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Introduction.

Let d be a positive integer and d2» 2. Let us denote by (W)

the space of holomorphic functions on W610d+1; For any A & C  we
' d+1
derine (W) = {£ e TM); (4, + )t = 0}, where A, = Zj(a/azj)z,
J=1 )

Let M = {z &€ Cd+1; z% + zg + .. + z§+1 = O} e . In [13] it was shown

that the restriction mapping 'dx:f——% fIM is a one-to-one linear

d+1

mapping of (7X(Cd+1) onto J(cC )iM . In this sense we call M a

unigueness set of the differential operator A  + N°.

Here we will show that the same kind of phenomenon holds more
generally for a linear partial differential operator of the second
order with constant coefficients (Theorem 4.1) and that Jdy is a
linear topological isomorphism of C&(ﬁ(r)) onto (9(§(r))’M ,
where B(r) is the Lie ball of radius r {Theorem 2.1).

The Fourier-BQrel transformation P, has been studied in [2],

[el, 10, [12], [13] etc. We will determine tne inverse image of

(Z(ﬁ(r)) by the transformation P, (Theorem 3.1).

$1. Preliminaries.

Let d be a positive integer and assume d» 2. S =k{x € Rd+1;
' d+1

ixn = 1} denotes the unit sphere in Rd+1, where nxn2 = x% .
S j=1

ds denotes the unique 0(d+1) invariant measure on S with ‘fS 1 ds
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= 1, where O(k) is the orthogonal group of degree k. - | "m is the . -
sup norm on S. '-'Hn“d is the space of spherical harmonics of degree

. bl - :
n in dimension d + 1. For spherical harmonics, see Muller (11].

For Sn € Hn d ,§n denotes the unigque homogeneous harmonic polynomial
?

of degree n on c8*1 such that §nl g =S, -
The Lie norm L(z) and dual Lie norm L (z) on @+ Lre

defined as follows:

. R -ﬂ 1
L(z) = L{x + iy) = [‘lxliz + {)yﬂz + 2{llx|52n'ynz - (x~y)“}%]§,

L (z) = sup{|z-3/ 5 L(3)< 13,

d+1

where z, ¥ € C , and z-5=z1';1 + Zo5, t e +Zd+1§d+1 ’

X, y € gd+ (see Druzkowski [1]). We put

d+1

B(r) ; L(z)<r} for O<r ¢

[}

{z € C
and |

B r)

i

{z € CdH; L(z)< r} for O<r<m.

Let us denote by 0(5(1‘)) the space of holomorphic functions on

B(r). Then O(B(r)) is an FS space. O(B()) = 0(c) is the

space of entire functions on CdH. Let us define

'0(’]\3'[1']) = ind lim ﬁ(ﬁ(r')).

r'sr
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Then 0(§tr]) is a DFS space. For he¢ C, we put (L (B(r)) = {f e

]

O(B(r)); (4, +x°)f = 0} and G(B[r]) = {r ¢ JEE1); (4, TPNE:

= O}, where A = (/3 21)2+ (?/2 22)2 + veee + (a/azd+1)2. Pn(Cd+1)

denotes the space of homogeneous polynomials of degree n on Cd+1.
For r»r>0 we put

X L {f é 67(0d+1); sup If(z)( exp(-rL(z))< va }.

r
zéCd+1

Then Xr 1 is a Banach space with respect to the norm
H

By }, = Sup If(z)lexp(-rL(z)).
Ty d+1
zeC

Define
d+1 R ) N
Exp(C : (r:L)) = praj 1lim X_, L for O<r<w ,
r'>r T
. d+1 . . . . A
Exp(C : [r:1L]) = ind lim X_, for O<r < .
r'< T r',L
d+1 i . S d+1 .
Exp(C : (r:L)) is an FS space and Exp(C : [r:L]) is a DFS space.
d+1 d+1 . .
Exp(C ) = Exp(C : [»:L]) is called the space of entire

d+1,

functions of exponential type. Exp'(C (r:L)) and

Exp'(Cd+1: [r:L]1) denote the spaces dual to EXp(Cd+1: (r:L)) and
d+1 - .

Exp(C " ': [r:L]) respectively.
S = {z € Cd+1; z% + zg + eee + z§+1 = 1) is the complex
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sphere. We define Exp(S: [r:1]) = ExpCCd+1: fr:L])[gf and .

Exp(gE (r:L)) = Exp(Cd+1: (r:L))fg . The topology of Exp(gf [r:L])
is defined to be the gquotient topology Exp(0d+1' [(r:L]1)/1 : (Cd+1)
i , e Ex : L/ Ty ik C )

where we put’léip[r:LI(Cd+1) = |f 6“EXp(Cd+1: [r:L]); f =0 on 8} .
Wwe also define the topology of Exp(gz (r:L)) similarly. Exp'(S: [r:Ll1)
and Exp'(S: (r:L)) denoteﬁthe spaces dual to Exp(gE [r:L]) and
Bxp(S: (r:L)) respectively.
If f is a funcfion»or a functional on S, we denote by Sn(f; )

the n-th spherical harmonic component of f:

(1.1) Sn(f; s) = N(n,d) <f, Pn,d( -8)> for s € S,

where

(2n+d-1) (n+d-2)
,d -~ n! {d~-1)!

|

(1.2)  N(n,d) = dim H_

and Pn d is the Legendre polynomial of degree n and of dimension
?
n :
d + 1. We put Ln(x) =Ixl P, d(d~x/nxu) for fixed o € S, Then
?
Ln is the unique homogeneous harmonic polynomial of degree n with

the following properties:

L (Ax) = L,(x)  for all A € 0(d+1) such that Ad = «.

Ln(d) = 1.



We see that S_(f; ) belongs to H_ for n = 0,1, eos ®
n n,d

Put A = {(n,k) € 2°; n=k (mod 2) and n3 Kk}, where 2
+ + +

{O, 1y 24 ess}. For any F € 0(B(r)) we can determine uniquely

Sn,k(F; ) e Hk,d for every (n,k) é»/\+ in such a wayvthat

(1.3) Pz) = & (7 )EE (3 ),

n,k
(n;k)é/\+
where 22 = 22 2 z§+1‘ y and the right hand side of

1-4'..Z2+...+
' ~
(1.3) converges uniformly on every compact set of B(r). The

S, k(F; ) is called the (n,k)-component of F (see [8][9]).
9 i .

Next we consider a complex cone M as follows:

M= {zec®, 2% -0},

M is identified with the cotangent bundle on S minus its zero

d+1)

section. P (M) denotes the restriction to M of P (C We put

the subset N of M as follows:

N ='{z =X + iy € M; x4 = jiyy = 1} ,

where x,y & Rd+1. The unit cotangent bundle to S is identified

with N and wé have N = O(d+1)/0(d-1). dN denotes the unique

0(d+1)-invariant measure on N with jﬁ 1 dN(z) = 1.
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It is known that for any fn € Hn,d and any &, € Hm,d

(1.4) Jg £,(8) g,(s) ds

n! Nn,d) P({d+1)/2) [ % (2) E,(2) dN(2),
22" T(n + 21 ’

(see, for example [4][51[13]).

§2. A uniqueness set for the differential operator Az + X?.

Our main theorem in this section is the following

Theorem 2.1 ( [14] ). (i) The restriction mapping F — FlM defines
the following bijections:

(2.1) dne éz(%(r)),——e Cﬁ(ﬁ(r))lm for any A\ é C.

(ii) If £ € (ﬁ(ﬁ(r))lM then <X;1f can be expressed as

follows:

(2.2) cx;1f(z) = J& f(fz'/2) K, (z, —%10 dN(z"'") for z élﬁ(r),

where L(z)< f< r and

(2.3) K230 = 2 {N(n,a) (0 + &) NGF /72)™™ =
n= |

TndtNZE) (205)7).
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In particular, if AN = O we have a "Poisson" formula: -

- | ( )
(2.4)  dg't(z) = Jy £p2/2) ————— an(a').

N f|m

(iii) dyis a linear topological isomorphism of (ﬁ:\(ﬁ(r)) onto
(ﬁ(’ﬁ(r))IM if we equip 0(§(r))|M with the topology of uniform

convergence on every compact set of B(r)n M.

We need the following lemmas in order to prove the theorem.

Lemma 2.2. Let F € @\(%(r)) and Sn Kk be the (n,k)-component
’ ‘ .

of F. Then we have

(ir/2)"7F e+ &1

(2.5) S = - \ S
n,k ]’7( 1’121( + 1) !"7( n+k-2+d+1 ) k,k

for (n,k) € /A, and

(2.6) 1im sup IS Wn < 1/r.

n 5o n,n'w

Conversely if we are given a seguence of spherical harmonics
{30,% ) (n,%) ¢, Satisfying (2.5) and (2.6) and if we put for
z € B(r)

(2.7)  Fla) = (F)MEE L)
(n,k)é/\+ ’ :
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then the right hand side of (2.7) converges uniformly and absolutely
on every compact set of B(r) and F belongs to KZ(g(r)). Furthermore

we have

~

Sn,k(z) = Sn,k(F; z) . for (n,k) € /\+ .

Remark the case A = O is known (see [9]).

Sketch of the proof. By [8] Theorem 3.2 we have

(2.8)  A,F(z) = T A,((F )VEE | (2))
(n;k)éA+ ‘ ‘
22‘ ‘ (n—k)(n+k+d—1)(d£3_)n-k-z’§£ k(z).

yk)€
= n)>lé.\+

]

(2.8) gives us, for 0<k<n-2 with n =k (mod 2),

2
(2.9) (n-k)(n+k+d=-1)s , ==X Sp-2,k °

14

because F € (/(B(r)) and Hy g L Hy 4 if n#m. (2.5) follows
from (2.9). (2.6) follows from [8] Theorem 3.2 (3.33).

Conversely, suppose wé are given a sequence {Sn,k} satisfying
(2.5) and (2.6). Then we can show that the right hand side of (2.7)
converges,uniformly and absolutely on every compact set of'ﬁ(r)
‘since the $ilov boundary of %(f) is {feies; 0xb6<2k, s € S}

(see Hua [3] ). Therefore F belongs to (J(B(r)) and S =S (F;
n,k n,k
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It is easy to show that AAZF = —A?F. : q.e.d.

Lemma 2.%3. For F & (3(§(r)) we have for any z € Cd“ul

(2.10) 'En,n(F; z) = N(n,d) [y B(rz'/2) (2" )-f-)n dN(z '),

where ¢ is any real number such that O<if < r and the right

hand side of (2.10) is independent of f.

Sketch of the proof. Since S | (F; ) e H it is valid for
n,n n,d

any s € S

(2.11) Sn,n(F; s) = N(n,d) JS Sn,n(F; s') Pn,d(s-s') ds'.

By (2.11) and (1.4) we have (2.10) because Pn(M)J_ Pm(M) (n £ m)

andfﬁg’d(z-s) = {ZnP(n + Q%l) (z-s)nlﬂh! N(n,d) P(g%l)} on N.

Sketch of the proof of Theorem 2.1. (i) For any A& C it is

clear that C&(g(r))INIC C7C§(r))lM . Let F ¢ 6&(§(r)). Then for

any z € M~ %kr) we have

(2.12)  F(z) = n§0 Sy a5 2).

By (2.12) we have for any z' € N

10
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(2.13)  F(rz'/4) = Z} (r/4)n n(Fs 2,

pecause (r/4)N< B(x)A M. If o (F) =0,8 =0 on Nby (2.13)
A B * ; £}

and the orthogonality of homogeneous polynomials on N, So the

spherical harmonic function S = 0 by (1.4) and F = 0 by (2.5).

?

Therefore ¥\ is injective:

Next for £ € ((B(r)) we define the function F as follows:

F(z) = % (7 )"KE L (2),
(n,k)en,

where

Fe + 1) (v/2)"

P(ask o q) [(Dtksdst

o~

.sk’k(f; Z).

N\
Sn,k(z) =

As f € Cﬁ(ﬁ(r)), lim sup IS n“;/n lim sup IS (f; )Nj/nyg 1/r
n —, n —w P

by [8) Theorem 3.2, Hence by Lemma 2.2 F € éZ(ﬁ(r)) and FIM = fIM .
Therefore o\ is surjective. |

(ii) By the proof of surjectivity of o« in (i) and (2.10) we
get (2.2). In particular, we obtain (2.4) since Ky(z, %1) =

z NG, @) (22 and § NOLOEE = (1«00 -0 for xe o,

(x1<1 (see, for example Miller [11] Lemma 3 ).
(iii) It is clear that of, is continuous. (2.2) gives that

for any f and p' with O0<fpP'<fPgr

11
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-1 A PRY - (15 Ay - £ymd =
(2.16)  awp 1)) < exp HNEST) (e (1= 7 e Gal,

As (f/2)N is the compact set of B(xr) "\ M (2.14) showes that dx-1

is continuous. o : g.e.d.

N o
~Corollary 2.4. If F belongs to éa(B(f)) for 0<f<r and F|y

belongs to ﬁ(ﬁ'(r))lM then F belongs to C&Cﬁ(r)).

§3. The Fourier-Borel transformation.
The Fourier-Borel transformation P, for a functional T €

EXp'(Cd”: [r:L1) is defined by

(3.1) P.T(z) = < Ty exp(iNy-z) > for z & cd+1

where A& C\{0} is a fixed constant. In this section we will
determine the functional space on S whose image by P, coincides

with C&(g(r)). Our main theorem in this section is the following

Theorem 3.1([14]). The transformation P, establishes linear

topological isomorphisms

(3.2) B : Exp'(S:[Aiz/2: 11) = C(B(r)) (0 <1 <0y,

(3.3) P : Eicp'(g: (Mr/2: 1)) = éé\(g[r]) ’(Osr<i><’).

12



Remark. The above theorem was proved by Morimoto [10] in the

case of r =R ,

We need the following lemma in order to prove the theorem.

Lemma 3.2, If Snwis the‘spherical harmonic éomponent of f!

then

(3.4) f' € Exp'(S: [r:1]) & 1lim sup (HSJth!)1/n'§ 1/r,
n — K
(%3.5) f' e Exp'(§E (r:1)) & 1%m_322 (HSdn/n!)1/n < 1/r.

Lemma 3.2 can be proved in the same way as in the proof of

[10] Theorem 6.1,

Sketch of the proof of Theorem 3.1, By using the results of
6] and Theorem 2.1, Corollary 2.4 and Lemma %.2, Theorem 3.1 can

be proved. v g.e.d.

$§4. A uniqueness set for linear partial differential operators
of the second order.

Consider the differential operator

( () di1 %51 ~ 32 | ¢:1 é

4.1) P(D) = a, . m==—x—  + ZJ b, =——— + C

: i=1 5= i, J aziazj =1 J azj ’

where ai,j" bj , ¢ € C and ai,j‘= aj,i for i,J = 1,2, eee 5, d+1,

13
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and we put

"

(4.2) A

(v )

As A is a symmetric matrix there is some T € U(d+1) and A1 , )2 ,

cee Xd+1 € R such that

PN
(4.3) TAtT=( T ) ’
)‘&ﬂ

where U(K) is the unitary group of degree k. We define

(4.4) AO = T " T,
*fN\aw) )
where we put
1/ (n #0)
f(\) = {
0 (A= 0).

( A‘ . t (ﬂ‘ '
If TA°T = .. and SA°'S = .
>\dﬂ * h“

xj ’ Fj € C(j=1,2y o , d+1) then

) for some T, S ¢ U(d+1) and
|

tT f(>\l).. | tS f(,li)_.
.fO\dn) .f(rdﬁ)

When A is regular we have A, = I

we define (J,(c™) = £ e J(c™); p(D)E - 0} and My, =

{z € Cd+1; Aoz-z = O} . Holo(MP) = (?(cd+1)|M denotes the space
P

14
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of holomorphic functions on the complex cone M, . We define spaces

of germs of 'holomorphic functions as follows:
@P(fO}) ind l\:htlmﬁ (W),
Holo, ({0}) = ind lim (F(w)|,
(10} = tpa 1o Mp

where W runs through the neighborhoods of 0. We equip C?P(W) and
GKW)iM with the topologies of uniform convergence on every compact
P

set of W and every compact set of WnN MP respectively. - It is known

@é(w) is an FS space. The topologies of G%({O}) and Holoy ({o})
P
are the locally convex inductive limit of the topologies of CEXW)
and C7(W)|M respectively. It is known C?P({O}) is a DFS space.
P R

Our main theorem in this section is the following:

Theorem 4.1 ([15]). Let rank A> 2. The restriction mapping

dP : F ——éF]M defines the following linear topological isomorphisms:
P

(4.5) odpr (™) 25 Holo(my),

(4.6) apt (pi0}) ﬁe‘aoloMP({o}).

Let d' be a positive integer and 1<d'< d. BL(r) denotes the

, 1
Lie ball on c&'*7. Tet d" = d - d', %€ ¢ %" and t e ¢, Let

15
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1
W be an open set in cd . For f e C?(BL(r)x W) (r>0) S, k(f:;,t)
b
denotes the (n,k)-component of f with respect to 5 ((n,k) ¢ A, ).

Then we can write

(4.7)  £(3,t) = ¥ (F)H)MS (£:5,1).
(n,k)en, ’

When t is fixed, the right hand side of (4.7) converges to f(3,t)
uniformly and absolutely on every compact set of BL(r) and
Sn k(f:&,t)isa_homogeneous harmonic polynomial of degree k.

?

a'+1

For fixed Y& C Sp,x(fi3,t) belongs to O W).

In order to prove the theorem we need following lemmas.

Lemma 4.2, Suppose f belongs to 57(0d+1) and satisfies the

differential equation

d"

- 2
(4.8) Agf = ( 32:‘\1 bj 5T + ¢)f,

2
where :Q; = (8/3§1)2 ¥ ee. 4+ (a/gzd'+1) and bj , ¢ € C. Then

we have
d"
[] -k
N P+ S0y b 95t + o) o
(4.9) S £1%,t) = 2~ J=1 7] J S fit,t)
n, k(L35 %) 2K (nek)/2) 1 ((nek+d'+1)/2) e,k (55

for (n,k) ¢ Ny o+

a" .
Lemma 4.3. Let P(D) = 4 - j§ b5 9%, - o Ma =1 (5,t) €

Qle

16
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815 52 = of, Holo(My,) = (c**")|,  and Holo, ({0}) =
d,

d'

ind 1im (F(W)|

. The restriction mapping o :f —> f]M defines
0O eW !

Md'
the following bijections:

(4.10) ok (7,(c™*) — Holo(ny,),

(4.11) oz p({0O}) — Holon'({O‘y)-

We can prove Lemmas 4.2 and 4.3 in the same way as in the

proofs Theorem 2.1 and Lemma 2.2.

Sketch of the proof of Theorem 4.1. There exists some T €

U(d+1) such that

>\T.

TA'T = .‘X£+1 ’
"

where d' is a positive integer with 0<d's d and Aj # 0 (j =1,
2, ... ,d'+1). Consider

1/m‘

| A" = . Voo

d+1

and (B1, B2 y oo ’Bd'+1 » Cgryp s see s Cd+1) e C which satisfies

_ — _ t
(2B «o+ 2Bgu,qixai Cqrap  +o Cgpq) = (0 by eun by 4) "I

17



It is clear that c%P is a continuous linear mapping of £§P(Cd+1)

into Holo(MP). f#or any g e(?(Cd+1) we put

-1 d'+1
h(z) = g((N'T)” 'z) exp( ) B.z.).
j=1 J d
Then it is easy to show that
(4.12) P(D)g(z)
a’+1 d'+1 5 d+1 d'+1,
= exp(- ) ij.)( L (PHRw)T+ ¥ Cc(Pw.) +c = ¥ BS)h,
3=1 37 4= J j=da'+2 9 J j=1 ¢
where we put w = A'Tz. Since Md' = (/\'T)IVIP » We can prove that

the bijectivity of o, from (4.12) and Lemmas 4.2 and 4.3.

P

Ffurthermore, we have for any f & Holo(MP) and for any f and P!

with [ >r and f'>r'
(4.1%) sup {hi£1f(z)|; z € (A'T)-1(BL(r)x_BfrU )
< Csup{If(z); z € (A'T)-1((f/2)Nd.X Blf'] ﬁk

? .
where Nd' = {Ke-Cd +1; 32 = O-}f\BL(Z) and Blr'] = {t e Cd”;
ntus-r'}, and C is a constant which depends on r,r', fand F'. We

can see that :%;1 is continuous by (4.13).

We can prove (4.6) similarly. q.e.d,

18
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