all elements a of R(fm)

with e(a) = i.

Proof. Define an element I(f) of the free abelian group

Z[R(f)] generated by the set R(f) by

t(f) = ¥ I,(f)-a
a € R(f)

and denote by L (f) the generalized Lefschetz number defined by
Husseini{9]. Then since M is compact, I(f) = L(£f) [9, Theorem
(1.13)]. Also by [6, Theorem 2.3],

n

(5.3) B(£) =1 - J 7w {(3p(0)(x;))/ox,},
i=1

where S/BXi denotes the Fox derivative and 7 : Z[Fn] > Z[R(£)]

is the homomorphism induced by the natural projection. Define a

homomorphism T : Z[R(f)] » Z[t] by T(a) = te(u)_ Then by
(5.2),(5.3),
) I I (£)-th = T(1(f)) = - tr B(o).
i€z ela)=i

(For another proof of this equality, see [14, Proposition 2].)

By this and (5.1), we can easily complete the proof. g.e.d.

For example, assume n = 3 and o = 01051. Then,

2 -2

b trB(6®) =1 - 2(t + £t 1) + 2 + ¢

tr B(o) =1 - t - t~

- 14 -
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Therefore, by Proposition 2,

) Iz(f,a) = 2 if 1 =1, -1,
e(a) = 1 ¢

= -2 if i =2, -2,

0 otherwise.

The maps treated in this example appear naturally in the theory

of periodic systéms (see [14, Lemma 2]). Hence Theorem 4 and

| Proposition 2 can be applied to the study of such systems.
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