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ABSTRACT
Global system stability and instability conditions in terms of the
parameters of a parallel blower system are discussed and fundamental
aspects of manifold nonlinear phenomena observed in the system are

studied through computer simulation.

1. INTRODUCTION

There sometimes occur large oscillations of the mass flow in
the flow passage of a certain type of turbomachine while one
operates the machine in the flow region less than the designed flow
point giving the maximal efficiency of the machine. This is often
called "surge", which is a global system instability meaning a self-
excited oscillation caused by the positive slope of the turbomachine
under some system parameters such as fluid inertances (i.e. duct
lengths) and capacitances (i.e. plenum volume). The above was first

found by Stodola1), 'FujiiZ), and Emmons et a1.3)

investigated the

surge from dynamical viewpoint. Since then many turbomachine models,

which play the crucial role in the system behavior, have been

proposed among which the parallel compressor model and the multi-
stage compressor model are notable. '

The global system stability and instability of Z?rbomachine

)s

systems having only one machine ( surveyed by Greitzer have
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thoroughly been studied especially by Greitzer but those of the
systems having series or parallel machines are seldom studied.
EmmonsS) investigated the static instability of a parallel compres-

2)

points for a parallel pumping system. However the global system

sor system and Fujii™’ studied the properties of the equilibrium
stability and instability conditions (in particular dynamic) of the

parallel turbomachine systems are not found.

The positive slope of the turbomachine essentially comes from
the flow separation in the blade surface usually called stall and
hence the unsteady internal flow along the blade passages should be
more thoroughly investigated for +the machine design purposes.
However, it is also very much important to clarify the global system
behavior for the system design view point. Here we focus our at-
tention on the global system stability and instability of a parallel
blower system and investigate the parameter space of the above

system.

The present paper consists of four sections. In section 2 we
consider a very simple parallel blower system but should notice that
the system 1is encountered in many process applications such as gas
handling systems in the chemical industries or exhaust gas systems
for power plants etc. We derive the dynamic equations of the present
system and confirm that the dynamics is described by Brayton-Moser
equation under some coordinate transformation.In section 3 complete
stability and LaSalle's theorem ( which is useful for ©proving the
above stability ) are introduced. Next we have three theorems which
are needed for providing the complete stability conditions in terms
of the parameters of the parallel blower system and have completely
stable region on the system parameters. In section 4 conditions on
the existence of attractors, which are unstable conditions, are
introduced.These conditions are given using the stable manifold
theorem and boundedness of the system. Next we have the unstable
region on the system parameters. In section 5 fundamental aspects of

manifold nonlinear phenomena observed 1in the system are studied
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through computer simulation. The dynamical behavior is classified
into the static equilibrium states the periodic attractor, the

saddle £ype closed orbit and the non-periodic attractor.

2. PARALLEL BLOWER MODEL

We consider the very simple parallel blower system illustrated
in Fig.1. As the ratio of the wave length of the oscillation to the
representative dimension or duct length is much greater than unity.
The present system is modelled by a lumped parameter model shown in
Fig.2. In the above model we assume the following conditions.

(1) The thermodynamic process of the fluid in the plenum is
adiabatic.

(2) The ratio of the fluid inertia of the throttle duct to that
of each blower duct is much smaller than unity and the
inertia of the fluid in the throttle duct is also
neglected.

(3) While surge occurs in the system, the blower character-
istics does not change severely and is practically similar
to that of the static characteristics (without surge).

Under these assumptions each blower is modelled as an actuator disk
which has the function denoting the blower characteristics and the
system dynamics is described below.

The equation of the fluid motion in each blower duct:

dq .
k. - k=1,2 (1)
i - B, (£, (q,) pP) (k=1,2)
The equation of the continuity in the plenum:
® f § (2)
=F()aq -g(p) F=1/() B) ‘
dt k=1 k =) k
where _ 2 _ .
q, = mk/pUVAlA2 , p=pU7/2 ,t =wt, 1 time

"

2
coj/(kzlAk [y ) [V

- _u =1.2
B, = 5+ / 2 ,k ’ w
k ~ 20k, AlAZ/Ak |
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tmass flow rate,p:plenum pressure,Vp:plenum volume,

tcross sectional area, R:density,

m
L. :blower duct length,Ak

:sound velocity,U:peripheral velocity of the rotor,

.

c
f

OO w

tblower characteristics,g:throttle characteristics.

The blower characteristics fk(k=1,2) and the throttle characteris-
istics g have the properties described below..
£ R—>R,C1 class, (k=1,2)
(i )There exists a unique qu(>O) such that fk(qu)=O.
(i Y aq, (xag,), (a4 )f (g, )<0.
(i) There exists M, (>0) such that Vq,, 90k~ >M, implies df,/dq, <0
(V) qf, (g )—=-= as |q |==.
g: R—=R, differentiable

g(p)=(1//G)sgn(v) /ivi

S . : Throttie
%

O

Blower1 ~ Plenum
— Th ot e
O ; rottle 5 W E:
, A N A,
Blower 2 Blower 1™ v Blower 2
Fig.1 Parallel blower system Fig.2 Parallel blower model

'\fk g
‘E Gox+ My
G-, \er P
Fig.3 Blower characteristics Fig.4 Throttle characteristics
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Generally speaking, blower characteristics satisfies the properties
()G, Gi) and (V). We assume that £, 1is ¢! class function in
order to make the discussion easy. The throttle characteristics 1is
described by a differentiable function and it is usually described
by a square root function of the pressure difference  across the

throttle.

2.1 The equivalent bistable system
The active element of the parallel blower system of our concern
is the blower fk (k=1,2). We introduce the coordinate transforma-
tions so that the blower is equivalently represented as the parallel
connection of an ideal flow source and a nonlinear reéistor:
translation and reflexion
=

= - + 35
.(ik UG ™ Tok (k=1,2) (3)
p v

v =P

We write qpy 28 i., in the new coordinate system.

Ok

Writing the dynamics(1),(2) i1n terms of eq.(3), we have the follow-
ing bistable system:

di,
Lk Il = ‘V - hk(ik) (k=1,2) , (4)
2
dv
cL=1,-gw) - 14 » (3)
ac ~ o " BY kzl k
. 2 2
where 1y (1) = £,(g = 1) » Ly = /B » €= kZlBk o " k2110k
i
~000\ — 11
h
3 -IZWE§:I;; VZI_-’h ,A;§E; "
- 4 D i S
d L S? Ly g™ L1ﬁ%{fe§§4
0 V, T VZ >—|—) 0 Ik
A" —l—

Fig.5 Circuit models
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The functions hk (k=1,2) and g have the properties described below.

. V. : . _n see i =
(a);lk is ¢ class . i (%0) , 1khk(1k) >0 and hk(O)—O iff i 0,
y 2 . ’ . . .
(b) M, > 0 such that , 1,2 My implies dhk/dlk > 0.
(c) :'Lkhk(ik)——}'00 as |ikf—e><n.

(d) v(x0) , vg(v) > 0 and g(0)=0 holds iff v=0 .
(e) dg/dv > 0 . '

(f) vg(v)—=» as v > ,

It is easily seen that the bistable system (4), (5) is dual under

some correspondence to the representative flip-flop circuit studied

8)

circuit.(See Fig.5)

by Moser and its dynamics is hence analogous to that of the above

[Forrespondence of variables(See Fig.S)]

equivalent circuit of flip-flop circuit

the parallel blower system

voltage across the capacitor «—s» current through the inductor

current voltage
-3

through the nonlinear resister across. the nonlinear register

The above correspondence results in the interchange of (1) the
parallel connection with the series connection,‘ (2) the capacitor
with the inductor, and (3) the current source with the voltage

source.

2.2 Brayton-Moser equation
The essential parts of the following discussion was given in ref.
(8).S0 we follow the Moser's line. We first define the following
coordinate transformation .
) 2
= - 1 i = - - i /C
L) = v = B )/ 5 VEW) = (I - g() kzl " )

Then we consider the next differential form.



2
F=CV(i,v)dv- ) T, (i,v)di (7)
3 k=1 k k :
Since R™ is connected and
3 2 1) =

F is the total differentiation of some function.Therefore if F is

integrated along an afbitrary‘closed curve c,

[ F=0

Cc
is found.The functioan:RB-%>-R defined as

(i7,1y,v)
P=| F (9
(0,0,0) 10)

P is called a scalar potential (mixed potential ).In fact P is
iven as - 3
€ 2 2 Tk v

P=1Iwv-v Y i+ Y f‘hkdik - [ gdv , (10)

k=1 k=10 0

In terms of the mixed potential P,the bistable system(4),(5) is
described by the following equations.

L —% - _ 2P (k=1,2) (4)', ¢ L == (5!

The set of the equations(4)'and(5)' are called the Brayton-Moser
1) ‘

equation1 .
3. COMPLETE STABLE REGION ON THE PARAMETERS OF PARALLEL SYSTEM
3.1 Complete stability

It is never completely satisfactory (without finding the
region size of asymptotic stability in the phase space) to know only
that the system is asymptotically stable.In engineering field, par-
ticularly ,it is very much important to find conditions on the
parameters of the system which guarantee that the equilibrium state

is globally and asymptotically stable.Global and asymptotical

199
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stability means that no matter what initial conditions are given to
the differential equation of the system, the resulting solution ap-
proaches one of the equilibrium states as t goes to infinitely. If
the system is in this condition,the equilibrium states are called to
have the complete stability. One of the most useful results for
proving the complete stability of any system described by a dif-

12) 13)

ferential equation is that by LaSalle .We consider a system of

autonomous differential equations

n
| E-f(x) ,xeR (11)
where the function f is ¢! class and satisfies £(0)=0.

Let V(x):R>—=R be C' class and E = [x | dV/dt =0] and let M be the

largest invariant set contained in E.

Theorem (LaSalle)

1) Vx(%0) , V(x) > 0.

2)Vx, dav/at £ 0

If the scalar function V(x) satisfies 1) and 2) described above,

then every solution of (11) bounded for t20 approaches M as t—= .

The problem of establishing complete stability can be broken up into
two parts: The first part is to construct a Liapunov function V(x)
satisfying 1) and 2) such that the only solution remaining in E for
all t is the trivial one (x=0). The second is to show that all the

solutions are bounded for t >0. It is sometimes possible to do both

parts by constructing a single Liapunov function. However it is
often more convenient to discuss the two problems separately and

the second part is of much importance.

3.2 Global dynamical behavior
Now we first define the ehergy function to discuss the bounded-

ness of the solution.

3

Let W: R"—=R be the energy function defined below.
2
-1 2,1 2
W = ZkzlLkik + 5 Cv (12)
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By differentiating W along the solution of the bistable
system(4),(5),one finds

k dv 2 (13)
- Z 1kLk7§?-— VCEE-= - (kzllkLka + vCV)

Thus the time derivativevof W vanishes at the origin of +the new

coordinate, that is , at the equilibrium points of the system.

From eq.(13) we have

2 2 2
—dW/dt=—§kZiikLka + vV ) = - Zlik(v—hk) +V(Io—g(v)—k§1ik)
=) b + v(gv)-I,) (14)

Now we %Eéume , besides the properties of hk stated previously, that
3

for|1k|> Mk ’ hklk > GI,"e

We restrict our discussion to sufficiently large value of W :
2 2 22,0 & 2

W o> Wy = Cv +kZlLkMk /2 = ¢(61,)/2 +kZlLkMk /2

where v, = g*l(IO)
From the expression of W, we easily see +that the above 1implies
that at least one of the three coordinates v and ik (k=1,2) is very
large , and so we can assume

2 . _
v > Vg = GI0 or Ilkl > Mk (k=1,2)

If the first holds, then,-dW/dt > O is obvious . If the first is
violated,likl > Mk holds for at least one k. Then ikhk > GIOB. This
results in

—aw/at > 6L + viglv) - 1) .

Now if v <0, -dW/dt > vg(v) >0, and if v > O,

3 vI, + vg(v) gGIO3 v I, +vg(v) = vg(v) 20.

GIL, 0 olo

The above .proves that
-dW/dt > 0 for W > Wy. (15)
Thus from the condition (15), the solutions of the system not only

remain bounded but also penetrate into the region D defined below.

D= {(1,m)eR’ Jo <ivi<er,?, |5,] <M , k=1,2}

Now we get theorem 1.



Theorem 1
el > M, ih (i) > 6l
system(4),(5) are bounded.

3 then all the solutions of the

Now we can restrict our discussion to the dynamics within the region
D. We can easily show that the equilibrium points of  the
system(4),(5) are contained in the above domain D. As stated below,
the function f (k=1,2) and g(p) satisfy the properties described
previously, so all the equilibrium points must lie in the first
quadrant 1n the (q,p) space.
Let (q ,p ) be the equilibrium points. Then we have

qk < qu, (k=1,2)

' 2 : (16)
P <o ] a7 < & 1 qu) = o1’
k=1

since the equilibrium states must also satisfy the throttle charac-
teristics. By wusing the above relations in terms of (i,v) co-
ordinates, we have

iik < iOk’ (§=1,2) )

v < G(15)% =6l (17)

3 ¥* * .
where (1 sV ) is the (i,v) expression of (q ,p ). Thus we easily see

that the equilibrium - points are contained in D by taking Mk such

that Mk > lOk'

Now we define another scalar function S as
s=JL1%2+cv%/2+AP (18)
k=] ¥k

where P is the mixed potential and A a positive constant .

By differentiating S with respect to v and ik,.we easily have

2 di
3S 1 dv k
—===-C(=g"' - x)—+ E-———
ov C dt k=1 dt ’
2 di
9S dv z 1 ' k
—_— - - - L., (=h + A )——
oi dt kel k Lk‘k dt



So we have

Theorem 2. _
The extreme points of S coincide with the equilibrium points, which

are included in the domain D, of the system(4),(5).

Using the expression of eq.(18) and noting g(v) = (1//G)sgn(v) [Ivl,
we have the another expression for P as

P = -(36/4)sgn(v)g(v) (0N + K(1,v) 2 o (19)
where K(i,v) = (3G/4)sgn(v)g(v)(CV + (Z/B)g(V))2 +kz / hydi,
Putting above relation of S to eq.(18) and noting t functional
relation described below

g(v)g'(v) = sgn(v)/2G,

we .finally have

, ) |
= s 3 +3 1.2 4+ ARUL
= Sy (&' -7 Ac ) (en)? + L hd * AR (20)

On the other hand, easy calculation gives the expression of the time

derivative of S,

di 2
k , 39S dv
g L

2
-——_-(z 22 '+)\L)I +(g'-—AC)V.
=13 dF k=1

k

2y
We have already shown that all the solutions of the system(4),(5)
not only remain bounded but also penetrate into the domain D defined
previously. So in the following we restrict our discussion to the

dynamics in D. Let Abe so chosen as
’ dh

1 "k 1 ‘
T A S » < g8 v (22)
in the domain D,assuming
dh
1
}-I: d—ik. g(v)>0,
k Tk

the function S is bounded from below. Since

/!
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2
-1 ' 23 2 +~£ L. I 2 + AK({4i,v)
S = 3oy ¢ B (W) - AC)(EV) zkzl ili ;
2 N (23)
2 AK(4,v) 2] [ hdi 20 .
k=1,

On the other hand, eq.(21) shows that the time derivative vanishes
only at the equilibrium points and satisfies the inequality
' -ds/dt >0 .

The equality holds only at equilibrium states Ik(k=1,2)= 0, v =0.
From the results so far obtained, we have
Theorem 3.
Under the condition
dh
1 ——k+lg'(v0) >0 (k=1,2)

Lk dik C

all the solutions of (4),(5) tend to the steady state solutions.

4. UNSTABLE REGION ON THE PARAMETERS OF THE PARALLEL BLOWER SYSTEM
By theorem 1 the bistable system(4),(5) is bounded for all t20,
whatever values of the parameters Lk and C take. Then if all the
equilibrium points are hyperbolic and unstable, the system has at-
tractors which are different from the equilibrium points 14).
The conditions on local instability of each equilibrium point
of a system of differential equations are given by stable manifold

theorem for an equilibrium point.

15)

Stable manifold theorem for an equilibrium point is summarized
below: Suppose that

g%-= f(x) , f: Cl class, x € R® (24)

has a hyperbolic equilibrium point X. Then there exist local stable

and unstable manifolds Wuloc(i) and W° (X) of the same dimension

c
lo
n and n, respectively as those of the eigenspaces E° and BV of

the linearized system of eq.(24):

Lopi@E, £e R (x=F+E, g <),



where Df=(3fi/axj) is the Jacobian matrix of the first partial

derivatives of f and tangent +to E° and EY at x. W and

u
W 1

1oc(X)
oc(i) are as smooth as f is.

The above theorem provides the following two lemmas.
Lemma 1
If one of the real parts of the eigenvalues of Df(x) is positive,

the equilibrium point x is unstable.

Lemma 2
If X is the hyperbolic equilibrium point of the above equation

and trace Df(x)>0, then X is unstable.

The boundedness for all t >0 of the bistable system(4),(5) is

already shown. If all the equilibrium points of the system are
unstable, then attractors (periodic or non-periodic attractors)
exist in the system. We apply lemma 2 to our system and have the

unstable region on the parameters of the system.

Unstable region on the parameters of the system
' 2
. n* , {(Ll’LZ’C)|— (dg/dv%v*/C _kzl(dhk/dik%ik*/Lk > 0}
(1, 1, »v ) € E (25)

E: the set of the equilibrium points of the system(4),(5)

5. FUNDAMENTAL ASPECTS OF THE DYNAMICS IN THE SYSTEM

To understand more intuitively,the following discussion 1s
made in the (q,p) space in stead of the (i,v) space.We use the
symbols X, y and z instead of 9 9, and p respectively and the
blower characteristics fk(k=1,2) are shown in the appendix. For the

present system there exists the set of the system parameters

r3

205



206

Bk (k=1,2) and G which makes all the equilibrium points (EPs) of
the system unstable . The equilibrium point and determined by
f1(x)—z=0 , f2(y)—z=0
x+y-~-glz) =0
As shown in Fig.6 , we have these EPs when we chose the parameter
G=23.5 . we designate them as Ek(k=1,2,3) (see Fig.6). Varying the
parameters B1 and B2 we have the phase space portraits corresponding
to the characteristic exponent(CE) of each EP as shown in Fig.7.
Since the functions f1 and f2 have the same characteristics in the

present case, the portrait maps of E1 and E_ are in mirror symmetry

3

with regard to the line B1 = B2. So the map of E3 is omitted.

The completely stable and unstable regions are illustrated in
Fig.8, However the unstable region is not calculated using eq.(25)
defining the unstable region but is determined by the portrait map
of each EP in Fig.7. We have the parameter space corresponding to
typical nonlinear behavior in Fig.9 and Fig.10 with the symbol ex-
pressing the stability or instability of each EP. Fig.10 shows the
bifurcation process of attractors around E, (EB)' The attractors

around E, (E

1 ) in A and D are non-periodic orbits because their

3

Liapunov dimensions are non integer between 2 and 3 16). The at-
tractors around E1 (EB) in B and C are three and six period orbits
respectively. All the attractors around E, in from A to E are one

2
period orbits. The dynamical behavior is classified into the static

equilibrium states and periodic or non-periodic attractors.

In Fig.10 varying B1 and B2 form A to E, we find that at-

tractors around E1 and E3 disappear in E. In order to see more
closely this disappearance, we calculate the saddle +type closed
orbit which show the rough location of the separaterices and 1l-
lustrate the relation among the closed orbits and attractors in
Fig.11. The closed orbit approaches to the attractor around E, (E3)'
From the above result it can be inferred that the collision between
the attractor around E, (EB) and the saddle type close orbit (the

separaterix) causes the attractor disappearance mentioned above.



CONCLUSIONS

1) It is shown that the present parallel blower system is dual to
the standard bistable circuit studied by Moser.

2) Sufficient conditions of the complete stability and the in-
stability conditions on the parameters of a parallel blower system
are provided analytically.

3) In the unstable regioh on the parameters of the present system,
the periodic or non-periodic attractor and saddle type closed orbit

are observed by numerical simulation.

APPENDIX
£f.(r) =a ('r—b)2+c ( i=1,2 , k=1,2,3 )

i ik ik ik 1<y 1592 /.
a,,=180.0, b,,=0.05, c, =1.0, ( r<b, ., 11,2 )
ai2=6.198, b, ,=0.05, ¢, ,=1.0, ( bﬂgrgbﬁ, i=1,2 )
a13=—A7.34, bi3=0.27, c13=1.3, ( bi3<r, i=1,2 )

rs
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151

N E1 E3 G=23.5
1.01 = throttle ch.
05F
z 1 1 £7 /‘
1§ 1,|0 0.15 QO 02 04 Y
£3 ' : '
= dE2 > 8 Y 04
E1 ~ £1 eq.poinf composed
blower
. 02 chr.
=l X
>
04
Fig.6 Composed blower characteristics and EPs
. 1.0 1.01
1.lor 1oy 9y
~ ~
a | R 3
0.5/ 4 ’\] 05
Pty by
i J i 115
0 0.5 1.0 1.5 0 i 1.0 i
B B
Ay CE (E1) (B) CE (E2)

Fig.7 Properties of each EP

Unstable region

— 10} E

B2

Completely
Stable region

0.5

Bi

Fig.8 Completely stable and unstable region

Y4



204

Symbol

(8Us8)
.- ' S

E1 stable \ E3 stable

1
E2 unstable

Type of the equilibrium point

(1) s us
(2) UUS or 8UU

(3) vvuUvu

SUS

Fig.9 Typical nonlinear behavior in phase space

7
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A UUU 0.5 r

B2

0.4 ' '
. 0 B 0.5
B Uy 52 C U q5f
A L\ |
P P
04 O.AY
0 0
X X
0.4 ] | 04

E Ul 7
15

0.4

Fig.10 Bifurcation process



B1=0,303
B2=0,303
G=23,5

A\
Saddle fype

closed orbit

CM. /0,257

(1,327

1,001

- B1=0,31
B2=0,31
G6=23,5

\
Saddle type
closed orbit

1,624

CM. (0,179

1,001

B2=0,322
G=23,5

Qg&
N

Saddle fype
‘closed orbit

cM. [ 0116
1,768

0,996

B1=0,322.

B2=0,325
\ \\"’ G=23,5
\
Saddle type
. closed orbit
C.M. [ 0,0945
0,995

Fig.1ll Saddle type closed orbits
and attractors
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