A simple expression for the Casimir operator in Iwasawa co-odinates

by Takayuki OKADA (国田孝之)
(Dept. Mathematics, Kyoto University)

Introduction.

Let G be a connected semisimple Lie group and G = KAN an Iwasawa decomposition of G. In this paper, we give a formula for the Casimir operator Ω on G in Iwasawa coodinates $(k,a,n) \in K \times A \times N$ (Theorem 2.3).

This formula was first obtained by Anderson [1] and then by Williams [2] in its corrected form. But in the second paper the formula contains extra terms, which can be cancelled out. We obtain this formula through a simpler computation, using a linear transform of differential operators on $G: D \to D^{\dagger}$, which was suggested by Yamashita. He utilized in [3, part I] a similar operation as + in order to get an expression of Ω in Bruhat coodinates.

Our map + carries left G-invariant differential operators on G to left K-invariant and right AN-invariant ones, and the operator Ω is fixed by +: $\Omega = \Omega^+$ (see Lemma 2.2). So we compute Ω^+ instead of Ω itself. This enables us to simplify the proof of Anderson-Williams' formula to a large extent. Actually, Williams makes in Lemmas 2.2 and

2.6 of [2] an elementary but long computation by using k_{ij} , matrix elements of the adjoint representation of K, but we can derive this formula without this calculation by considering the operator Ω^{\dagger} .

§1. Preliminaries.

1.1. Let g be a non-compact real semisimple Lie algebra with a Cartan decomposition g = k + p. We denote by θ the corresponding Cartan involution of g. The Killing form B of g is negative definite on k and positive definite on p. The formula

$$\langle x, y \rangle = -B(x, \theta y), \quad x, y \in g,$$

defines a real positive definite inner product \langle , \rangle on g. Let $\underline{a} \subseteq \underline{p}$ be a maximal abelian subspace of \underline{p} . For $\alpha \in \underline{a}^*$ (the real dual space of \underline{a}), we put

$$\underline{g}_{\alpha} = \{x \in \underline{g}; [H,x] = \alpha(H)x \text{ for every } H \text{ in } \underline{a}\}.$$

An element α is called a restricted root of \underline{g} (relative to \underline{a}) if $\alpha \neq 0$ and $\underline{g}_{\alpha} \neq (0)$. Let $\Sigma \subseteq \underline{a}^{*}$ be the set of restricted roots, Σ^{+} be a choice of a positive system of Σ , and \underline{n} denote the sum of the positive root spaces \underline{g}_{α} ($\alpha \in \Sigma^{+}$). Put for $\alpha \in \Sigma$,

$$m_{\alpha} = \dim g_{\alpha}$$
, $\rho = \frac{1}{2} \sum_{\alpha \in \Sigma^{+}} m_{\alpha} \alpha$.

Then g has an Iwasawa decomposition g = k + a + n and another decomposition $g = \theta n + m + a + n$, where m is the centralizer of a in k. Let G be a connected Lie group with Lie algebra g, and $K \subseteq G$ the analytic Lie subgroup of G with Lie algebra k. Then G has an Iwasawa decomposition G = KAN, where $A = \exp a$, $N = \exp n$.

Let \underline{g}_C be the complexification of \underline{g} , and $U(\underline{g}_C)$ the universal enveloping algebra of \underline{g}_C . We regard elements of \underline{g} as left-invariant vector fields on \underline{G} : $(Xf)(\underline{g}) = \frac{d}{dt} f(\underline{g}(\exp tX))|_{t=0}$, for $\underline{f} \in C^{\infty}(G)$, $X \in \underline{g}$.

Then $U(\underline{g}_C)$ is identified with the algebra of left-invariant differetial operators in the canonical way.

For (z, H, x) $\in \underline{k} \times \underline{a} \times \underline{n}$, we define differential operators δ_Z , δ_H , δ_X : $C^{\infty}(G) \to C^{\infty}(G)$, on G respectively by

$$(\delta_z f)(kan) = \frac{d}{dt} f(k(exp tz)an)|_{t=0}$$

$$(\delta_H f)(kan) = \frac{d}{dt} f(k(exp tH)an)|_{t=0}$$

$$(\delta_x f)(kan) = \frac{d}{dt} f(ka(exp tx)n)|_{t=0}$$

where kan \in KAN is an Iwasawa decomposition of an element of G. These operators $\delta_{\rm Z}$, $\delta_{\rm H}$ and $\delta_{\rm X}$ are mutually commutative.

1.2. For $D \in U(\underline{g}_C)$, we define a differential operator D^{\dagger} on G as follows. Extend an $f \in C^{\infty}(G)$ to $\widetilde{f} \in C^{\infty}(G \times G)$ as

$$\tilde{f}(g, g_1) = f(kg_1an)$$
 (g=kan),

and put

$$(D^{\dagger}f)(g) = (D_{(g_1)}\widetilde{f})(g, g_1)|_{g_1=e} = (D_{(g_1)}\widetilde{f})(g, e),$$

where $D_{(g_1)}$ means differentiation D with respect to the variable g_1 , and e denotes the unit element of G.

Especially if $D \in g$, then D^{\dagger} is given as

$$(D^{\dagger}f)(kan) = \frac{d}{dt}f(k(exp tD)an)|_{t=0}$$

This operator D^{\dagger} is left K-invariant and right AN-invariant for every $D \in U(\underline{g}_C)$. This trick $D \to D^{\dagger}$, applied to the Casimir operator, plays an important role in proof of our main result.

1.3. Let $\{H_i\}_{i=1}^r$, $\{u_i\}_{i=1}^s$ and $\{x_i\}_{i=1}^t$ be orthonormal bases of \underline{a} , \underline{m} and \underline{n} respectively. Set $z_i = (x_i + \theta x_i)/\sqrt{2}$, $y_i = (x_i - \theta x_i)/\sqrt{2}$, for $1 \le i \le t$. Then $z_i \in \underline{k}$, $y_i \in \underline{p}$. Let \underline{m}^+ (resp. \underline{a}^+) denote the orthogonal complement of \underline{m} in \underline{k} (resp. \underline{a} in \underline{p}). Then $\{z_i\}_{i=1}^t$ (resp. $\{y_i\}_{i=1}^t$) is an orthonomal basis of \underline{m}^+ (resp. \underline{a}^+). So $\{H_i\}_{i=1}^r \cup \{y_i\}_{i=1}^t$ is an orthonormal basis of \underline{p} , and $\{u_i\}_{i=1}^s \cup \{z_i\}_{i=1}^t$ is an orthonomal basis of \underline{k} .

We choose an orthonomal basis $\{x_i\}_{i=1}^t$ of \underline{n} , consisting of root

vectors, as follows. Write $\Sigma^{\dagger} = \{\alpha_1, \dots, \alpha_q\}$, and for $1 \le j \le q$, let $\{x_{i(j)}; 1 \le i \le m_{\alpha_j}\}$ be an orthonormal basis of \underline{g}_{α_j} . We put $\{x_i\}_{i=1}^t = \bigcup_{1 \le j \le q} \{x_{i(j)}; 1 \le i \le m_{\alpha_j}\}$.

§2. A formula for the Casimir operator.

In this section we give a formula for the Casimir operator in Iwasawa coodinates.

2.1. First we recall the definition of Casimir operator. Let g be a semisimple Lie algebra over \mathbf{R} , B the Killing form of g. Let $\mathbf{X}_1, \dots, \mathbf{X}_n$ be a basis of g. Put $\mathbf{g}_{ij} = \mathbf{B}(\mathbf{X}_i, \mathbf{X}_j)$ and let (g^{ij}) be the inverse matrix of (\mathbf{g}_{ij}) . Then the differential operator

$$\Omega = \sum_{i,j} g^{ij} X_i X_j$$

is independent of a choice of the basis $\{X_i^{}\}$, and is G-biinvariant. This Ω is called the Casimir operator on G.

In terms of the basis $\{H_i\}\cup\{y_i\}\cup\{z_i\}\cup\{u_i\}$ of g, the Casimir operator Ω is expressed as

(1)
$$\Omega = \sum_{i=1}^{r} H_i^2 + \sum_{i=1}^{t} y_i^2 - \sum_{i=1}^{t} z_i^2 - \sum_{i=1}^{s} u_i^2.$$

Computing the right hand side of (1), one obtains the following

LEMMA 2.1. The operator Ω has another expression as

$$\Omega = \sum_{i=1}^{r} (H_i^2 + 2\rho(H_i)H_i) + \sum_{i=1}^{t} (2x_i^2 - 2\sqrt{2}z_ix_i) - \sum_{i=1}^{s} u_i^2.$$

PROOF. Since $y_i = \sqrt{2}x_i - z_i$, we get

(2)
$$y_i^2 = 2x_i^2 - \sqrt{2}x_iz_i - \sqrt{2}z_ix_i + z_i^2$$

= $2x_i^2 + z_i^2 - \sqrt{2}[x_i, z_i] - 2\sqrt{2}z_ix_i$.

The element $[x_i, z_i] = \frac{1}{\sqrt{2}} [x_i, \theta x_i]$ belongs to <u>a</u>. So we put

$$[x_i, \theta x_i] = \sum_{k=1}^{r} c_k^{(i)} H_k$$
 with $c_k^{(i)} \in \mathbf{R}$.

Let $x_i = x_{\nu(\mu)} \in \underline{g}_{\alpha_{\mu}}$. Let us compute the coefficients $c_k^{(i)}$. First note that

$$B(H_k, [x_i, \theta x_i]) + B([x_i, H_k], \theta x_i) = 0,$$

which implies that

$$\sum_{j=1}^{r} c_{j}^{(i)} B(H_{k}, H_{j}) - \alpha_{\mu}(H_{k}) B(x_{i}, \theta x_{i}) = 0.$$

Since

$$B(H_k, H_j) = -B(H_k, \theta H_j) = \langle H_k, H_j \rangle = \delta_{kj},$$

-
$$B(x_i, \theta x_i) = \langle x_i, x_i \rangle = 1$$
,

we have $c_k^{(i)} = -\alpha_{\mu}(H_k)$. Therefore,

$$[x_i, z_i] = \frac{1}{\sqrt{2}} [x_i, \theta x_i] = -\frac{1}{\sqrt{2}} \sum_{k=1}^{r} \alpha_{\mu}(H_k) H_k.$$

So,

(3)
$$\sqrt{2}\sum_{i=1}^{t} [x_i, z_i] = -\sum_{1 \le i \le m_{\alpha_i}} q r \sum_{j=1}^{q} x_j (H_k) H_k = -2\sum_{k=1}^{r} \rho(H_k) H_k.$$

Then from (1)-(3) we obtain the desired expression.

Q.E.D.

LEMMA 2.2. Let Ω be the Casimir operator on G. Then one has $\Omega = \Omega^{\dagger}$, where $D \to D^{\dagger}$ is the linear transform of differential operators on G, given in 1.2.

PROOF. Let $f \in C^{\infty}(G)$ and kan \in KAN = G. Since Ω is invariant under conjugation of elements of G, we obtain

$$(\Omega^{\dagger}f)(kan) = (\Omega_{(g)}f)(kgan)|_{g=e} = (\Omega_{(g)}f)(k(angn^{-1}a^{-1})an)|_{g=e}$$

= $(\Omega_{(g)}f)(kang)|_{g=e} = (\Omega f)(kan)$.

Thus $\Omega = \Omega^{\dagger}$.

Q.E.D.

6 U U

2.2. We now give, using Lemmas 2.1 and 2.2, an expression of Ω by means of the differential operators $\delta_{Z_{\dot{1}}}$, $\delta_{u_{\dot{1}}}$, $\delta_{H_{\dot{1}}}$ and $\delta_{X_{\dot{1}}}$, which is the main result of this paper.

THEOREM 2.3. The Casimir operator Ω is expressed as

$$\begin{split} &\Omega = \sum_{1 \leq i \leq r} (\delta_{\mathsf{H}_{i}}^{2} + 2\rho(\mathsf{H}_{i})\delta_{\mathsf{H}_{i}}) - \sum_{1 \leq i \leq s} \delta_{\mathsf{u}_{i}}^{2} \\ &+ \sum_{1 \leq j \leq q} \sum_{1 \leq i \leq m_{\alpha_{j}}} (2e^{-2\alpha_{j}} \delta_{\mathsf{X}_{i}(j)}^{2} - 2\sqrt{2}e^{-\alpha_{j}} \delta_{\mathsf{Z}_{i}(j)}^{3} \delta_{\mathsf{X}_{i}(j)}^{3}), \end{split}$$

where $e^{\alpha}(kan) = e^{\alpha(\log a)}$ for $\alpha \in \underline{a}^*$, $kan \in KAN = G$.

PROOF. By Lemma 2.2, $\Omega = \Omega^{\dagger}$ So we compute Ω^{\dagger} . Thanks to Lemma 2.1, we get

(4)
$$\Omega^{\dagger} = \sum_{i=1}^{r} ((H_{i}^{2})^{\dagger} + 2\rho(H_{i})(H_{i})^{\dagger})$$

$$+ \sum_{i=1}^{t} (2(x_{i}^{2})^{\dagger} - 2\sqrt{2}(z_{i}x_{i})^{\dagger}) - \sum_{i=1}^{s} (u_{i}^{2})^{\dagger}.$$

We compute each term of the right hand side of (4). Let $f \in C^{\infty}(G)$, $kan \in G$. As for $(H_i^2)^{\dagger}$, one obtains

(5)
$$((H_i^2)^{\dagger} f)(kan) = \frac{d}{ds} \frac{d}{dt} f(k(\exp tH_i)(\exp sH_i)an)|_{t=s=0}$$

$$= ((\delta_{H_i})^2 f)(kan).$$

Similarly,

(6)
$$(H_i^{\dagger}f)(kan) = (\delta_{H_i}f)(kan),$$

(7)
$$((u_i^2)^{\dagger}f)(kan) = ((\delta_{u_i})^2 f)(kan).$$

Let
$$x_i = x_{\nu(\mu)} \in \underline{g}_{\alpha_{\mu}}$$
, then

(8)
$$((z_i x_i)^{\dagger} f)(kan) = \frac{d}{ds} \frac{d}{dt} f(k(exp sz_i)(exp tx_i)an)|_{t=s=0}$$

$$= \frac{d}{ds} \frac{d}{dt} f(k(exp sz_i)a \cdot exp(tAd(a^{-1})x_i) \cdot n)|_{t=s=0}$$

$$= \frac{d}{ds} \frac{d}{dt} f(k(exp sz_i)a \cdot exp(te^{-\alpha \mu}(a) x_i) \cdot n)|_{t=s=0}$$

$$= (e^{-\alpha \mu} \delta_{z_i} \delta_{x_i} f)(kan),$$

(9)
$$((x_i^2)^{\dagger}f)(kan) = \frac{d}{ds} \frac{d}{dt} f(k(exp sx_i)(exp tx_i)an)|_{t=s=0}$$

$$= \frac{d}{ds} \frac{d}{dt} f(ka \cdot exp(sAd(a^{-1})x_i) \cdot exp(tAd(a^{-1})x_i) \cdot n)|_{t=s=0}$$

$$= \frac{d}{ds} \frac{d}{dt} f(ka \cdot exp(se^{-\alpha \mu}(a)x_i) \cdot exp(te^{-\alpha \mu}(a)x_i) \cdot n)|_{t=s=0}$$

$$= (e^{-2\alpha \mu}(\delta_{x_i})^2 f)(kan).$$

Finally (4)-(9) imply the formula in the theorem.

Q.E.D

- §3. Remarks on the formula in Lemma 2.1.
- 3.1. Through a discussion with Yamashita on the first version of this manuscript, we have realized that the formula of Ω in Lemma 2.1 is equivalent to the following well-known expression

(10)
$$\Omega = \sum_{i=1}^{r} (H_i^2 + 2\rho(H_i)H_i) - 2\sum_{i=1}^{t} \theta x_i x_i - \sum_{i=1}^{s} u_i^2$$

by the relation $\sqrt{2}z_i - x_i = \theta x_i$. So, if one starts the process from this formula (10) instead of (1), then the proof of Lemma 2.1 can be cut out. In this way, one takes a futher shortcut to Theorem 2.3.

3.2. At last, we prove the formula (10) without using (1). Let \underline{g} be a semisimple Lie algebra and $\{X_i\}_{i=1}^n$ be a basis of \underline{g} , and $\{Y_i\}_{i=1}^n$ be the dual basis of $\{X_i\}$ with respect to the Killing form B: $B(X_i,Y_j)=\delta_{ij}$. It follows immediately from the definition of Casimir operator that Ω is expressed as

$$\Omega = \sum_{i=1}^{n} Y_i X_i.$$

We take a basis $\{\theta x_i\} \cup \{u_i\} \cup \{x_i\}$ of g. Then the dual bases of $\{\theta x_i\}$, $\{u_i\}$, $\{H_i\}$ and $\{x_i\}$ are $\{-x_i\}$, $\{-u_i\}$, $\{H_i\}$ and $\{-\theta x_i\}$ respectively. Therefore the operator Ω is expressed as

$$\Omega = \sum_{i=1}^{t} (-x_i) \theta x_i + \sum_{i=1}^{s} (-u_i) u_i + \sum_{i=1}^{r} H_i^2 + \sum_{i=1}^{t} (-\theta x_i) x_i$$

$$= \sum_{i=1}^{r} H_i^2 - \sum_{i=1}^{t} (x_i \theta x_i + \theta x_i x_i) - \sum_{i=1}^{s} u_i^2$$

$$= \sum_{i=1}^{r} H_i^2 - \sum_{i=1}^{t} ([x_i, \theta x_i] + 2\theta x_i x_i) - \sum_{i=1}^{s} u_i^2.$$

As shown in Lemma 2.1, one gets $\sum_{i=1}^{t} [x_i, \theta x_i] = -\sum_{i=1}^{r} 2\rho(H_i)H_i$. Thus we obtain (10) as desired.

References

- [1] M. Anderson, A simple expression for the Casimir operator on a Lie group, Proc. Amer. Math. Soc., 77 (1979), 415-420.
- [2] F. L. Williams, Formula for the Casimir operator in Iwasawa coodinates, Tokyo J. Math., 8 (1985), 99-105.
- [3] H. Yamashita, Multiplicity one theorems for generalized Gelfand -Graev representations of semisimple Lie groups and Whittaker models for the discrete series, preprint.