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Laplace transforms of hyperfunctions

By Hikosaburo Komatsu MR E=8)

Department of Mathematics, Faculty of Science, University of Tokyo
1. Heaviside's operational calculus.
The Laplace transform
"
(1) f(x) = e f(x) dx

is usually defined for a continuous (or measurable) function

f(x) on [0, «») satisfying the estimate

° N
with constants H and C. Then f()X) 1is a holomorphic function

on the half plane {x € €; Re A > H} having the estimate

(3) |f(x)] € C/(Re x - H), Re x > H,
and the original function f(x) 1is restored by the Bromwich
integral
jC+ie A
(4) Flx) = = | AP0 dr, 0 < x < o,
™ Jeie

almost everywhere, where ¢ 1s an abscissa greater than H.
The Laplace transforms were employed to justify Heaviside's

operational calculus (see G. Doetsch [3]). Let

(5) P(d/dx) = a (d/dx)™ + «ee &+ 2
. m 0
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be a linear differential operator with constant coefficients a;
€ € and let f(x) be an m times continuously differentiable
function on [0, «) such that all derivatives f(l)(x), 0 £ i g

m, satisfy estimates (2). Then we have by integration by parts

(P(d/dx) W)™ (X)) = P(M)T() = (a @1

(0) + *¢¢ + a_ f£(0))
m 1

< e o (a £100) + a__ 000772 o a p(0)a"

Hence the initial value problem

P(d/dx) u(x) = f(x)

(
u(j)(O) _ gj’ 3 =0, eco,m - 1,

may be solved by applying the inversion formula to

However, this solution has been believed to have the
following disadvantages:

1. The datum f(x) must satisfy the estimates (2) of‘
exponential type.

2. There is no good characterization of the Laplace images
of functions satisfying (2), so that we do not know a priori
whether or not G(A) of (8) is the Laplace transform of a
solution.

3. The inversion formula (4) does not necessarily converge

absolutely.

For example, the simplest equation



(d/dx - o) ulx) =0
(9) |
u(0) = b
has the solution
C+iw
(10) ulx) = 2b. j eXA (A - a)_1 dx, 0 < x < o,
) T ) e

but the integral converges only in the sense of Cauchy's
principal value.

To avoid these disadvantages J. Mikusidski [7] invented an
algebfaic foundatibn of Heaviside's calculus based on Titchmarsh's
theorem on convolutions of continuous functions (see also K.
Yosida [15]). However, Heaviside's calculus seems to lose its
computational character by his approach.

We will develop the theory of Laplace transforms of hyper-
functions with defining function of exponential type and overcome

these disadvantages in a natural way.

2. Laplace transforms of holomorphic functions of exponential
type on a closed sector.
This section is a review of the classical results by E.

Borel f2], G. PSlya [9] and A. J. Macintyre [6] (see R. P. Boas

[11). Let
(11) s = {ze C; |arg z| < al
be a closed sector. A holomorphic function f(z) on a neighbor-

hood of 5 1s said to be of exponential type if there are

.constants H and C such that
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|f(z)] < C e , zZ € %
The indicator function h($) for [8] £ a 1is defined by
o log}f(rel%)|
(12) h($) = 1im — -
>0

The Laplace transform
N
(13) f(x) = J e
0
can be continued to a holomorphic function on

(14) S olf) = {T) he ¢; re(n %) > n(e)}
| 9720

by rotating the path of integration. Its complement
(15) o(f) = €\ p(f)

is called the conjugate diagram by Pdlya. We call it the convex
spectrum of f. We have also estimates of ]?(A)I in p(f).

The following proposition is easily proved by the change of
order of integrations and Cauchy's integral formula.

Proposition 1. Let T : R — p(f) be a path of integration
such that arg T(t) — +(n/2 + B) as t — ¢ . with O { B < o.

Then we have

1 zZA 0
(16) flz) = 53 e f(x) dx, J|arg z| < B.
mi;
P
Since f(Xx) 1is bounded on T, it follows that
(17) h(9) < sup Re(r el¥).

Hence we obtain the following.
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Theorem 1 (P&lya). Extreme points of go(f) are singular
points of ?(A). In particular, f(z) and f(z + a) have the
same convex spectrum.

" In case where a > 1/2, p(f) should be understood to be a
Riemann domain since the analytic continuations from above and
from below may be different.

Theorem 2. Let o > m/2. Then ?(X) coincides on the
overlaping domain if and only if f(z) can be continued to an
entire function of exponential type.

Proof. The "if" part is due to Borel and'Pélya. It is
proved by the termwise integration of (13) as f(z) 1is developed
into the Taylor series. |

The "only if" part holds because the path T of integration

in (16) can be deformed into a closed curve.

3. Laplace transforms of Laplace hyperfunctions.

Suppose that a hyperfunctidn f{x) -with support in [a, o)
has a defining function F(z) € 0%%P (¢ \ [a, ©»)) of exponential
type,xi. e. on each closed sector I = {z € C; o £ argl(z - ZO)

< BtC €\ [a, ») there are constants H and C such that

izl

|F(z)| < C e z € I.

A
Then the Laplace transform f(A) of f(x) may be defined

by ‘the integral

N -
(18) F(r) = J e™*? F(z) dz
T
S FT0 - FRO0,
C



A
where T 1is a path as in Figure 1 and F* are branches of the

c
Laplace transform of F(z) with origin at c.
A
F
C
p(F)
ol(F)
A
A
M
T
Figure 1 Figure 2

Theorem 2 asserts that the right hand side of (18) vanishes
if and only if F(z) 1is an entire function of exponential type.
Therefore, to make the Laplace transform well defined, we should

consider f to be an element of

(19) BIAP ;= 057Pe \ [a, «))/0%P(e)
?
Defintion 1. We call the elements of the above space

Laplace hyperfunctions with support in [a, «], and the integral

(18) the Laplace transform of the Laplace hyperfunction f.

A

Theorem 3. The Laplace transform f()x) of a Laplace hyper-

function f(x) with support in [a, «] 1s a holomorphic
function of exponential type on a domain @ such that all rays
[R+el8 with |8]| < m/2 are eventually contained in Q and its

indicator function satisfies

09
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_ loglfirel®)|
h(g) = 1lim
r->o r
(20)
< - acos §, |8 < m/2.
A
Conversely such a holomorphic function f()X) 1is the Laplace
transform of a unique Laplace hyperfunction in B?zpm] with a
B )
defining function
‘ o A
(21) Flz) = 5 J e®M F(a) an.
mi
A ,
Thus we have symbolically
- N
(22) fix) = Elf J ezk £Ox) dx,
mi
r
where T 1is a path as in Figure 2.
Proof. Suppose that f(x) is a Laplace hyperfunction in
B?zpm] with the defining function G(z). In the representation
y ol
(16) of G(z) in Proposition 1 we can deform the path T into

the sum of a ray from « to A, a closed curve from A to A
and the ray from A to «. In view of (18) the sum of the
integrals over the rays is the right hand side of (21). The
interal over the closed curve is clearly an entire function of
exponential type. Hence F(z) is a defining fuction of f(x).

The converse is a direct consequence of Proposition 1.

4. The sheaf theoretical formulation.
In the previous section we gave a global defintion of
Laplace hyperfunctions. However, except for the difference of

the growth order of defining functions and for the support
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condition Laplace hyperfunctions are not different from Fourier
hyperfunctions of M. Sato [12] and T. Kawai [4] and from modified
Fourier hyperfunctions of Y. Saburi [10]. Therefore the follow-
ing sheaf theoretical formulation is more desirable.

Definition 2. Let
(23) ' D - €YUS'w

be the radial compactification of the complex plane as in Saburi

exp

[10]. We define the sheaf 0 of holomorphic functions of

eXP vy’

exponential type as the sheaf on 0 whose section space O V)

on an open-set V in 0 1is the space of all holomorphic func-

tions F(z) on VN C satisfying the condition that for each
point ei\(}oo at infinity in V there is a cone neighborhood

2 = {ze€ 0; |arg(z - ¢c) - 8] £ a} and constants H and C
such that |

(24) |[F(z)] < C eH!Z‘, Z € LN @..v

If Theorem B for the sheaf OeXp

1 exp)

(25) H (V, O )

is true for all (or sufficiently many) open sets V in 0, then

exp

the sheaf B of Laplace hyperfunctions can be defined by

(26) B®*P () = 0®%P(v \ 2)/0%*P(v)

= H (V, 0°%P)

for any open set  Q in the extended real line [- ©, o] and

open neighborhood V' of Q 'in © as in the theory of hyper-



exp

functions [12]. Then it follows that B is a flabby sheaf

on [~ o, ] whose restriction to R 1is the sheaf B of hyper-

functions. 1In particular, we have the following.
Theorem 4. The restriction mapping
exp
2 . -_
(27) 0 (a2 ] > la,o)

is surjective, where B is the space of all hyperfunctions

[a,x)
on R with support in [a, =), and we have
(28) supp p(f) = supp f N R.

We note that the mapping p 1s induced from the imbeddings

0°*P (g \ [a, 1) — 0(C \ [a, »)) and 0°*P(0) — 0(€) through

the representations

(29) By P,y = 07°P(0 \ [a, =1)/0%P(0),

(30) o(c \ [a, =))/0(C).

Bla,e)

exp

If f(x) 1is a Laplace hyperfunction in B[ with the defining

a,»]

function F(z) in 0°%P(0 \ la, «]), then the support supp f
of f is the complement in [- «, ] of the set of all points
¢ near which F(z) can be continued to a function in 0°%P.

Unfortunately we have not been able to prove (25). However,

Theorem 4 is proved by the corresponding result

1 -infexp)

(31) H'(V, O = 0

infexp

of Saburi [10] for the sheaf O of holomorphic functions

of infraexponential type, i. e. holomorphic functions F(z)
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satisfying estimates (24) for any H > 0 with a constant C,
and for a restricted class of open sets V in 0. For the
details see [5].

The following is a schematization of related theories.

Base space p" + i R" 0"
Growth order
Infraexponen- Fourier hyperfunctions Modified Fourier
tial type hyperfunctions
Sato [12], Kawai [4] Nagamachi-Mugibayashi,
Saburi [10]
Exponential Analytic functionals Laplace hyperfunctions
type with real non-compact
carrier

Morimoto [8], Sargos-
Morimoto [11], Oshima-
Saburi-Wakayama

Here D" denotes the radial compactification of R, and

0" the radial compactfication of c”.

In all other theories the global sections on D" are iden-

tified with the dual of a locally convex space of analytic func-

n

tions. In our case it is the space of all sections on D of

the sheaf O on 0" whose section space O (V) on an open
exp €exXp

set V in 0" 1is the space of all holomorphic functions o(2z)

on V N @n such: that on each closed cone ¥ in V

_-lz|

(32) lo(z)| £ C ., z € anch,

for any H with a constant C.

10



5. Solution of ordinary differential eqguations.
We consider the initial value problem (7) when f(x) is an
arbitrary continuous function on [0, «). By Cauchy's existence

theorem there i1s an m times continuously differentiable solu-

tion u(x). Let

J1, x > 0,
(33) $({x) =

‘O, x < 0,
be the Heaviside function. Then the Green formula

(d/ax) (s 0x) ulx)) = 90x) u't (x)
(34)
s um00) s+ eee + uto) 8y

implies that vi(x) = &(x) u(x) 1is a solution of
(35) P(d/dx) vix) = g(x)

in the sense of distfibution, where

glx) = 9(x) f(x) + (am g1 * "t ay go) §(x)
(36)
R 6(m—1)( )
If, more generally, f(x) 1is a distribution (resp. a hyper-.
function) with support in [0, 0.0), we interprete the initial

value problem (7) as the problem of finding a distribution (resp.
hyperfunction) solution 'v(x) of (35) with support in [0, «).

Theorem 5. For any g(x) € B[ there is a unique-:solu-

0,)

tion v(x) € B of (35). Let g(x) € pSXP be an arbi-
[0,) [0,]
trary Laplace hyperfunction which extends g(x) in the sense

that p(é) = g, and let g(\) be the Laplace transform of g(x).

11
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Then the solution v(x) 1is obtained as the restiction to R of

exp

[0, ] of

the inverse Laplace transform in B

(37) | Yoo s PponT B .

Proof. We define the action of the differential operator
P(d/dx) on the Laplace hyperfunction f(x) = F(x + i0) -

F(x =i0) Dby
(38) P(d/dx)f(x) = P(d/dz)F(x + i0) - P(d/dz)F(x -i0).

Clearly this defines P(d/dx)f(x) independent of the defining

function F(z) and we have
(39) p(P(d/dx)f) = P(d/dx) p(f).

Differentiating (21) under the integral sign, we also have

(40) (P(d/dx)£)" 7

(X)) = P(X) £(X).

Hence it follows' that the equation

(41) ‘ P(d/dx) v(x) = T(x)

i exp . . ~

in B[O ] has a unique solution - v(x) whose Laplace trans-
b

form is given by (37). Its restriction v(x) to R is a

solution of (35).

Let V1(X) € B[O ) “be another solution of (35) and let
’
GW(X) be an arbitrary extension in _B?épm]. Then P(d/dx)
?
[V(x) - ¥v,(x)} has support only at . Hence V(x) - v, (x)

1 1

has also support only at '~ as the representation of the

solution of equation (41) shows.

12
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