On Some Classes of 2-microhyperbolic systems

Nobuyuki Tose

Department of Mathematics

Faculty of Science

Ehime University

§1. Introduction

Hereafter M denotes a real analytic manifold with a complexification X. We study a system of microdifferential equations \mathfrak{M} defined in a neighborhood of $\rho_0 \in \mathring{T}^*_{M} X$. We assume that the characteristic variety of \mathfrak{M} is written as

Ch(
$$\mathfrak{M}$$
) = { $\rho \in T^*X$; $p(\rho) = 0$ }

by a homogeneous holomorphic function p defined in a neighborhood of ho_0 satisfying the following conditions.

- (1) p is real valued on $T_{M}^{*}X$.
- (2) $\Sigma = \{\rho \in T^*_{M}X; p(\rho) = 0, dp(\rho) = 0\}$ is a regular involutory submanifold of $T^*_{M}X$ of codimension d through ρ_0 .
- (3) $\operatorname{Hess}(p)(\rho)$ has rank d with positivity 1.

The problem is to study the structure of $\Re M$ (M, \mathcal{C}_M) , the sheaf of microfunction solutions of M on Σ .

§2 Canonical form

To express the canonical form, we take an open subset \mathbf{M}_0 in $R_t^{n-d} \times R_x^d$ and a complex neighborhood X_0 of M_0 in $C_w^{n-d} \times C_z^d$. Then $(w,z;\theta dw+\xi dz)$ [resp. $(t,x;\sqrt{-1}(\tau dt+\xi dx))$] denotes a point of T^*X [resp. $T^*_{M}X$] with $\theta \in \mathbb{C}^{n-d}$ and $\xi \in \mathbb{C}^d$ [resp. $\tau \in \mathbb{R}^{n-d}$ and $\xi \in \mathbb{R}^d$].

By finding a suitable quantized contact transformation, the problem is reduced to study the system \mathfrak{M}_0 defined in a neighborhood of ρ_0 = (t=0,x=0; $\sqrt{-1}dt_{n-d}$) whose characteristic variety is written as $Ch(\mathfrak{M}) = \{(w, z; \theta, \xi) \in T^*X; \ \xi_1^2 - \sum_{2 \le i, j \le d} a_{i, j}(w, z; \theta, \xi) \xi_i \xi_j = 0 \}.$

Here a 's are homogeneous holomorphic functions of order 0 defined in a neighborhood of ρ_{Ω} and satisfy the condition

(4)
$$(a_{ij})_{2 \le i, j \le d} \text{ is positive definite on }$$

$$\Sigma_0 = \{(t, x; \sqrt{-1}(\tau, \xi)) \in T_{M_0}^* \mid X_0; \xi = 0 \}.$$

Bisymplectic Structure due to Y. Laurent §3.

To state the main theorem in an invariant form, we introduce the bisymplectic structure due to Y. Laurent[L].

Let Λ be a complexification of Σ in T^*X . By definition Σ is the union of all bicharacteristic leaves of Λ issued from Σ . In case $\Sigma = \Sigma_0$, we may identify

(5)
$$\sum_{0}^{\infty} \sim C^{d}_{z} \times \sqrt{-1} T^{*} R^{n-d}_{(t,\sqrt{-1}\tau dt)}.$$

 $\tilde{\Sigma}_0 \overset{\sim}{\longleftarrow} C^d_{z^{\times}} \sqrt{-1} T^* R^{n-d}_{(t,\sqrt{-1}\tau dt)}.$ Then we can take a coordinate of $T^*_{\Sigma_0} \tilde{\Sigma}_0$ as $(t,x;\sqrt{-1}\tau dt;\sqrt{-1}x^*dx)$ with $x^* \in \mathbb{R}^d$.

We define a map

(6)
$$p: T^*_{\Sigma} \widetilde{\Sigma} \longrightarrow \Sigma \longrightarrow T^*_{M} X$$
 and the canonical 1-form of $T^*_{\Sigma} \widetilde{\Sigma}$ by $\omega_{\Sigma} = p^* \omega_{M}$. Here ω_{M} is a canonical 1-form of $T^*_{M} X$. We put $\Omega_{\Sigma} = d\omega_{\Sigma}$.

In case $\Sigma = \Sigma_0$, ω_{Σ} is written by coordinates as

$$\omega_{\Sigma} = \sum_{j} \tau_{j} dt_{j}$$

We set

$$T_{rel}T^*_{\Sigma}\tilde{\Sigma} = \ker(TT^*_{\Sigma}\tilde{\Sigma} \longrightarrow T^*T^*_{\Sigma}\tilde{\Sigma}) \longrightarrow TT^*_{\Sigma}\tilde{\Sigma}.$$

Here the morphism above in the definition of $T_{rel}T^*_{\Sigma}$ is defined naturally by Ω_{Σ} . We dualize the exact sequence

$$0 \longrightarrow T_{\text{rel}} T^* \Sigma^{\widetilde{\Sigma}} \longrightarrow TT^* \Sigma^{\widetilde{\Sigma}}$$

and obtain

$$0 \longleftarrow T^*_{\text{rel}} T^*_{\Sigma} \widetilde{\Sigma} \longleftarrow T^*_{\Sigma} T^*_{\Sigma}.$$

We can take a section of $T_{rel}^*T_{\Sigma}^*\widetilde{\Sigma}$ canonically, which is denoted by ω_{Σ}^r and called the relative canonical 1-form of $T_{\Sigma}^*\widetilde{\Sigma}$. We also define the relative 2-form $\Omega_{\Sigma}^r = d\omega_{\Sigma}$.

In case
$$\Sigma = \Sigma_0$$
,

$$\omega_{\Sigma}^{r} = \sum_{i} x_{i}^{*} dx_{i}$$
.

Associated with Ω^{r}_{Σ} we can define an isomorpfism

$$H_{\Sigma}^{r}: T_{rel}^{*}T_{\Sigma}^{*\widehat{\Sigma}} \xrightarrow{rel} T_{rel}^{*\widehat{\Sigma}}.$$

For a function f defined on an open subset of $T^*\sum_{\Sigma}$, we set

$$H_f^r = H_{\Sigma}^r (\overline{df})$$

where \overline{df} is the image of df by $T^*T^*_{\Sigma}\widetilde{\Sigma} \longrightarrow T^*_{rel}T^*_{\Sigma}\widetilde{\Sigma}$. H^r_f is called the relative Hamiltonian vector field of f.

In case $\Sigma = \Sigma_0$, it is written by coordinate as $H_f^r = \sum_j (\partial f/\partial x_j^* \cdot \partial/\partial x_j - \partial f/\partial x_j \cdot \partial/\partial x_j^*).$

§4. 2-microfunctions

M. Kashiwara constructed the sheaf \mathscr{C}^2_Σ of 2-microfunctions on $T^*_{\widetilde\Sigma}^{\widetilde\Sigma}$ long time ago in Nice. We can study the properties of microfunctions defined on Σ precisely by \mathscr{C}^2_Σ . Explicitly, there exists the sheaf $\mathscr{C}^*_{\widetilde\Sigma}$ of microfunctions along $\widetilde\Sigma$ on $\widetilde\Sigma$ and there exist the exact sequences

$$0 \longrightarrow \mathscr{C}_{\widetilde{\Sigma}} \Big|_{\Sigma} \longrightarrow \mathscr{B}_{\Sigma}^{2} \longrightarrow \pi_{\Sigma*} (\mathscr{C}_{\Sigma}^{2} \Big|_{\mathring{T}^{*}_{\Sigma}\widetilde{\Sigma}}) \longrightarrow 0$$

and

$$0 \longrightarrow \mathscr{C}_{\mathbf{M}} |_{\Sigma} \longrightarrow \mathscr{Z}_{\Sigma}^{2}. \quad (\pi_{\Sigma} : T^{*}_{\Sigma} \widetilde{\Sigma} \longrightarrow \Sigma.)$$

Here we put $\mathscr{Z}_{\Sigma}^2 = \mathscr{C}_{\Sigma}^2|_{\Sigma}$. Moreover we have the canonical spectral map $\operatorname{Sp}_{\Sigma}^2 \colon \pi_{\Sigma}^{-1} \mathscr{Z}_{\Sigma}^2 \longrightarrow \mathscr{C}_{\Sigma}^2$.

We put for $u \in \mathcal{C}_{M} |_{\Sigma}$,

$$SS_{\Sigma}^{2}(u) = supp(Sp_{\Sigma}^{2}(u)).$$

See Kashiwara-Laurent[K-L] for details about \mathscr{C}_{Σ}^2 .

§5 Main Theorems

We set for a point $\rho \in \Sigma$ and $\tau \in T^* \sum_{\Sigma} \rho$ $g = \langle \text{Hess}(p)(\rho) \text{H}(\tau), \text{H}(\tau) \rangle$

where H: $T^*_{\Sigma}^{\widetilde{\Sigma}} \xrightarrow{} T_{\Sigma}^{T}_{M}^{X}$ is an Hamiltonian isomorphism.

In case M=Mo,

$$g = x_1^{*2} - \sum_{2 \le i, j \le d} a_{i,j}(t,x;\xi=0,\tau)x_i^*x_j^*.$$

Here we give

Theorem 1. Let u be a section of $\mathrm{Hom}_{\mathcal{E}_X}(\mathfrak{M},\,\mathcal{E}_M) \Big|_{\Sigma}$ defined in a neighborhood of ρ_0 . Then $\mathrm{SS}^2_{\Sigma}(\mathrm{u}) \setminus \Sigma \subset \{\,g=0\,\}$. Moreover $\mathrm{SS}^2_{\Sigma}(\mathrm{u}) \setminus \Sigma$ is invariant under H^r_g .

By Theorem 1 we can deduce a microlocal version of Holmgren's Theorem. We set

 $\gamma = \pi_{\Sigma}(\{\exp(sH_g^r)((\rho_0,\tau)); f(\rho_0,\tau)=0, s\geq 0\}).$ Here $\exp(sH_g^r)(q)$ denotes the flow of H_g^r issued from q. Then γ is a boundary of a cone in the bicharacteristic leave Γ of Σ through ρ_0 . We take one of half-cones: γ_+ . We give

Theorem 2. Let u be a section of $\operatorname{Hom}_{\mathcal{E}_X}(\mathcal{M},\mathcal{E}_M)$ defined in a neighborhood of ρ_0 . Then $\sup_{X} (u) \cap (\gamma_+ \setminus \{\rho_0\}) = \emptyset$

implies that $\rho_0 \notin \text{supp}(u)$.

Here we remark that γ_+ does not contain the inside of the cone. Thus Theorem 2 generalizes the result of P. Laubin[Lb].

- §6. Sketch of the proof.
- As is mentioned in §2, it is enough to study the case $\mathfrak{M}=\mathfrak{M}_0$. Thus hereafter we put $\mathfrak{M}=\mathfrak{M}_0$, $X=X_0$, $M=M_0$, $\Sigma=\Sigma_0$ and $\Lambda=\Lambda_0=\{(w,z;\theta dw+\xi dz)\in T^*X;\ \xi=0\ \}.$
- 6.2. 2-microlocal canonical form Gingle equations with a conditions on the lower terms
 6.2.1.

In case $\mathfrak M$ is reduced to a single equation: Pu=0 with p= $\sigma(P)$ satisfying the conditions (1),(2) and (3), we can transform the equation into a simple canonical form 2-microlocally if we assume $\mathfrak M$

has Regular Singularities along Λ in the sense of Kashiwara-Oshima [K-O].

6.2.2.

We embed Λ into $\Lambda \times \Lambda$ through the injection $T^*X \longrightarrow T^*_{X}(X \times X) \longrightarrow T^*(X \times X)$. By defintion, $\overset{\sim}{\Lambda}$ denotes the union of all bicharacteristic leaves of $\Lambda \times \Lambda$ passing through Λ . We take a coordinate of $T^*_{\Lambda}\overset{\sim}{\Lambda}$ as $(w,z;\theta dw;z^*dz)$ with $z^*\in C^d$. On $T^*_{\Lambda}\overset{\sim}{\Lambda}$, Y. Laurent [L] defined the sheaf $\mathcal{E}^{2,\infty}_{\Lambda}$ of 2-microdifferential operators of infinite order.

Definition 3 (Y. Laurent[L]) Let Ω be an open subset of $T^*_{\Lambda}\tilde{\Lambda}$. Then $\sum_{i,j} P_{ij}(w,z;\theta;z^*) \in \mathcal{E}^{2,\infty}_{\Lambda}(\Omega)$ if and only if the following conditions (4) and (5) are satisfied.

- (4) P_{ij} is holomorphic on Ω and homogeneous of order j with respect to (θ,z^*) and of order i with respect to z^* .
- (5) For any compact subset K of Ω and for any positive number ϵ there exists a positive number $C_{\epsilon,K}$ and for any compact subset K of Ω there exists a positive number C_{κ} such that

$$\sup_{K} |P_{i,i+k}| \leq \begin{cases} C_{\epsilon,K} \epsilon^{i+k}/i! \ k! & (i,k \geq 0) \\ C_{\epsilon,K} \epsilon^{i} & (-k)!/i! & (i \geq 0,k < 0) \\ C_{\epsilon,K} \epsilon^{k} C_{K}^{-i} & (-i)!/k! & (k \geq 0,i < 0) \\ C_{K} c_{K} c_{K}^{-i} & (-i)! & (i,k < 0). \end{cases}$$

We define the sheaf \mathcal{E}_{Λ}^2 of 2-microdifferential operators of finite order as follows.

Definition 4 For $P = \sum P_{ij} \in \mathcal{E}_{\Lambda}^{2,\infty}$, $P \in \mathcal{E}_{\Lambda}^{2}$ if and only if there exists j_0 such that

$$P_{i,j} = 0 \qquad (j > j_0)$$

and there exists $\lambda(j)$ for any $j \in \mathbb{Z}$ such that

$$P_{ij}=0$$
 (i(\lambda(j)).

For any $P \in \mathcal{E}_{\Lambda}^2$, the principal symbol of P is defined by

$$\sigma_{\Lambda}(P) = P_{i_0,j_0}$$

where $j_0 = \sup\{j; \text{ for some } i P_{ij} = 0\}$ and $i_0 = \inf\{i; P_{ij_0} = 0\}$.

In the same way, we can construct the bisymplectic structure $(\Omega_{\Lambda},\Omega_{\Lambda}^r)$. By coordinates, these are written as

$$\Omega_{\Lambda} = \sum_{j} d\theta_{j} \wedge dw_{j} \text{ and } \Omega_{\Lambda}^{r} = \sum_{j} dz_{j}^{*} \wedge dz_{j}.$$

If a map φ : U \longrightarrow V between open subsets of $T^* \mathring{\Lambda}$ satisfies

$$\varphi^*(\Omega_{\Lambda}|_{V}) = \Omega_{\Lambda}|_{U}$$
,

then we can induce an isomorphism

$$\phi^* \colon \ T^*_{\text{rel}} T^*_{\Lambda} \widetilde{\Lambda} \ \big|_{V} \times U \xrightarrow{} \ T^*_{\text{rel}} T^*_{\Lambda} \widetilde{\Lambda} \big|_{U}.$$

Moreover if

$$\varphi^*(\Omega_{\Lambda}^r|_V) = \Omega_{\Lambda}^r|_U$$

and ϕ preserves the bihomogeniety structure of $T^*{}_{\Lambda}{}^{\tilde{\Lambda}}$:

$$(w,z;\theta;z^*) \longrightarrow (w,z;\lambda\theta;\lambda z^*)$$

and

$$(w,z;\theta;z^*) \longrightarrow (w,z;\theta;\lambda z^*)$$
 $(\lambda \in \mathbb{C}^{\times}),$

then ϕ is called a homogeneous bicanonical transformation. Associated with ϕ , we can construct a ring isomorphism

$$\Phi \colon \quad \varphi^{-1}(\mathcal{E}_{\Lambda}^{2,\infty}|_{V}) \longrightarrow \mathcal{E}_{\Lambda}^{2,\infty}|_{U}.$$

See Y. Laurent[L] for details about 2-microdifferential

operators.

6.2.3.

By finding a suitable quantized bicanonical transformation, we can transform the equation Pu=0 into

$$RP_0u = 0$$

defined in a neighborhood of τ_0 = (t=0,x=0; $\sqrt{-1}dt_{n-d}$; $\sqrt{-1}dx_d$). Here R is invertible at τ_0

and

$$\sigma_{\Lambda}(P_0) = z_1^*.$$

We remark that

$$S(P) = \{(j,i); P_{i,j} \neq 0 \} \subset \{ i \geq j, j \leq 1 \}.$$

Next we find an invertible 2-microdifferential operator of infinite order Q satisfying

$$QP_0 = D_1Q.$$

Then we can easily prove Theorem 1. See [T31 for details.

6.3. 2-microhyperbolicity — general case

6.3.1.

In general case, we prove Theorem 1 by employing the theory of microlocal analysis of sheaves due to Kashiwara-Schapira[K- S_2]. 6.3.2.

Let X be an C^∞ manifold and let M be a closed submanifold of X in this section 6.3.2.

 $D^+(X)$ denotes the derived category of bounded below complexes of sheaves of modules on X. For $\mathcal{F}\in\mathsf{Ob}(D^+(X))$, $\mathsf{SS}(\mathcal{F})$ denotes the microsupport of \mathcal{F} , which is a conic closed subset in T^*X .

For $\mathcal{F} \in \mathsf{Ob}(D^+(X))$, $\mu_{\mathsf{M}}(\mathcal{F})$ denotes Sato's microlocalization of \mathcal{F}

along M, which is an object of $D^+(T^*_{M}X)$.

For a closed subset of Z, $C_{\underline{M}}(Z)$ denotes the normal cone of Z along M, which is a closed subset of $T_{\underline{M}}X$.

We quote an important formula from Kashiwara-Schapira[K-S $_2$] as follows.

Theorem 5 For $\mathcal{F} \in Ob(D^+(X))$, we have

SS(
$$\mu_{M}(\mathcal{F})$$
) \subset C (SS(\mathcal{F})).

Here we consider the right side as a subset of $T^*T^*_{M}X$ through (-H): $T_{T^*_{M}X}^*X \xrightarrow{} T^*T^*_{M}X$.

(H is the Hamiltonian isomorphism.) 6.3.3.

We set $N = (R^{n-d} \times \mathbb{C}^d) \cap X$ in X. Then we have $\mathscr{Q}_{\Sigma}^2 = \mu_{\Sigma} \mu_N(\mathcal{O}_X)[n].$

Thus we can show by the theory of Kashiwara-Schapira[K-S $_2$] that

$$\mathrm{SS}(\mathbf{R} \boldsymbol{\ellom}_{\mathcal{E}_{X}}(\mathfrak{M}, \mathcal{C}_{\Sigma}^{2})) \subset \mathrm{C}_{\mathrm{T}^{*}_{\Sigma}\widetilde{\Sigma}}(\mathrm{C}_{\mathrm{T}^{*}_{N}X}(\mathrm{Ch}(\mathfrak{M}))).$$

By estimating the right side, we can show

$$SS(Rhom_{\mathcal{E}_{X}}(\mathfrak{M}, \mathcal{C}_{\Sigma}^{2}) \Big|_{T^{*}\sum^{\sim}\sum \Sigma})) \subset \{(\rho, \tau) \in T^{*}(T^{*}\sum^{\sim}\sum \Sigma); g(\rho) = 0, \tau(H_{g}^{r}(\rho)) = 0\}$$

where $\rho \in T^* \sum_{\Sigma} \Sigma \Sigma$ and $\tau \in T^* T^* \sum_{\Sigma} |_{\rho}$. Then we can easily prove Theorem 1 by Proposition 4.1.2 of [K-S₂].

§7. Some Remarks

7.0. We gather results for some classes of systems of microdifferential equations in §7.

7.1. Case I

Let M be a real analytic manifold with a complexification X. Let $\mathfrak M$ be a coherent $\mathcal E_X$ module defined in a neighborhood of $\rho_0\in\mathring{\mathbb T}^*_MX$ whose characteristic variety is written in a neighborhood of ρ_0 as

ch(
$$\mathfrak{M}$$
) = { $\rho \in T^*X$; $p_1 = \cdots = p_{d-2} = 0$, $p_{d-1} \cdot p_d = 0$ }

by homogeneous holomorphic functions $\mathbf{p}_1,\cdots,\mathbf{p}_{d-1}$ and \mathbf{p}_d satisfying the following conditions.

- (6) p_1, \dots, p_{d-1} and p_d are real valued on T_M^*X .
- (7) dp_1, \dots, dp_{d-1} and dp_d and ω (canonical 1-form of T^*X) are linearly independent at ρ_0 .

Let
$$\Lambda_1 = \{ \rho \in \mathring{T}^* X; p_1 = \dots = p_{d-1} = 0 \}$$
, $\Lambda_2 = \{ \rho \in \mathring{T}^* X; p_1 = \dots = p_{d-2} = p_d = 0 \}$ and $\Lambda = \Lambda_1 \cap \Lambda_2$. Then we assume

(8) $\Lambda_1^{},~\Lambda_2^{}$ and Λ is regular involutory submanifolds in \mathring{T}^*X through $\rho_0^{}.$

We set $\Sigma_i = T^*_M X \cap \Lambda_i$ (i=1,2) and $\Sigma = \Sigma_1 \cap \Sigma_2$. Then the result is

Theorem 6.

Let u be a section of $\mathrm{Hom}_{\mathcal{E}_X}^{}(\mathfrak{M},\mathcal{E}_M)$ defined in a neighborhood of ρ_0 and let Γ be the bicharacteristic leaf of Σ through ρ_0 . Then there exist a family of bicharacteristic leaves of Σ_1 on Γ : $\{\gamma_s^{(1)}\}$ and that of Σ_2 on Γ : $\{\gamma_s^{(2)}\}$ such that

 $supp(u) = \bigcup_{s} \gamma_{s}^{(1)} \cup \bigcup_{s} \gamma_{s}^{(2)} \cup \{some \ of \ connected \}$

components of [
$$\Gamma \setminus (\bigcup_s \gamma^{(1)} \cup \bigcup_s \gamma_s^{(2)})$$
]}.

(sketch of the proof)

By finding a suitable quantized contact transformation, the problem is reduced to studying a coherent \mathcal{E}_X module \mathfrak{N}_0 defined in a neighborhood of $\rho_0 = (0, \sqrt{-1} \mathrm{dx}_n) \in \sqrt{-1} \mathring{\mathrm{T}}^* \mathrm{M}_0$ whose characteristic variety is written as

(9)
$$Ch(\mathfrak{M}) = \{(z, \xi dz) \in \mathring{T}^* X_0; \xi_1 = \dots = \xi_{d-2} = 0, \xi_{d-1} \cdot \xi_d = 0\}.$$

Here M_0 is an open subset of R^n_{x} and X_0 is a complex neighborhood of M_0 in C^n_{z} . Then $(z,\xi dz)$ [resp. $(x,\sqrt{-1}\xi dx)$] denotes a point of T^*X_0 [resp. $T^*_{M_0}X_0$] with $\xi \in C^n$ [resp. $\xi \in R^n$]. We set

$$\Sigma_0 = \{ (x, \sqrt{-1}\xi dx) \in \sqrt{-1}T^*M_0; \xi_1 = \cdots = \xi_d = 0 \}$$

and take a coordinate of $T^*\sum_0^{\infty} \sum_{0=0}^{\infty} as (x, \sqrt{-1}\xi''; \sqrt{-1}x'^*)$ with $\xi''=(\xi_{d+1}, \cdots, \xi_n)$ and $x'^*=(x_1^*, \cdots, x_d^*)$. Then for a section u of

 $\mathcal{H}om_{\mathcal{E}_{X_0}}(\mathfrak{M}_0,\mathcal{E}_{M})$ defined in a neighborhood of ρ_0 , we have

(10)
$$SS_{\Sigma_0}^2(\mathbf{u}) \setminus \Sigma_0 \subset \{x_1^* = \cdots = x_{d-1}^* = 0\} \cup \{x_1^* = \cdots = x_{d-2}^* = x_d^* = 0\}.$$

We set

$$\Gamma_1 = \{ (x, \sqrt{-1}\xi''; \sqrt{-1}x'^*) \in T^* \sum_{0} \widetilde{\Sigma}_0 \setminus \Sigma_0; x_1^* = \cdots = x_{d-1}^* = 0 \}$$

and

$$\Gamma_2 = \{(x, \sqrt{-1}\xi''; \sqrt{-1}x'^*) \in T^* \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} x_i^* = \cdots = x_{d-2}^* = x_d^* = 0 \}.$$

Then $SS_{\Sigma_0}^2(u)\Big|_{\Gamma_1}$ [resp. $SS_{\Sigma_0}^2(u)\Big|_{\Gamma_2}$] is invariant under the integrable system $(\partial/\partial x_1,\cdots,\partial/\partial x_{d-1})$ [resp. $(\partial/\partial x_1,\cdots,\partial/\partial x_{d-2},\partial/\partial x_d)$]. This fact is shown in the same way as in §6.3.

(q.e.d.)

7.2. (Case II)

Let M be a real analytic manifold with a complexification X. Let ${\tt M}$ be a coherent ${\tt E}_{X}$ module defined in a neighborhood of ${\tt P}_0 \in \mathring{{\tt T}}^*_{M} {\tt X}$ whose characteristic variety is written in a neighborhood of ${\tt P}_0$ as

(11)
$$Ch(\mathfrak{M}) = \{ \rho \in T^*X; p = 0 \}$$

by a homogeneous holomorphic function p satisfying the following conditions.

- (12) p is real valued on $T_{M}^{*}X$.
- (13) $\Sigma = \{\rho \in \mathring{T}_{M}^{*}X; p(\rho) = 0, dp(\rho) = 0\}$ is a regular involutory submanfold of codimension 2 in $T_{M}^{*}X$ through ρ_{0} .
- (14) Hess(p)(ρ) has rank 1 if $\rho \in \Sigma$.

 We set for a point $\rho \in \Sigma$ and $\tau \in T^* \sum_{\Sigma} \rho$
- (15) $g = \langle Hess(p)(\rho)H(\tau), H(\tau) \rangle$

where H: $T^* \sum_{\Sigma} \xrightarrow{\sim} T_{\Sigma} T^*_{M} X$ is Hamiltonian isomorphism. Then we have

Propostion 7.

The function g is divided into

$$g = g_1 \cdot g_2^2$$
with $g_1 \neq 0$ on $T \times \sum_{\Sigma} \sum \Sigma$.

By the decomposition above, we have

Theorem 8.

Let u be a section of $\text{Hom}_{\mathcal{E}_X}(\mathbb{R},\mathcal{E}_M)$ defined in a neighborhood of $\rho_0.$ Then

$$SS_{\Sigma}^{2}(u) \setminus \Sigma \subset \{g_{2}=0\}.$$

Moreover $SS_{\Sigma}^{2}(u) \setminus \Sigma$ is invariant under $H_{g_{2}}^{r}$.

(sketch of the proof)

By finding a suitable quantized contact transformation, the problem is reduced to studying the system \mathfrak{M}_0 defined in a neighborhood of $\rho_0 = (0, \sqrt{-1} \mathrm{dx}_n) \in \sqrt{-1} \mathrm{T}^* \mathrm{M}_0$ whose characteristic variety is written as

(16)
$$\operatorname{Ch}(\mathfrak{M}_0) = \{(z, \xi dz) \in T^* X_0; \xi_1^2 - a(z, \xi') \xi_2^3 = 0\}.$$

Here M_0 is an open subset of R^n_{x} and X_0 is a complex neighborhood of M_0 in X_0 . Then $(z,\xi dz)$ [resp. $(x,\sqrt{-1}\xi dx)$] denotes a point of T^*X_0 [resp. $T^*_{M_0}X_0 \sim \sqrt{-1}T^*M_0$]. Moreover $a(z,\xi')$ is a homogeneous

holomorphic function of order (-1) with $\xi'=(\xi_2,\dots,\xi_n)$.

In this case,

$$\Sigma = \{ (\mathbf{x}, \sqrt{-1}\xi d\mathbf{x}) \in \sqrt{-1}\mathring{\mathbf{T}}^* \mathbf{M}_0; \xi_1 = \xi_2 = 0 \}.$$

When we take a coordinate of $T^*\sum_{\Sigma}$ as $(x,\sqrt{-1}\xi'';\sqrt{-1}(x_1^*,x_2^*))$ with $\xi''=(\xi_3,\cdots,\xi_n)$, we can take g_2 as x_1^* . Then in the same way as in §6.3 we have

$$SS(R Hom_{\mathcal{E}_{X}}(\mathfrak{M}, \mathcal{E}_{\Sigma}^{2}) |_{T} *_{\Sigma} \widetilde{\Sigma} \Sigma)$$

 $\subset \{(\rho,\tau)\in T^*(T^*\sum_{\Sigma}\sum); x_1^*(\rho)=0, \text{ and } \tau(H^r(x_1^*))\}.$

Here $\rho \in T^*_{\Sigma} \widetilde{\Sigma} \Sigma$ and $\tau \in T^*(T^*_{\Sigma} \widetilde{\Sigma} \Sigma)$. In the same way as in §6.3, $SS_{\Sigma}^2(u)$ is invariant under $\partial/\partial x_1$ for any section of $\mathcal{H}om_{\mathcal{E}_{\Sigma}}(\mathfrak{M},\mathcal{E}_{M})$.

(q.e.d.)

We can easily show that Σ is foliated by the projection of the integral curves of $H_{g_2}^r$ in $\{g_2=0\}$. More precisely, for $\rho \in \Sigma$

$$\gamma(\rho) = \pi_{\Sigma}(\{\exp(H_{g_{2}}^{r})(\rho, \tau); g_{2}(\rho, \tau) = 0, s \in \mathbb{R} \})$$

$$(\pi_{\Sigma}: T^{*}_{\Sigma} \widetilde{\Sigma} \times \Sigma \longrightarrow \Sigma)$$

is a smooth curve in the bicharacteristic leaf Γ of Σ . Here we give

Theorem 9.

For any section u of $\Re m_{\mathcal{E}_X}(\mathfrak{M},\mathcal{E}_M)$ defined in a neighborhood of Σ , $\sup_{\Omega} \rho_{\Omega}(u) \cap \Sigma$ propagates along the family of integral curves $\{\gamma(\rho); \rho \in \Sigma\}$.

Remark 10. Theorem 9 itself can be proved by the microlocal version of Holmgren's theorem due to J.M. Bony[B].

Reference

[B] Bony, J.M., Extensions du Théorèmes de Holmgren, Séminaire Goulaouic-Schwarz, 1975-1978.

[K-L] Kashiwara, M and Y. Laurent; Théorèmes d'annulation et deuxième microlocalisation, Prépublication d'Orsay (1983).

[K-O] Kashiwara, M. and T. Oshima, Systems of differential equations with regular singularities and their boundary value problems, Annals of Math. 106, 145-200 (1975)

[K-S $_1$] Kashiwara, M. and P. Schapira, Microhyperbolic systems, Acta Math. 142, 1-55 (1979).

[K-S₂] ——, Microlocal Study of Sheaves, Astérisque 128 (1985).
[Lb] Laubin, P., Réfraction conique et propagation des singularités analytique, J. Math. pure et appl. 63,149-168 (1984).

[Lr] Laurent, Y., Théorie de la deuxième microlocalisation dans le domaine complexe: opérateurs 2-microdifferentiels, Progress in Math. 53, Birkhauser (1985).

[T $_1$] Tose, N., On a class of microdifferential equations with involutory double characteristics, J. Fac. Sci., Univ. of Tokyo 33, 619-634(1986).

[T₂] —, The 2-microlocal canonical form for a class of microdifferential equations and propagation of singularities, Publ. of RIMS, Kyoto Univ. 23-1 (1987), in press.

 $[T_3]$ —, 2nd Microlocalisation and Conical Refraction, Ann. Inst. Fourier 37-2 (1987), in press.

 $[T_4]$ —, On a class of 2-microhyperbolic systems, to appear in J. Math. pure et appl.

On some classes of 2-microhy perbolic systems

愛媛大·理 戸瀬信之(Nobuyuki Tose)

Mを実解析的的操体, Xをzの複素近傍とする。== 2"は、で以の后 Soの近傍で定義 I れた system of microdifferential equations 972"、zの特性的操体がSoの近傍で帯では正則 函数 Pを用いる

 $ch(m) = \{g \in \mathring{T} \times g \mid p(g) = 0\}$ 上書 $f \ni \xi \in \mathfrak{T} \times \mathfrak{T} = \{g \in \mathring{T} \times g \in \mathfrak{T} \}$ 上書 $f \ni \xi \in \mathfrak{T} \times \mathfrak{T} = \{g \in \mathring{T} \times g \in \mathfrak{T} \}$

- (1) p はTMX工单数值
- (2) 三= { P < T*X > P (P) = 0 , d P (P) = 0 } は T*X 中余近元 d の正則を分析分外模体に多。を通るものである。
- (3) Heso (p)(9) は gesa時 rankd z positivity 1 z 持つ。

問題は、MCのmivo函数解のことでの構造である。三に治って、犯起局所化して精密にこれを調べる。