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Symbol Theory of Microlocal Operators

By Keisuke UCHIKOSHI
Department of Mathematics,

National Defense Academy, Yokosuka 239, Japan

Let M < R" be an open neighborhood of the origin, and X be its
complex neighborhood. We denote by x the variables of M or of X,
and by & the dual variables of x. Thus we use the same letter for
both real and complex variables, if confusion is not likely. We
identify M with the diagonal set in M>M.. The sheaf L = iM of

microlocal operators is defined on JTES*M = Jrisa(MMM) by

Z =% . (Cyw®T

) J-’lsg(M M)

(See [3] and [8]). Here €M>Mﬁdenotes the sheaf of microfunctions
on MxM, and 7fﬁ that of densities on M with analytic coefficients.

The sheaf &£ used to be defined to be the inverse image under the

53

antipodal map of the above one, but we prefer the present definition.

A section of L is called a microlocal operator on J:ES*M (or on M).

A microlocal operator acts on microfunctions, without increasing
the support. This property is called the microlocal property, and
one may understand that the notion of microlocal operator is the
most general one possessing this microlocal property.

There are several subclasses of microlocal operators which are
very familiar to us. We denote by\ 8m= 8; (resp. gR. E;f) the
sheaf of microdifferenti;l operators on M (resp. holomorphic |
 microlocal operators on M) defined by [3] and [8] (resp. [4]). We
‘do not give the definitions of these sheaves; but later we will

give a description of them from symbol theoretical point of view,
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and then their meanings will become clear. Note that we have
amcg]RCf/;

Thus far the symbol theory has been known only for these special
subclasses of microlocal operators, and our purpose is to extend
it for the general microlocal operators. The details will be given
in [9].

To state the main theorem, we give some preliminaries:

Definition 1. Let r > O be small DN x(t)

enough. A continuous function INGD)
defined on 0 < t < r is called a

scaling function if

(i)  1lim A(t)/t = O, >t
t2+0 0
(i) t < t'" = At)/t < A(r')/t'. figure: the graph of
a scaling function.
Remark. Let A(t) be a scaling function. It is easy to

see that we have

(i)' lim A(t) = 0,
t->+0

(i)'t < t' = A(t) < A(t").

It is easy to see that A(t) is positive definite, and we define

A(0) = 0 if t = 0.

Example. (i) A(t) = mti, m >0, i>1,

(#) A(t) = mt(-logt)t, m,i > 0.
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Definition 2. Let £ = (0;0,...,0,J=1) € J=15"M. Let A(t)

and u(t) be two scaling functions. We denote by »f A, 1 (X?A ) g
the space of holomorphic functions a(x,%) defined on some conical
complex neighborhood V of Q¥ in T X such ‘that for any € > 0 there

exists some C_ > 0 satisfying
(1) la(x,&)| ¢ Ceexp{(x(|1m x|) + u(|Re £[/Im £ )+ €)Im En}

" on V. We define f = x? k by x? L/ y?k u We denote by
n="n . the space of a(x £) e N% such that there exist some € >0

g

and C > 0 satisfying
(2) la(x,8)| € C exp(- Im )

. . o
on some conical complex neighborhood of X .

Example. (i) eXP(f—ii 2/5 ) € x?0¢ , £ j £ n-1.
X
(i) exp (J-_lxj ‘£ € x?g, $j $n.

Let x,x' € M, and let A = u(x,x')dx’ é'ZiQ* , u(x,x"') being
the kernel function of A. We can define the Fourier transform

'G(x,g) of u(x,x') by
(3) 'G(x,g) = [ e_<x-x')gu(x,x')dx'.

We do not give the precise meaning of this integral, but one may
understand that it is defined in a natural way as a microfunction.
(3) has some ambiguity, but one can prove

Proposition 3. u(x,£) € .
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A
If one neglects an element of,7%* , then u(x,%) is defined
X

with no ambiguity. Thus the following map is well-defined:
(&) c:}ig* 5 A = u(x,x"')dx' ——>0o(A) ='G(x,€) € )X;*/'Y%* .
' : X X

Theorem 4. (4) is an isomorphism.

Definition 5. We call o(A)(x,£) the symbol function of A.

Remark. Let us resume the symbol theory already known. We
denote by )Xl = ()fl)g* - )Xg*

satisfy: For any € > O there exists some C. > 0 such that (1) is

the space of all a(x,i)'f;fg* which

valid with x(t) = u(t) = 0. i.e., >21 is the space of infra-
exponential symbol functions. We denote by ;52 =.(xf2)o* the space
of all a(x,g) € (Xyl)o* which have asymptotic expansion: a(x,&)
ﬁ«.EZ aj(x,i) where ezch aj(x,i) is homogeneous in £ of degree j
(Sge [8] for the precise definition). 1In [3] and [8] it is proved

that we have

12

Eon & ) W/ Ny

9( gu %n

and in [1] and [5] that

R
Yo C\:/ e % e
Eg:. (Jl)gu/ gn

Thus we have obtained

£ c ER < £
%4\ g)(n %n

si St sl
By < Lym < 8/M.



We next want to give the symbol formulae for adjoint operators
gnd composite operators of microlocal operators. There arises one
problem tHen, and we first explain about it. Let A € J:o* and assume
that o(A) € xgx,u for some scaling functions A(t) and u(i). The
question is: Can we prove

(5) o (8%) (x,-8) ~v z#

A, o

3y 0 9(A)(x,8)

in some sense ? There is one more question concerning the composite
operators. If one wants to obtain (5), one needs to estimate the

derivatives BXQSEBG(A)(X,E),a,B € Z;n. We can prove the foolowing

Proposition 6. Let Cj > O . We define T(k) € ¢" x ¢", k € z,,
by v

T(k) = {(x,£) € €" x €5 Cylx| < 1,

Im g > CylIm £j|, 1

1IN

j £ n-1,

N

Im g > Cy|Re gj|, 1<j<n, Img_ > Cok}

Assume that C, and C; are large enough, and that k > |a|, |B].
Let A(t) and u(t) be the above scaling functions. For any ¢ > 0

there exists some CE > 0 such that

(6) |8xaa€BO(A)(x,£)| $ C_alB!
X exp{(k(Clllm x|) + u(Cllke £|/Im En) + €)Im Cn}

x (¢ A7 (el /1m g ) 1 e /w1 /In £ )1 £ ) 1B

on T(k).
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This is a direct corollary of Cauchy integration theorem.
See [9] f6r the proof. (6) looks more familiar in' the following
special case: Assume that A(t) = mlti, u(t) = mth’ my,my > O,

1, > 1, and that C_ = C does not depend on €. Then we have
) = mptE w0 = (e/my)t

(k-l(t) denotes the inverse function of A(t)). If (x,&)

G’T(kXWJ:IT*M (and thus Im x = Re £ = 0), (6) means

(6)" 13,730 () (x,8) |

< C.C1|a|+|6Imliul/imzlBl/ju!(i-l)/le!(j-l)/j

X (Im )l /A1) |81/3

It follows that o(A)(x,£) € sg,a(mn) with o = 1 - 1/j, § = 1/1i.
Here 82,6 denotes the symbol space introduced by [2]. Our theory
shows sdﬁe similarity to the symbol theory of SE,S in distribution
theory, or, more generally, to the symbol theory of 53,0’5,With some
"basic weight function" v(£), introduced by H. Kumanogo. = The auther
does not know whether this similarity has some deeper meaning or not,
but concerning the symbol calculation, there arises the following
problem.

Let A be a pseudodifferential operator in distribution theory,
and let o(A)(x,&), the complete symbol of A, belong to 52,5 y m € Z,
0 < p,8 < 1. 1If oné wants to obtain a symbol formula (5) for A*,
‘then one needs to assume p > &§.(or at least p 2 §). If p < §, then

one cannot expect to obtain (5), since the right-hand side of (5)
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becomes larger and larger as |q|—9 oo and thus this asymptotic
expansion does not have any meaning. Noge that we have used a
notatiﬁn étandard in hyperfunction theory, and the asymptotic
expansion (5) should be given in é slightly different form, if
one follows the convention standard in distribution theory.
Anyway an analogous problem occurs in our symbol theory again, and
it seems inevitable to aséume some condition on A(t) and u(t),
if one wants to prove (5) for A*, with o(A) € ,gx,u

Let A(t) and u(t) be two scalipg functions. Let Cy,C; > O be
two given constants. We introduce the following

Condition Cy,C; . 0 < t < 1/C; = A"H(ow™(r) 2 ¢ .

Examgle. Let )\(t) = mltl, U(t> = mth; ml’mz >0, 1i,j > 1.

Then Condition CO,C1 is satisfied if, and only if, either

1/i + 1/5 < 1
or
1/i +1/5 = 1, ml‘l/imz'l/j 2 Cy.

Let Cy, C; be large enough; and assume that A(t) and u(t)

satisfy Condition CysCyq - If,c(A)G)gx u‘, then we have the desired
b

asymptotic expansion (5). More precisely, we have the following

result: We define Bj(X,‘é),j € Z,, by

By(x,-8) = 2 ﬁiﬂax“ag“o(m(x,i),

ol

and consider the following power series:
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. ® 1

(7) I —
) j=0 (ZWJ:E)H

fe(x-x')iﬁg(x,g)dg,

Here each integral is calculated on the following domain

{17

{g é—JTleR'nr; Im £
‘ Im En

-Co | Im Eels 15 k < n-1,
"Cor(j+1) }

[17aN

with the corresponding number j € Z;. Then we have the following
Theorem 7. Under the above assumptions, let u(x,x') be the
kernel function of A: A = u(x,x')dx'. Then the power series (7)

converges and it becomes the defining function of u(x',x).

Since we have A = u(x',x)dx' by definition, this is the
desired result.

A; for the composite operator, we have the following

Theorem 8. Let A; = ui(x,k')dx' € JZ%* , i =1,2. Let O(Ai)
€ 3 Apowg yith some scaling functions Ai(t), Ui(t), i=1,2.

Assume that ul(t) and Xz(t5 satisfy Condition CysCq » where Co and

C1 are large enough. Then we have

(8): 0(AgA)) (x,E) v z g%vaééc(Al)(x,€)3¥u0(A2)(X,€)

We do not explain the precise heaning of (8), since it is
similar to that of (5). :

Remark. If A is a holomorphic microlocal opérator, then
Theorem 7 always applies. If one of Ay and A, is a holomorphic

microlocal operator, then Theorem 8 always applies.

Finally we explain the relationship of our theory and that of
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Fourier integral operators with complx phase functions[7]. Assume

thatﬁé(x,g) is written in the form
(9) a(x,g) = ecP(x,g)al(x’E)’

where the amplitude function al(x,g) belongs to (>¥1)0*, and
X

the phase function ¢(t) satisfies

Re 9(x,6)] ¢ (\(|Im x|)+ p(|Re £|/In £ ))Tm £_

with some scaling functions A(t) and u(t). Then we have a(x,&)

€ Xgo*‘ On the other hand, a(x,&) may be regarded as the symbol

of axFourier integral operator( more precisely, a pseudodifferential
operator) with a complex phase function. Our theory may be regarded
as a generalization of such a theory, since we do not assume that
a(x,£) is written in the form (9). We only:assume that it satisfies

an estimate of the form (1)
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