LOCAL SOLVABILITY OF SECOND ORDER FUCHSIAN TYPE EQUATIONS (Collaboration with C.PARENTI)

上智大 理工 田原秀敏 (Hidetoshi TAHARA)

§1. DISCUSSION IN A EXAMPLE.

Let $(t,x) \in \mathbb{R}_t \times \mathbb{R}_x^n$ and let us consider

 $P=ta_{t}^{2}-\Delta_{x}+a(t,x)a_{t}+\Sigma_{i=1}^{n}b_{i}(t,x)a_{i}+c(t,x) \tag{1.1}$ near the origin, where Δ_{x} is the Laplacian, $a_{t}=a/at$ and $a_{i}=a/ax_{i}$

($1 \le i \le n$). Note that P is hyperbolic on $\{t > 0\}$ and elliptic on $\{t < 0\}$, that is, P is so-called a mixed type operator.

To illustrate our argument, let us treat here the above operator P and show the local solvability of Pu=f in hyperfunctions & distributions.

<u>1-1</u>. Solvability in hyperfunctions. Let P be the operator in (1.1) and assume that a(t,x), $b_i(t,x)$ and c(t,x) are analytic functions near the origin. Let $\mathcal B$ be the stalk of sheaf of hyperfunctions at the origin. Then, we have:

Theorem 1. If $1-a(0,x)\notin\{1,2,\ldots\}$, the map $P:\mathcal{B}\longrightarrow\mathcal{B}$ is surjective.

<u>Sketch of proof</u>. To prove this, it is sufficient to show the following:

- (i) $P: A \longrightarrow A$ is surjective,
- (ii) $P: \mathcal{B}/Q \longrightarrow \mathcal{B}/Q$ is surjective.
- (i) is clear from the Cauchy-Kowalewski type theorem for Fuchsian type equations. (ii) follows from the following two facts:
 - (ii-1) when $p(\pm)=(0,0;\tau=\pm1,\xi=0)$, $P: C_{p(\pm)} \longrightarrow C_{p(\pm)}$ is surjective,
- (ii-2) when $q=(0,0;\tau,\xi\neq 0)$, P: $C_q\longrightarrow C_q$ is bijective, where C_p denotes the stalk of sheaf of microfunctions at p. Q.E.D.
- <u>1-2</u>. Solvability in distributions. Let P be the operator in (1.1) and assume that a(t,x), $b_i(t,x)$ and c(t,x) are C^{∞} functions near the origin. Let \mathcal{D}' be the stalk of sheaf of distributions at the origin. Then, we have:

Theorem 2. If $1-a(0,x) \notin \mathbb{Z}$, the map $P : \mathcal{D}' \longrightarrow \mathcal{D}'$ is surjective.

Sketch of proof. Put

$$\mathcal{S}|_{t>0} = \{ u|_{t>0} ; u \in \mathcal{D}' \},$$

 $\mathcal{D}'|_{t<0} = \{ u|_{t<0} ; u \in \mathcal{D}' \}.$

Then, Theorem 2 follows from the following three facts:

- (i) $P: \mathcal{D}'|_{t>0} \longrightarrow \mathcal{D}'|_{t>0}$ is surjective,
- (ii) P: $\delta'|_{t<0} \longrightarrow \delta'|_{t<0}$ is surjective,
- (iii) for any $f(x) \in \mathcal{D}'$, there exists a unique solution $u(t,x) \in C^{\infty}([0,T],\mathcal{D}') \text{ such that}$

Pu=0 on t>0,
$$u|_{t=0} = \varphi(x)$$
.

In fact, we can get Theorem 2 as follows. Let $f \in \mathcal{D}'$. Then, by (i) and (ii) we can choose $v \in \mathcal{D}'$ such that $Pv = f + \delta(t) \otimes \psi(x)$. By (iii) we solve

$$\begin{cases} Pw=0 & \text{on } t>0, \\ w |_{t=0} = (a(0,x)-1)^{-1} \psi(x). \end{cases}$$

Then, we have $P(Y(t)w)=\delta(t)\otimes\psi(x)$. Thus, by putting u=v-Y(t)w we get a solution $u\in \mathcal{D}'$ of Pu=f.

Remark. By the same argument as in the proof of Theorem 1, we can easily get that $P: \mathcal{S}'/C^\infty \longrightarrow \mathcal{S}'/C^\infty$ is surjective. But, unfortunately, we do not know whether $P: C^\infty \longrightarrow C^\infty$ is surjective or not. This is the reason why we proved Theorem 2 in a different way from the proof of Theorem 1.

\$2. FURTHER RESULTS.

Let us treat here somewhat more general Fuchsian type operators. Let P_1 , P_2 and P_3 be of the form

$$P_{1} = t \vartheta_{t}^{2} - t^{k} A(t, x, \vartheta_{x}) + a(t, x) \vartheta_{t}$$

$$+ t^{h} \Sigma_{i=1}^{n} b_{i}(t, x) \vartheta_{i} + c(t, x),$$

$$P_{2} = t^{2} \vartheta_{t}^{2} - t^{p} A(t, x, \vartheta_{x}) + a(t, x) t \vartheta_{t}$$

$$+ t^{q} \Sigma_{i=1}^{n} b_{i}(t, x) \vartheta_{i} + c(t, x),$$

$$P_{3} = t^{2} \vartheta_{t}^{2} + t^{p} A(t, x, \vartheta_{x}) + a(t, x) t \vartheta_{t}$$

$$+ t^{q} \Sigma_{i=1}^{n} b_{i}(t, x) \vartheta_{i} + c(t, x),$$

where $\partial_t = \partial/\partial t$, $\partial_i = \partial/\partial x_i$ (1\le i\le n), k,h,p,q\(\mathbb{Z}_+\)(=\{0,1,2,\ldots\}),

$$A(t,x,a_x) = \sum_{i,j=1}^{n} a_{i,j}(t,x)a_ia_j$$

is a real elliptic differential operator such that

$$A(t,x,\xi/|\xi|) > 0$$
 for $\forall (t,x), \forall \xi \in \mathbb{R}^n \setminus \{0\}$,

and $a_{i,j}(t,x)$, a(t,x), $b_i(t,x)$ and c(t,x) are C^{∞} functions near the origin. Let $\rho(x)=1-a(0,x)$ and let $\rho_1(x)$, $\rho_2(x)$ be the roots of $\rho(\rho-1)+a(0,x)\rho+c(0,x)=0$. Note that $\rho(x)$ is the non-trivial characteristic exponent of P_1 and that $\rho_1(x)$, $\rho_2(x)$ are the characteristic exponents of P_2 and P_3 . Then, we have:

Theorem 3. (1) In case P_1 , if $k \ge 0$, $h \ge (k-1)/2$ and $P(0) \notin \mathbb{Z}$ hold, the map $P_1 : \mathfrak{D}' \longrightarrow \mathfrak{D}'$ is surjective.

- (2) In case P_2 , if $p \ge 1$, $q \ge p/2$ and $P_1(0)$, $P_2(0) \notin \{-1, -2, \ldots\}$, the map $P_2 : \mathscr{O}' \longrightarrow \mathscr{O}'$ is surjective.
- (3) In case P_3 , if $p \ge 1$, $q \ge p/2$ and $P_1(0)$, $P_2(0) \notin \{-1, -2, ...\}$, the map $P_3: \mathscr{D}' \longrightarrow \mathscr{D}'$ is surjective.

The proof of this result is quite similar to that of Theorem 2.

REFERENCES

- [1] A.Bove, J.E.Lewis, C.Parenti and H.Tahara: Cauchy problem for Fuchsian hyperbolic operators, II. J. Fac. Sci. Univ. Tokyo, 34-1 (1987).
- [2] C.Parenti and H.Tahara: Examples of locally solvable second order Fuchsian operators, in preparation.

要約

本稿では、2階のフックス型線形偏微分方程式の hyper-function (B) 或いは distribution (B) での 局所可解性が論じられている。

- ① (t,x) ∈ Rt×Rx (原点の近傍) とし、例えば $P = t\partial_t^2 \Delta_x + a(t,x)\partial_t + \sum_{i=1}^n b_i(t,x)\partial_{x_i} + c(t,x)$ という作用素を考えてみる。 Pは {t>0} では双曲型であり
 {t<0} では楕円型となっていて、いわゆる混合型作用素と呼ばれているものになる。 次が成り立つ。
 - (i) Pの係数が解析的とする。この時、原点の近傍で I-a(e,x) ∉{1,2,...} ⇒ P:B→B は全射。
 - (ii) Pの係数がC[∞]クラスとする。この時、原点の近傍で 1- a(o,x) ∉ {o,±1,±2,…} ⇒ P: B'→ B' は全射。
- ② (ii)の証明は L^2 -評価をベースとした議論による。 同様の議論によって 次の様な作用素の<math>D での局所可解性を 扱かうことも出来る。

$$\begin{split} P_{1} &= t \partial_{t}^{2} - t^{k} A(t,x,\partial_{x}) \\ &+ \alpha(t,x) \partial_{t} + t^{h} \sum_{i=1}^{n} b_{i}(t,x) \partial_{x_{i}} + c(t,x), \\ P_{2} &= t^{2} \partial_{t}^{2} - t^{p} A(t,x,\partial_{x}) \\ &+ \alpha(t,x) t \partial_{t} + t^{g} \sum_{i=1}^{n} b_{i}(t,x) \partial_{x_{i}} + c(t,x), \\ P_{3} &= t^{2} \partial_{t}^{2} + t^{p} A(t,x,\partial_{x}) \\ &+ \alpha(t,x) t \partial_{t} + t^{g} \sum_{i=1}^{n} b_{i}(t,x) \partial_{x_{i}} + c(t,x). \end{split}$$

但し、A(t,x,み) は 2階の 実係数楕円型作用素、k,h,p,q∈ Z+(={0,1,2,…}) で h≥(k-1)/2, p≥1, q≥P/2 とする。