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Minimal genus Seifert surfaces for unknotting number 1 knots
‘Tsuyoshi Kobayashi . /- Ak giéd}

t. Introduction
Let K be a knot in the stphere SB, D a disk which

intersects K in precisely two points, of opposite orientation, and

L = @D. Then K _ denotes the knot in s3 obtained as the image of

K after doing + or -1 sufgery to L. L (D resb.) is called a
'crossiﬁg tink (crossing disk resp.). We say that KL is obtained
from' K by a single crossing change along the crossing link L.
Then the unknotting number u(K) of K is the minimal number of
times of crossing changes which are needed to transform K into the

trivial knot.

We say that the briented sﬁrfaée F (CSS) is obtained from two

oriented surfaces F1 and F2 in 83 ﬁy a plumbing if:

1) F =‘F1 H“FZ, where R 1is a reétangle with four edges

Al’B A,,B such that Ai (Bi'resp.) is an arc properly embedded in

1777272

F, (F, resp.), and UAi c 8F2, UBi c 8F1,

1 (Fy |
2) There exist 3-balls D ,D, in $3  such that:

. _ «93 _ _ - _
i) D1UD2 = '§%, DlnD2 = 8D1 = 8D2 = § a 2-sphere,

ii) F1CD1, F2CD2 and Flﬁs = FzﬂS = R.
The Hopf band is a *1 twisted unknotted annulus (Figure 1.1).
In this paper we will show that there is a special Kind of minimal

genus Seifert surfaces for'the Unkndtting number 1 knots.

Theorem. Let K be an unknotting number I knot of genus



g>u). Theh ihere i3 a minimal genus Seifert surface T for K
such that T 1is obtained from a Hopf band and a genus g-! surface
by a plumbing along the disk D in Figure 7.7. Moreover, the
crossing link for K is ambienl isotopic in SB—K to the image of

{ in Figure 7.171.

Remark. We note that the genus g-1 surface of Theorem has two

boundary components.
As consequences of Theorem, we have:

Corollary 1. The unknotting number I genus 7 knots are
precisely non-trivial doubled knots ({7.112p.j). HMoreover the

crossing links are found in the obvious positions (Figure 1.72).

Corollary 2(cf. [1,section 21). A non-trivial pretzel knot
K(2p+1,2q+1,2r+1) has unknotting number ! if and only if
{2p+1,2q+1,2r+1} contains either (1,1}, {-1,-1}, (3,-1}, or

{-3,1}.

We note that K(2p+1,2q+1,2r+1) 1is a trivial kont if and only
if {(2p+1,2q+1,2r+1) contains {1,-1). In section 4, by using
Theorem, we show that the unknotting number of 925 ([7]) is 2, so
that, among the knots of <£9 crossings, the unknotting numbers of 810,

8 9 9 g are still unknown.
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2. Proof of Theorem

Let D be the crossing disk, i.e. 8D = L, DNK = 2 points.

Let S be an orientable surface of minimal genus in 83 - Int NL)
such that 9SS = K. Then, if necessary by moving S by an ambient
isotopy of 83 - Int N(K), we may suppose that DNS consists of an
arc joining the 2 points DNK. Let P = 8N(L). Then, by the proof
of [2,Theorem]l, we see that M = 53 - Int N(KUL) is SP—atoroidal
(see [3,Definition 1.61). Then, by [3, Corollary 2.4]1 or

{8, Theorem 5.11, we see that for all but at most one framing, the
manifold N obtained from M by attaching a solid torus to P is
irreducible and S - remains norm minimizing in - N.

We note that the image of S after the + or -1 surgery on 8M
is not a minimal genus Seifert surface for KL = 0. Hence if N'" is
obtained from M by the « surgery, then S remains norm minimizing
in N' = SS. Hence the image of § after the «» surgery on P is a
minimal genus Seifert surface for K.

Let S' ©be the image of S after the + or -1 surgery on. P
D' the image of the crossing disk D for L, and a' = S§$'ND'.

Then a' is an arc properly embedded in S'. Since 3S' is the
trivial knot, S' has a compressing disk d ,i.e. dNS' = 3d 1is an
essential loop on S8S'. Since S 1is a minimal genus Seifert surface
fdr K, we see that @&dna' = ¢. Let S" be the component of the
surface obtained from S' by doing the surgery along d such that
as" =-KL. Then, by moving S" by a tiny isotopy rel,KL, we may
suppose that dD' interscts S" in two points, of opposite

orientation. Moreover we may suppose that D'NS" consists of two



arcs. We get a genus g surface S from S by piping along a
component of 8D'-S. Then we deform §- by an ambient isotopy as in
Figure 2.1. Then Figure 2.1 (ii) shows that the conclusion of
Theorem holds.

This completes the proof of Theorem.

3. Proof of Corollaries

Proof of Corollary 1. It is easy to see that evéry non-trivial
doubled knot is an unknotting number 1 genus 1 knot. Let K be an
unknotting number 1; genus 1 knot. Then, by Theorem, there is a
minimal genus Seifert surface for K obtained by plumbing a genus 0
surfacer 8' and a Hopf band.  Since §' has two boundary
components, S' is an annulus. Hence it is easily observed that the
conclusion of Corollary 1 holds. |

This completes the proof of Corollary 1.

Proof of Corollary 2. 1[It is easily observed that
K(2p+1,29+1,2r+1) has a genus 1 Seifert surface. Hence, by
Corollary 1, K(2p+1,2q+1,2r+1) has unknotting number 1 if and only
if it is a doubled knot. Suppose that K(2p+1,2q+1,2r+1) is a
doubled knot. - Since pretzel knots are simple ([5,Theorem I1]), it is
a twist knbt(£7,112p.]). We note that if {2p+l1l,2q+1,2r+1} > (1,1},
or {-1,-1}, then K{(2p+1,2q+1,2r+1) is a twist knot, and that every
twist knot can be expressed in this form. Hence, by [5,Theorem I1],
K{2p+1,2q+1,2r+1) is not a twist knot if [2p+1|, [2q+1], 12r+1|_z
3. Hence we need to consider the case when precisely one of |[2p+1],

{2q+1], |2r+1| is equal to 1. Since K(a,8,y) = K(v,a,B) and



K(-o,-B,-Y) is the mirror image of K(ot,B,v), we may suppose that
2g+1 = 1. Then we deform the diagram of - K(2p+1,1,2r+1) as in
Figure 3.1. The picture shows that K(2p+1,1,2r+1) . is a 2-bridge
knot. Since K{(2p+1,1,2r+1) is a twist knot, by [4,Corollaryl, we
see that K(2p+1,1,2r+1) has a unique incompressible Seifert
surface.  On the other hand, by [4,Theorem 1(e)], we see that if

l2p+2] > 2, l2r+2| > 2, then K(2p+1,1,2r+1) has two mutually

non-isotopic incompressible Seifert surface. Hence |[2p+2]| = 2 or
|2r+2] = 2. Since K(2p+1,1,2r+l) 1is a non trivial knot, we have p
= -2 or r = -2, so that 2p+l1 = -3 or 2r+l = -3.

4. u(925) = 2.

Let “be the knot as in Figure 4.1. In this section we show

925
that the unknotting number of 925 is 2. For the proof of the next

lemma, see [6].

Lemma 4.1. The minimal genus Seifert surfaces for 925 are
unique up to ambient isotopies of s which fiz 995 Moreover the

surface 8 of Figure 4.1 4is the minimal genus Siefert surface.

Lemma 4.2, Let V  be a genus 2 handlebody, and A (cdV) a
union of three simple closed curves as in Figure.4.2. Let D (cV)
be a properly embedded disk such that 8D intersects A in at most

two points. Then D is boundary parallel.

Proof. Asshme that D 1is not boundary parallel. Let Dl’ D2,

D3 be disks properly embedded in- V: as in Figure 4.2. We suppose



that the number of the components of Dn(DIUDéUDS) is minimal among

all the disks which are not parallel to 8V. We note that

8(D1UD2UD ) cuts 9V into two pants Pl’ P, such that for each

3 2
pair of boundary components of Pi (i=1,2) there are . two subarcs of

A properly embedded in Pi which joins the boundary components. By
using standard cut and paste arguments, we may suppose that no

component of Dn(DIUDZUDB) is a simple closed curve.

Suppose that Dn(D1UD2

Di' Hence @D intersects A in at least four points, a

UD3) = ¢. Then D 1is parallel to some

contradiction.

Suppose that Dn(DluDZUDS) # ¢. Then let Al, A2 (cD) be
innermost disks, i.e. AinaH = o, an arc, Ain(DluD2UD3) = Bi an arc
such: that agUBi = OAi. By the minimality assumption on D, we see
that o, is an essential arc in P1 or P2. Since aai = 881, Sai
is contained in a component of 8(D1UD2UD3). Hence we see that each
o, intersects A in at least two points. Hence 98D intersects A

at least four points, a contradiction.

This completes the proof of Lemma 4.2.

Let V' ©be a genus 4 handlebody, £ (coV') a simple closed
curve, Dl’ D2 disks properly embedded in V' as in Figure 4.3.
Then the frontier of a regular neighborhood of D1UD2UQ consists of
three annuli Al’ Az, A3 as in Figure 4.3. Let VI be the closure
of the component of V'—(AIUAZUA3) which contains £, and V2‘=
cQ(V'-V,). Then we have:

1

Lemma 4.3. Let. D be a disk properly embedded imn V' such



that 9D intersects & in two points. Then D 1is isotopic to a

disk in V1 by an ambient isotopy which preserves §.

1UAZUA3) is

homeomorphic to (PxI,9Px1), where P 1is a fourth punctured sphere,

Proof. It is easily observed that (VI;N(Q)UA

and (V2;A1UA2UA3) is homeomofphic to  (V;NCA)Y) in Lemma 4.2,
where N(.) denotes a regular neighborhood in avi. By cut

and paste arguments, we may suppose that the number of the components
of Dh(A1UA2UA3) is‘minimal among all disks which are rel { isotopic
to D. Assume that Dﬂ(AlquuAB) # ¢. Let A (cD) be an innermost
disk, i.e. DN@V' = o an arc, DN(A VA, VAL) = 8 an arc such that oUB
= B8A.

Then we claim that AN # ¢; Assume that ANng = ¢é. Then A is
properly embedded in Vl or V2' Suppose that ACVl. Since
dANPx{g} = ¢ (=0 or 1), we see that OA. is contractible in avl.
Hence A is parallel to avl, and D can be movéd by a rel ¢
isotopy to delete A, contrédicting the minimality assumption.
Suppose that AcVz. Then, by Lemma 4.2, D can be moved by a rel ¢
isotopy to delete A, a contradiction.

By the above claim, we see that D contains exactly two
innermost disks, which intersect & in 1 point. Hence each
component of DnV2 is a rectangie Such that the two edges are
contained in 8V' and thé rest edges are contained in A1UA2UA3.

Then, by Lemma 4.2, we see that every component of Dan can be

pushed into Vl, a contradiction.

This completes the proof of Lemma 4.3.



Proof of ”u(925) = 2” It is easily observed that 925 is
transformed into a tivial knot by using two croosing changes. Hence
we show that u(925) # 1.

Assume that u(9,_.) = 1. Let D be the crossing.link for

25 925

and E a handlebody obtained by thickening the minimal genus Seifert

surface S (Figure 4.1), such that 905 c 9E. Then let N =

CQ(SS—E). Then, by Theorem, there is a disk A properly embedded

in N, which intersects 925 in two points (Figure 4.4). We move
S by a rel 925 ambient isotopy so that S is the closure of a
component of 8N-925. Then we note that ANS is rel 925 ambient

isotopic to the arc DnS. It is directly observed that (N,925) is

17 A2 in Figure 4.5

correspond to Dl’ D2 of Figure 4.3. Let 71, 72 be arcs properly
embedded in S as in Figure 4.1 (ii). VLet Vl' be the submanifold

homeomorphic to (V', 4) of Lemma 4.3, where A

of N which corresponds to V,1 of Lemm 4.3. Then, by the above
observation, we see that the subsurface x = Vl’nS of S 1is a
regular neighborhood of asuyluyz in S. Hence, by Lemma 4.3, we
may suppose that ANS = DNS is contined in Xx. Figure 4.6 is a
schematic picture of S obtained from Figure 4.1 (ii) by ignoring
the twists. Then lef aj, a,, bl’ b2 be the oriented simple closed

curves on S as in Figure 4.6, which represent a generator of

Hl(S;E). Then a Seifert matrix of S 1is given by:

) a  a; by by
a, (-1 0 0 0
+ . N
a2+ 0 1 0 0
b] 1 0 2 1
+
b2 0 1 1 2
9 is transformed into the trivial knot O by a crossing change

25



along D. Then let S' ©be the Seifert surface for O which is the

image of S, and o 8 B, (cS') be the images of a

1 %20 Py Py 1
b, respectively. Since DNS c i, we see that Qk(ai,ij) =
+
gk(a,,b. ), Lk(B. ,0.") = fk(b, ,a. ), 4k(B.,B.7) = 8k(b.,b. ). Hence
i’7] i’7] i’%j i’ it

a

2’ "1

a Seifert matrix of S' is:
. % % By By
al jo] r 0 0
+ : -
A = a2+ r a 0 0 , where 7p,q,r are some
Bl 1 0 - 2 1
+
82 Q 1 1 2
integers. “Then thé,Alexander polynomial of O is given by
det(tA-'A) = 3(pa-r®)(t?+1) - (12pq-12r2+2p+2q+21) (t3+1) +
(18pq—18r2—4p—4q—4r+1)tz. Hence we have pq—r2 = 0, and

12pq—12r2+2p+2q+2r = 0, so that p =q =1r = 0. &8ince p = 0, we see

that a intersects DNS algebraically once, and we do +1 surgery

1
on @D to get O. On the other hand, g

0 shows that we do -1
surgery on 98D to get O, a contradiction.

Hence we have u(9,.) = 2.

25
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F[gure 4.2
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Fr'gure 4.5
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Figure 4.5
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