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Quasiconformal surgery on doubly attractive cycles

Shigehiro Ushiki ‘:?',df'j( § ii\
Institute of Mathematics, Yoshida College
Kyoto University, Kyoto, 606 Japan

Abstract

A quasiconformal surgery is executed on a rational
function with an attractive cycle which attracts two
critical points. As the result of the surgery, a
rational function with a doubly attractive cycle of
different period is obtained. The quasiconformal suegery
reveals that the topological structure of the Julia set
of the obtained function has a self-similar lattice

structure.

§0. INTRODUCTION

As the understanding of the dynamics on the complex plane of the
family of quadratic functions gave a deep insight into the iteration of
unimodal maps on the interval, complexified maps may help us to under-
stand the real analytic mappings of the circle. »

In section 1, we study the case where the complex rational function
has a (doubly) super-attractive cycle of period two.

In section 2, we treat the case when a fixed point is attractive.
A quasiconformal surgery is used to understand the Julia set of the
system.

In section 3, a quasiconformal surgery is executed on a function

with a (doubly) super-attractive cycle of period two, to construct a new



function with a (doubly) super-attractive cycle of period three. This
surgery gives a combinatorial description of the Julia set of the ob-
tained rational function.

The combinatorial structure as a "self-similar lattice" of the
Julia set is described in section 4.

This note is an abreviated version of [21].
§1. BLASCHKE'S FUNCTION OF DEGREE TWO

Let C = C U {«} denote the Riemann sphere and let D={ z¢ C l
lzl < 1} denote the interior of the unit disk. The unit circle will be
denoted by SD. Let £f(z) be a rational function with complex coeffi-
cients. If f£(z) = P1(2)/P,(z), where P;(z) and P,(z) are polyno-
mials without common factbr, then

deg(£f) = sup(deg(P1(z)),deg(P2(z)))
is called the degree of f£.

Rational function . f(z) defines a dynamical system fy:» cC+ C
on the Riemann sphere. 'ForJan integer k, fk = fofo...0f denotes the
k-times iterated composition of f£.

A point c € €C is called a critical point if f'(c) = 0 ( in an
appropriate coordinate). A point p € C is called a periodic point if
fk(p) = p for some positive integer k. The smallest positive integer
k with fk(p) = p is called the period of p. The orbit {p,
f(p),...,fk—l(p)} of the periodic point is called a cycle. Periodic
point of period ome is called a fixed point.

If P = {p,f(p),...,fk-l(p)} is a cycle of period k, the value

k-1 : |
o(P) = I £'(£3(p))
 j=0
is called the multiplicator of the cycle. The multiplicator is defined
by an appropriate choice of coordinate of the Riemann sphere and does
not depend on the choice. |

If ]G(P)I > 1 then the cycle P is said repulsive. If IG(P)I =

1 then P is said neutral. If |o(P)| < 1 then P is said attrdctive.

If P is an attractive cycle of period k and p € P, then the attrac-
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tive basin A(p) is defined as
= nk
A(p) ={zeC | £ (z) »p as n}.

The immediate attractive basin A*(p) is the connected component of
A(p) containing p. The attractive basin and the immediate basin of an
attractive cycle P are defined respectivély by
k-1 . k-1 .
AR) = U aEI(p)) and AT(R) = U AT(EI()).
j=0 3=0

A cycle, P, 1is said to be super-attractive if its multiplicator
vanishes, i.e., if P contains a critical point. If a cycle, P, con-
tains two distinct critical points, P is said to be doubly super-
attractive. If P  attracts two critical points, P 1is said to be
doubly attractive.

If ceC is a critical point and its orbit' 0(c) = {c, £(c),
f2(¢),...} contains another critical point, then c is said to be
doubly critical.

Let f : C+C be a degree-two complex rational function of

Blaschke's type

£(z) = z'%%-z-, (1)

where A € C is a parameter. (1) can be considered as a real two-
parameter family of dynamical systems on the Riemann sphere. Note that
f maps the unit circle 9D into itself. If ]Xi <1 then £(D) = D
and f(C-D) = C-D, and f maps the unit circle 9D onto itself with

topological degree two. In this case, f has two attractive fixed

points, 0 and =, with
* * ~ =
A(0) =D and A () = C-D.
If [XI = 1, then (1) reduces to a linear rotation £(z) = Az.

Now, let us consider the case |A| > 1. 1In this case, the topolo-

gical mapping degree of f restricted to the unit circle is zero. The
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mapping f has three fixed points, 0, =, and a = (A-1)/(X-1). Note
that o £ 9D. The differential of £ is given by

£'(z) = Az24+2z+A (2)

The multiplicators of these fixed points are, respectively, A, X, and
(AMA-2)/(AX-1).

The mapping f is "mirror" symmetric with respect to the unit
circle in the sense f£(z) = ¢ofod(z), where ¢(z) = 1/z. If |M1] > 2
then fixed point @ is attractive. In this case, the attractive fixed

point attracts both of the two critical points :

c = =1+ AA-11

Y by sy Y= ils (3)

and the Julia set Jf is a Cantor set. This fact can be verified by
using the quasiconformal surgery explained later. The critical points
cY will be denoted as c, and c¢_ for Yy =4+l and -1 respectively.

Next, let us consider the periodic point of period two. Periodic

points of period two are given as solutions of equation
£2(z) - z = 0. (4)
Since fixed points satisfy this equation, too, we have only one cycle of

period two. By noting that (4) can be factorized by £(z) - z, we get

the following quadratic equation for the 2-periodic points :

(F+1)z2 + (M1)(F+1)z + Ml = O. (5)
This equation has multiple root z = —=(A+1)/2 if X 1lies on the circle
|3+1]| = 2, where period doubling bifurcation occurs.

If 0K |X+1] < 2, then (5) has two distinct roots bv g€, VvV =

t1, which are given by

= RS R RS S DY

b, 2(A+1) : (6)
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We see immediately that bv = f(b_v). The multiplicator, G2(A) =
0({bv}v=+1) of the 2-cycle is computed as

[A[2=5+(| A+1]2-2)2
I}\lz_l 9

02(A) = £'(b,)*£"(b_) =
where b, = btl'

Proposition 1.1. The set of parameters {A € C | -1 < 02(A) < 1}, where
f has an attractive 2-cycle, is a simply connected region. Its bounda-

ry consists of real algebraic curves :
|M1] =2 for 02(Q) =1

I

and

2[M? - 6 + (|M1]*-2)2 =0 for 02(A) = -1.

g€+in and R = AX, these curves can be rewritten as
28 for o2(A) =1

By setting A
R=3

and
45 + 5 = (R+28)%2  for 02(A) = -1.
In general, for o € (=1,1), the set {A e C | 02()) = 0} is given by a
parabola in the (R,E) coordinate :
(R+28)% = 48 + (140)R + 4 - O.

We denote this "mushroom" region of the proposition above by W1/2°




150

The values of ﬁarameter A, for which the 2-cycle is super-attrac-
tive, are given by the equation
- 02(X0) =0, A€ Wl/2 (see Fig.1l.1).
Let A =& +ni, €,ne R, and let R = AA. Following propositions
can be verified by direct computations.

Proposition 1.2. If A e w then b+ =c,. If Aew

1/2,0/1’
then b_=c_. (See fig.1l.2.)

1/2,1/1°

Fig.1.2.
Proposition 1.3, The locus of parameter A, for which f(cv) = C_,
holds, is given by
A = (1+WR-1i)3/R, R > 1.
Proposition 1.4. The locus of parameter A, for which fz(cv) = 0 and

a # <y hold, is given by
£g=-1, n=-wR-1, R> 1.

Let V1/2={>\€C|>\€W ReXx < -1}.

1/2’
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Theorem 1.5. ‘The 2—cycle of f attracts both of the two critical

3*
e A (b)),

points if and only if A € V1/2. Moreover, if A ¢ V1/2, then cy

v = %1, and the Julia set is a Jordan curve.
See [21] for the proof.

Suppose A € V1/2 and ¢v : DV - D;v be the Blaschke product in
the proof above (case i)). Let K, € Dv be the critical point of ¢v :

As we consider the Blaschke's family (1), we see that -1 < K, < 1, v =
t] for X e V1/2‘ Hence Kk(A) = (K+,K_) defines a mapping K : Vl/z +
I+XI_, I, = (-1,1).

Theorem 1.6. The mapping K is a real analytic diffeomorphism of V]/2
onto I+XI_. '

See [21] for the proof.

Fig.l.3.
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Figure 1.3 shows the level curves of 0, in V1/2' In I+XI“, the
K, axis, I+X{O} and {O0}xI_ represent the parameters for which the
attractive cycle 1is super-attractive. The curves of doubly critical
cycles are given by Ky =~ Kiv' , _

Corresponding level curves in I+XI_ are given in Fig.l.4. Curves

for parameters with a doubly critical point are also shown.

-

iy

Fig.l.4.

§2. TOTALLY DISCONNECTED JULIA SET

If Blaschke's: function (1) has an attractive fixed point and if
both of the two critical‘points are contained in the immediate attrac-
tive basin of“the attractive fixed point, then its Julia set 1is a
totally disconneéted Cantor set.

Let us recall Shishikura's fundamental lemma for quasiconformal
mappings[17], which is an improved version of the straightening theorem
of Douady and Hubbard[10].

Definition 2.1. let @ and Q' be domains of C. A homeomorphism ¢
: Q> Q' is a quasiconformal mapping (qc-mapping) if

1) ¢ is absolutely continuous on almost all lines parallel to the
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real axis and almost all lines parallel to the imaginary axis;
2) for some constant k < 1,

36 50
léEJGZl =k

holds almost everywhere with respect to the Lebesgue measure.

Quasiconformal mappings on Riemann surfaces are defined by means of

local coordinates.

Definition 2.2. A quasi-regular mapping is a composite of a quasi-

conformal mapping and an analytic mapping.

Lemma 2.3.(Shishikura) Let g : C -+ C be a quasi-regular mapping.
Let Ei’ i=1l,...,m, be disjoint open subsets in C, and let ¢i : Ei >
Ei be quasiconformal mappings, with Ei open subsets of C. Let N be

a non-negative integer. Assume the following conditions hold:

m

(i) g(E) E, where E= U Ei;

i=1

(ii) @ogo¢;1 is analytic on Ei, where & : E > C is the union of

the ¢,;
T = N

(iii) -55 =0 a.e. on C-g (E).
Then there exists  a quasiconformal mapping h : C~+C such that
hogoh™t

mal on E'! and %E-= 0 a.e.on C- U g-n(E).
i z S
nz0

. . . -1 .
: C+C is a rational function. Moreover, h°¢i is confor-

See [17] for the proof.
Proposition 2.4. If |M1| > 2 then both of the two critical points
*
c, are contained in the immediate attractive basin A (a) of the fixed

point @ = (M1)/(3-1).

See [21] for the proof.
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§3. SURGERY ON BLASCHKE'S FUNCTION WITH DOUBLY SUPER-ATTRACTIVE CYCLE

Let us begin by looking at the dynamics of f_, : €+ G, which
has a doubly super-attractive cycle of period two. We see that bv =c,
= (1-w3i)/2, v = t1. Mobius transformation h(z) = (z—b+)/(1—z/b“)
conjugates f_2 into g(Z) = hof_zoh_l(c) = 1/¢2. The conjugacy map
h maps the doubly super-attractive cycle {bi} to {0,®}. The Julia
set of f__2 is R U {»}, which is mapped onto the unit circle by the
conjugacy map. The fixed points, O, ©, and a =1, of f_2 are mapped
into —b+ = (-1+/3i)/2, -b_= (-1-/3i)/2, and 1 respectively by h.
These points are fixed points of g. The unit circle is mapped onto R
U {e}.

Let L =C/Z and define G : L - C by

G(2) = b~ (exp(2mic)).
Then G gives an analytic conjugacy map between "linear" map f : L -+
L, ¥(z) = -2z, and f_2, i.e.,

£.6 = Gof. '
The mapping < G omits only the super-attractive 2—cyclé {bi} and it

maps L isomorphically onto T - {b,}. oo

ol=
=

Fig. 3.1. Riemann surface L. Vertical lines Re(Z) = 0 and
Re(z) = 1 are identified.



The multiplication map I has three fixed points 7 = 1/3, 2/3,
and 0, corresponding respectively to the fixed points of ¥, 0,», and o
= 1. The "real line" {g e L | Im(g) = 0} is the Julia set of ¥.
It is mapped onto the "real line" R U {o} by G. The set {g e L |

Re(g) =0 or 1/2} 1is invariant under ¥ and mapped into the unit
circle by G. The "mirror symmetry" of f_z with respect to the unit
circle becomes a mirror symmetry Z - on L. Let L= 1L U

+o07 ; : - . =
{#o0i}. Define closed regions Ev’ Uv, Vv, Wv, v 1, in L as

' follows

E ={geL | 1/3 s Reg = 2/3, vImg z 0} U {veoi}

U,={cel | -1/6 s Reg s 1/6, vImg 2z 0} U {woi}

V. ={zcelL | 1/6 s Reg = 1/3, vImg 2 0} U {voi}

b, =12 €L | 1/3 s Ret =5/6, vIng 2 0} U {woi].

Observe that vertical lines Re(z) =0, 1/3, 2/3 are invariant

<

< <
A IA

=

under ¥. We see that each region is covered twice by f:

E(E\)) = E(U\)) =U_, u v, U W_,»
f(Vv) = E(Wv) = E—v‘
If we parametrize vertical 1lines Re(gZ) = const. by y =

Im(z), then I induces a linear multiplication y#~» -2y on these
invariant vertical lines. Let E = E+ U E, U= U+ U u,Vvs= V+ U vV,
and W = W+ Uw.. 7 )
Construct a Riemann surface X as follows. Make two copies E‘77,
E(z) of E and denote z(l) € E(l) and z(z) € E(Z) for points
corresponding to =z € E.'. The space X is obtained from the disjoint
union |
(L - int(E)) g Dy 562
by identifying:
ze Efl B with 201 ¢ (1),
z € OE " E, with z(2) € E(z),
and 22 ¢ B2 yien 2)P e D for z e SEf)E..
The natural confomal structure of L induces a conformal structure
on X except at singular points 1/3, 2/3, and p = +®i(1) ( = ami(z)),
We can give an appropriate conformal structure at these points so that

X is a Riemann shere.

/!
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o=
10

@y

Fig.3.2. Riemann surface X.

Define a mapping go : X — int(U_) + X by
go(z) = ¥(z) for z ¢ U,

go(z) = f(Z)(l) for ze VUW,

go(z(l)) = 2(2) for z € E,
go(z(z)) = ¥(z) for =z e E.
Note that this mapping is continuous and C-analytic on X -U_. In

order to extend the conformal mapping go¢ to a quasi-regular mapping g
: X > X, we need looking at the dynamics of ¥ : L > L near the Julia
set and in the attractive basin of the attractive cycle.

For complex numbers =zi, z2, z3, we denote by A(z1,2z2,2z3) the
closed triangle region in L obtained by projecting the triangle
region whose vertices are these three points zi, z2, and zs.

Choose a constant & with 0 < 8§ < 1//3. Let

A1 = A(-1/3,1/3,-8i/3),

A2 = A(-1/3,1/3,6i/6),

As = A(1/3,2/3,(3+81)/6),
and Ay = A(1/3,2/3,(6-8i)/12).
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U, E

W+ _é!: V+ +
6

/‘$\ A3

% 0 1? g _§;
\/

W_ St V- E

Uu. =73

Fig.3.3. Triangles A;, Az, A3z, and Ag.

We see that
A <U_ uv_uw,, A2CU+ U V+ UW+,
A3 CE+, and Ay CE ,

and that
E(A3) = A1, E(AW) = A1

i
wl=
T
p:
wln

|-

~

Fig.3.4. Hexagones Hy, H3 and quadrilaterals H;, Hz, Hy, Hs.

/3
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Let Ho be the closed hexagone region with vertices
(3+6i)/6, (5+6i)/12, 5/12, (6-8i)/12,7/12,(7+8i)/12,
-and let H;, Ha» be quadrilaterals defined by
Hy = A(1/3,5/12,(9+81)/24) U A(1/3,5/12,(18-81)/48),
Hy = A(7/12,2/3,(15+8i)/24) U A(7/12,2/3,(30-81)/48).
Further, let Hs = ¥(Hy), Hy = ¥(H:) and Hs = F(H2). We see that
Ho UHy UH, C A3 U Ay CE,
Hy (A U A2) N,
Hy (A1 U A) 0V,
Hs C (A1 U A2) W,
and T(Hy) = T(Hs) = Az U As.
If we set H=Hy U ... UHs and Y=1 - H, then Y has two connected
components Yv {voi}, v = ¥1. We see that
f(YV)CY_v, v = ¢l
and ED L@,
Ngte that Yv is included in the immediate super—attractive basin
A (voi)., Moreover, in the neighborhood of fixed points 1/3 and 2/3,
rays oH; U 3Hy and dH; U 3Hs are invariant under Z%.
Let Q denote the polygone
Q = Hs - (A2 U TH(A2)).
This polygone has vertices -1/6, -(1+8i)/6, -8i/3, (1-8i)/6, 1/6, and -
8§i/12. We have QCH—f—l(H) and QCU.

Fig.3.5.(left) Polygone region Q.
Fig.3.6.(right) Hexagone H{ and quadrilaterals Hi, Hj.

/<
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Proposition 3.1. There exist a hexagone H{ and quadrilaterals Hi,
H)} such that :

(1) Hi is affine conformal to Hk for k =0,1,2;

(2) H'C Q, where H' =H{ UHi UH};

(3) HiN3Q =¢, H N3Q = {-1/6}, H: N 3Q = {1/6};

(4) H§ intersects Hi at a single poinﬁ, say Pk’ for k‘z 1,2

(5) HI Hi = ¢;

(6) H' is mirror symmetric with respect to the imaginary axis;

(7) there exists an orientation preserving homeomorphism
g1 : H' = Ho UH: UHa,
which is affine conformai on each piece Hi, k =1,2, with
g1(-1/6) = 1/3, g1(1/6) = 2/3, g1(P1) = 5/12, g1(P2) = 7/12.

The proof is elementary and is omitted.

Fig. 3.9. Mapping g1.

Let H§, Hi, H} Q be as in the proposition above and let Q
and Q2 denote the components of Q - H'. Now, let us extend the
mapping go : X - int(U_) + X to a quasi-regular map g : X+ X as
fpllows : |

g(z) = go(z) for z e X - int(U),

s5
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g(z) = ¥(2) for =z ¢ f-l(Az) nu_,
g(z) = (z+%9(2) for =z e U_ - Hs,
and g(z) = gl(z)(z) for =z e H'.

It still remains to define the mapping g on regions Qi1 and Q2.

Recall that the conformal structure of X is the same as that of
2

except at the fixed points %— and 3-

Proposition 3.2. There exist quasiconformal homeomorphisms
hy s Qs (W, UG UV, UED) —anecar U a2 uat? uai?),
and
h2 : Q2 + closure of EEZ) - (g(U -Hs) U ng) U ng) U ng)),
mirror symmetric with respect to the imaginary axis, such that hi = g

on 9Q: and h: = g on 9Q2.

Proof. Note that g is piecewise linear on ©0Q:1 and 9Qz in our
;oordinate. Define hi and hz in the neighborhoods of the points %3
3 P, and P2 by affine maps so that they agree with g along the
boundaries 9Q1 .and 9Qz in the neighborhoods of these points. Then
extend it to diffeomorphisms on the rest of the regions Qi and Q2.

By the compactness argument, the obtained homeomorphisms hi and h2
are quasiconformal. This construction can be done respecting the mirror

sSymmetry.
We take these quasiconformal maps to define g. on these regions.
Proposition 3.3. The map g : X >+ X is a quasi-regular map.

roof. Let 01 denote the conformal structure of the Riemann surface
X, Let 02 = g*Gl be the pull-back by g of the conformal structure.
Let X2 be the Riemann surfa;e X with conformal structure O0z. Then
the identity map didz2 : X » X2 1is a quasiconformal homeomorphism and
g2 : X2 +X is conformal. Hence g = g2 o id2 is a quasi-regular

mapping.

/6
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Theorem 3.4. There exists a quasiconformal homeomorphism ¢ : X =+ c
such that F = wogow_l is a rational function of degree two of Bla-
schke's type. \

Proof. Observe that g : X + X is conformal on X - (Q; U Qz). Let

Y

int@_UV_Uw_ U ED -1y y iV,

Ys

int((Eil) - H(l)) U {4-001(1)} u (EEZ) _ H(Z))),
and Y3 = int(U+ U V+ U W+ U (E£2) _ H(Z)) U {+mi(2>}).

We see that g is conformal on Y, U Y, UY; and
g(Y1) C Y2, g(Y2) = Y3, g(¥3) CYi.
Observe that g(int(Qi)) CYs and g(int(Q2)) C Y,.
Let Y=Y, UY, UYs. Then we have
g(1) CY,
g 1is analytic on Y,
%—j =0 on X-glm).

Hence we can apply Lemma 2.1 to obtain a quasiconformal homeomorphism ¢
X - € such that F = wogow—l is analytic on €. As we have
respected the mirror symmetry in our construction of g, we can choose
the quasiconformal map U so that F is "mirror symmetric" with res-

pect to the unit circle.
Theorem 3.5. The Blaschke's function F obtained in the preceding
theorem has a doubly super-attractive cycle of period three.
84, JULIA SET AND SELF-SIMILAR LATTICE

In this section, we describe a "self-similar lattice" and a dynami-
cal system on the lattice. This dynamical system 1is topologically

conjugate to the restriction to its Julia set of the Blaschke's function

constructed in the preceding section.

/7
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The first generation of the lattice, Lj, is a lattice composed of 3
bonds and 2 sites. The two sites corresponds to the origin, O, and the
infinity, o, in the Riemann sphere. Denote the three bonds by Ao, Ai,
A, (Fig.4.1).

To get the second generation of lattice, L, we replace each bond
Ai’ i=0,1,2, by a set of four bonds (Fig.4.2).

The replacement of bonds is dome iteratively to obtain lattices
L3, Ly,...(Fig.4.3).

We obtain a self-similar lattice L_ as the limit of this proce-
dure. The topology of L_ is given naturally by the projective limit
topology. A continuous map u : L_ -+ L_ is defined by

u(®) = », u(0) = 0, u(A1) = Az, u(A2) = A,
u(0') = 0, u(>') = », u(ao) = Ag, u(ai) = u(ai) = A1, u(az) = Az.

The conjugacy map x : L~ Jf is defined by using our quasicon-

formal map .

co
Ao |Aq Az
[os) (o o]
a
134
0
0
<
a3
0

Fig.4.1.(left) First generation L; of self-similar lattice.
Fig.4.2.(middle) Bond Ai is replaced by four bonds. We denote
the four bonds that replace Ag by ag, ai, al, and a, as in the figure.

Fig.4.3.(right) Successive replacement of bonds.
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