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A simple expression for the Casimir operator in Iwasawa co-odinates

by Takayuki okaDA (& @ A Z)

{Dept. Mathemtics, Kyoto University)

Introduction.

Let G be a connected semisimple Lie group and G = KAN an
Iwasawa decomposition of G. In this paper, we give a formula for the
Casimir operator & on G in lwasawa coodinates (k,a,n) € KxAxN
(Theorem 2.3). |

This formula was first obtained by Anderson [1] and then by
Williams [2] in its corrected form. But in the second paper the
formula contains extra terms, which can be cancelled out. We obtain
this formula through a simpler-computation, using a linear transform
of differential operators on G: D - D*, which was suggested by
"Yamashita. He utilized in [3, part 1] a similar operation as + 1in.
order to get an expression of @ in Bruhat coodinates.

Our map + carries left G-invariant differential operators on G
to left K-invariant and right AN-invariant ones, and the operator Q
is fixed by ¢: Q = QF (see Lemma 2.2). So we compute QF instead of
Q itself. This enables us to simplify the proof of Anderson-Williams’

formula to a large extent. Actually, Williams makes in Lemmas 2.2 and
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2.6 of [21 an elementary but long computation by using kij’ matrix
elements of the adjoint representation of K, but we can derive this

formula without this calculation by considering the operator Qf.

81. Preliminaries.

1.1. Let g be a non-compact real semisimple Lie algebra with

a Cartan decomposition g =k + p. We denote by 6 the correspondi-

ng Cartan involution of g. The Killing form B of g 1is negative

definite on Kk and positive definite on p. The formula

<X, y> = - B(Xg GY), X9 y €

Qe

—
—

defines a real positive definite inner product <,> on g. Let ‘a

p be a maximal abelian subspace of p. For « € g* (the real dual

space of a), we put

9y = {x€g: [H,x] = «(H)x for every H 1in a}l.

An element « 1is called a restricted root of g (relative to a ) if
«x # 0 and 9, * (0). Let 2C g* be the set of restricted roots,

s* be a choice of a positive system of S, and n denote the sum of

the positive root spaces 9, (€ s*). Put for « € 3,
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Then g has an Iwasawa decomposition g = k+a+n and another

decomposition g = &n+m+a+n, where m 1is the centralizer of a in
k. Let G be a conneéted Lie group with Lie algebra g, and K C G
the analytic Lie subgroup of G with Lie algebra k. Then G has an
Iwasawa decomposition G = KAN, where A = exp a, N = exp n. |

Let 9 be the complexification of g, and U(gc) the universal
enveloping algebra of 9.- We regard elements of g as left-invariant

for f ¢ CT(®), X

vector fields on G: (Xf)(g) = _d f(g(exp tX))lt=0,

dt
€ g,

Then U(gC) is identified with the algebra of left-invariant
differetial operators in the canonical way.

For (z, H, x) € kxaxn, we define differential operators BZ,

H SX: c’(G) » Cw(Gi, on G respectively by

_d
(Szf)(kan) dtf(k(exp tz)an)lﬁﬁo,

(5,) (kan) = A (k(exp tH)an)|

dt t=0"
4 | .
(3 f)(kan) = wf(kalexp tx)n)lt=0,

where kan € KAN is an Iwasawa decomposition of an element of @G.

These operators &

= SH and SX are mutually commutative.

1.2. For D « U(gc), we define a differential operator p¥ on

G as follows. Extend an f € CT(G) to T ¢ C7(GxG) as



f(g, g,) = flkg an) (g=Kan),
and put

t } x i} x
¥ = o D9, 91)|91=e (D, ,Drg. e,

917 1

where D

(g means differentiation D with respect to the variable

1)

91, and e denotes the unit element of @G.

Especially if D € g, then bt is given as

t , - _d
(D'f)(kan) = grf(k(exp tD)gn)|t=0.

This operator DV is left K-invariant and right AN-invariant for

every D ¢ U(gc). This trick D - DY, applied to the Casimir

operator, plays an important role in proof of our main result.

r S
1.3.  Let {(HpDY_, . €U},

—

and {xi} be orthonormal

=1

bases of a, m and n respectively. Set z; = (xi+9xi)/d§, vi=

(x;-6x;)//2, for 1Sist. Then z;¢ k, v,

{ € P. Let m* (resp. a“)

denote the orthogonal complement of m in k (resp. a in P ).
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Then {Zi}§=1 (resp. {yi}§=l.J is an orthonomal basis of m* (resp.
at ). So {Hi}§=1U {yi}§=1 is an orthonormal basis of p, and {ui}?=1U

{zi};c=1 is an orthonomal basis of K.
We choose an orthonomal basis {x.}§

i of n, consisting of root

=1
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vectors, as follows. Write s*= {al,...,aq}, and for 1=j=q, let

{x,,.,s 1=is=m_ 1} be an orthonormal basis of g . We put {x.}?_ = U
i(3) o o i'i=1 < i
J . J 1=jgq

c 1Sis
{Xi(j)’ 1_1_maj}.

82. A formula for the Casimir operator.

In this section we give a formula for the Casimir operator in

Iwasawa coodinates.

2.1. First we recall the definition of Casimir operator. Let

g be a semisimple Lie algebra over R, B the Killing form of g.

lJ)

Let X X be a basis of g. Put g.. = B(Xi,Xj) and let (g

l,...’ n g ij

be the inverse matrix of (gij)' Then the differential operator

Q= 3 gilxx.
i, 1J

is independent of a choice of the basis {Xi}’ and is G-biinvariant.
This Q 1is called the Casimir operator on G.

In terms of the basis {Hi}U{yi}U{zi}U{ui} of g, the Casimir

operator @ is expressed as



Computing the right hand side of (1), one obtains the following

LEMMA 2.1. The operator @ has another expression as

r > ‘ t 5 _ 5 >
Q= S (H.° + 2p(H.)H,) + S (2x.° - 2/2z.x.) - 2 U,

< i i’ i . i i~i P |

i=1 i=1 i=1
PROOF. Since y. = V/2x, - z

i i i? we get

2 2

i

(2) y 2xi - \/2xizi - JQZixi'+ z
2 2 - A _ i3
2xi +zy J2[xi,zi] 2v2zixi.

The element [x.,zi]

i = [xi,exi] belongs to a. So we put

V2
r .
\ (i) . (i)
[Xi’exi]v’ % Cy Hp with c, =" € R.
k=1 :
= o (i) .
Let Xi = X000 € ga#. Let us compute the coefficients ¢ K First
note that
B(Hk,[xi,exi]) + B(ixi,Hk],exi) = 0,

which implies that

) | ' _
B(H,  H,) - o, (HIBOx;,6%;) = 0.

(i
€3 1Pk i

nMm=

J=1
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Since

B(H_ ,H.) = - B(Hk,GHj) = <H

ks j HJ> = 8

k’ kj’

- B(xi,exi) = <Xi’xi> = 1?

we have ¢ K = aH(Hk)' Therefore,

1
J2 Kk

r
2 «,, (H JH

= 1 = -
[x;,2;1 = = txi,Gxi] = > %u k) Hy

V2
So,
< q r r
x.,z.1 = - ;Z—s = > aJ(H JH, = - 2 3 p(H,)H

p 1 1sism_ j=1 k=1 k™k k=1
J

(3) V2 K

M e+

Then from (1)-(3) we obtain the desired expression. Q.E.D.

LEMMA 2.2. Let Q Dbe the Casimir operator on G. Then one has
Q = Q*, where D - D+ is the linear transform of differential

operators on G, given in 1.2.

PROOF. Let f ¢ Cm(G) and kan € KAN = G. Since Q 1is invariant

under conjugation of elements of G, we obtain

1

@) (kan) = ©

- -1,-
(g)f)(kgan)lg=e— (Q(g)f)(k(angn a

(Q(g)f)(kang)lg=e= (Qf) (kan).

)an)lg=e

Thus Q = Qf. Q.E.D.
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2.2. We now . give, using Lemmas 2.1 and 2.2, an expression of

Q by means of the differential operators 4, . & . s and- & ,
‘ Z; U Hi X5

which is the main result of this paper.

THEOREM 2.3. The Casimir operator Q is expressed as

Q= 2. (5.4 2p(H )8, ) - > N 2

1sisr i i 1giss Yy
-2 oo
s 2. > (2e 5, 2 - 2/ze Y5, s, ),
1Sjsq  1Sism_ i) 103 i)
J
ax(l0og a)

where €%(kan) = € for « ¢ a’, kan € KAN = G.

'PROOF. By Lemma 2.2, Q = ol so we compute Qf. Thanks to

Lemma 2.1, we get

r :
(4) ot = s (.5t 4 2p(Hi)(Hi)*)

o s
b - 2J2(zixi)*) - S . Ht.

We compute each term of the right hand side of (4). Let f ¢ Cm(G),

kan € G. As for (Hiz)+ , oné obtains
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2.+ d_d |
(5) ((H; D7) (kan) = g == f(k(exp tH,)(exp sH;)an)|

Similarly,

t=5=0

2

(5, )

Hi f)(kan).

(6) (H,tf) (kan) = (SH £) (kan),
i
(7) ((ui2)*f)(kan) = (3 )2 £)(kan).
i
Let X; = Xv(#) € 9, then
i
(8) ((z.x ) TE)kan) = =9 -9 f(kiexp sz.)(exp tx.)an)|
i7i - ds dt i i t=5=0
. _d _d . -1 .
= 35 gt f(klexp szda-exp(tAd(a x;)-m| g
=4 d f(k(exp sz )a~exp(te_a#(a) X.)-n)|
ds dt i _ i t=s5=0
=y
= (e d_ & fir(kan),
Z. X. :
i i
2.+ = -d_4d
(9) ((x;7) f)(kan) = ds dt f(k(exp sx; ) (exp txi)an)lt=S=0
_d _d . -1 . -1 .
= 35 gt f(ka-rexp(sAd(a )x;)-exp(tAd(a HIx)-ml,_._,
_d _d .. " . S .
= 3s qt f(Ka-exp(se “(a)x;)-exp(te "(a)x;) n)|t=S=0
-2 h
= e Heo 12£) (kan) .
i
Finally (4)-(9) impiy the formula in the theorem. QR.E.D



265

- 83. Remarks on the formula in Lemma 2.1.

3.1. Through a discussion with Yamashita on the first version
of this manuscript, we have realized that the formula of' & in Lemma

2.1 is equivalent to the following well-known expression

2

t S
(10) Q + 2p(Hi)Hi) - 2 23 6x,X,; —.E u

i
n M=

(Hi

by the relation J§zi - Xi = Gxi. So, if one starts the process from
this formula (10) instead of (1), then the proof of Lemma 2.1 can be

cut out. In this way, one takesa futher shortcut to Theorem 2.3.

3.2. At last, we prove the formula (10) wiﬁhout using (1).
Let g be a semisimple Lie algebra and {Xi}r;=1 be a basis of g,
and {Yi}?=1 be the dual basis of {Xi} with respect to the Killing
form B: B(Xi,YJ) = 313‘ It follows immediately from the definition

of Casimir operator that Q 1is expressed as

We take a basis {exi}U{ui}U{Hi}U{Xi} of 9. Then the dual bases
of {9xi}, tu; ¥, {H;} and {x;} are {-x;}, {-u; >, {H;} and {—9xi}

respectively. Therefore the operator @ 1is expressed as
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t 5 r o t
Q= = (—xi)exi + 3= (-ui)ui + 2 Hi + = (-Gxi)xi

i=1 i=1 i=1 i=1
r 5 t s >

= 3 Hi - 3 (xiexi + Gxixi) - 2 Uy
i=1 i=1 i=1
roo5 t 5 5

= 3 Hi - 3 ([xl,exi] + 29xix. ) - = ui .
i=1 i=1 i=1

t . r
As shown in Lemma 2.1, one gets ) [xi,Gxi] = - 3 2p(Hi)Hi. Thus we

i=1 i=1

obtain (10) as desired.
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