On Weak and Classical Solutions of the Two-Dimensional Magnetohydrodynamic Equations

小蘭英雄 (Hideo Kozono)

Department of Applied Physics, Nagoya University

Let Ω be a bounded domain in R^2 with smooth boundary $\partial\Omega$. In $Q_T:=\Omega\times(0,T)$, we consider the following magnetohydrodynamic equations for an <u>ideal</u> incompressible fluid coupled with magnetic field:

$$\partial_t u + (u, \nabla)u - (B, \nabla)B + \nabla((1/2)|B|^2) + \nabla \pi = f \text{ in } Q_T,$$
 $\partial_t B - \Delta B + (u, \nabla)B - (B, \nabla)u = 0$ in $Q_T,$

(*) div $u = 0$, div $B = 0$ in $Q_T,$
 $u \cdot v = 0$, $B \cdot v = 0$, rot $B = 0$, on $\partial \Omega \times (0, T)$,
 $u \mid_{t=0} = u_0, B \mid_{t=0} = B_0.$

Here $u = u(x, t) = (u^1(x, t), u^2(x, t))$, $B = B(x, t) = (B^1(x, t), B^2(x, t))$ and $\pi = \pi(x, t)$ denote the unknown velocity field of the fluid, magnetic field and pressure of the fluid, respectively; $f = f(x, t) = (f^1(x, t), f^2(x, t))$ denotes the given external force, $u_0 = u_0(x) = (u_0^1(x), u_0^2(x))$ and B_0

= $B_0(x)$ = $(B_0^1(x), B_0^2(x))$ denote the given initial data and v denotes the unit outward normal on $\partial \Omega$.

The first purpose of this paper is to state the existence and uniqueness of a global weak solution of (*) without restriction on the data. In case B is identically equal to zero, i.e., in the case of the Euler equations, such a problem for global weak and classical solutions was solved by Bardos [1] and Kato [4], respectively. (Kikuchi [5] extended the result of Kato [4] in an exterior domain.) Using the energy method developed by Bardos [1], we can obtain a global weak solution in our case.

Our second purpose is to state the existence and uniqueness of a <u>local classical solution</u> of (*). Although the method of characteristic curves for the vorticity equation plays an important role in a <u>global classical solution</u> of the two-dimensional Euler equations, such a method seems to give us only a <u>local classical solution</u> of (*) because of the additional terms (B, ∇)B and (u, ∇)B - (B, ∇)u. Our result on classical solution is considered, however, a generalization of that of Kato [4] in some sense.

1. Notation.

Let us introduce some function spaces. $C_{0,\sigma}^{\infty}(\Omega)$ denotes the set of all C^{∞} -real vector-valued functions $\Phi=(\Phi^1,\Phi^2)$ with compact support in Ω such that div $\Phi=0$. H is the

completion of $C_{0,\sigma}^{\infty}(\Omega)$ with respect to the L^2 -norm $\|\cdot\|$; (,) denotes the L^2 -inner product. V denotes the set of all vector-valued functions u in $H^1(\Omega)$ with div u=0 in Ω and $u\cdot v=0$ on $\partial\Omega$. Equipped with the norm $\|\cdot\|$:

$$\|\| u \|\|^2 = \| rot u \|^2 + \| u \|^2$$
,

V is a Hilbert space. By Duvaut-Lions [2, Chapter 7 Theorem 6.1], we have

$$\|u\|_{L^{1}(\Omega)} \leq C(\Omega) \|\|u\|\|$$
 for all $u = V$.

Hence the norm $\| \|$ is equivalent to the one usually induced from $H^1(\Omega)$ and V is compactly imbedded into H.

If X is a Hilbert space, then $L^p(0, T; X)$ $(1 \le p < \infty)$ denotes the set of all measurable functions u(t) with values in X such that $\int_0^T \|u(t)\|_X^p dt < \infty$ ($\|\cdot\|_X$ is the norm in X).

 $L^{\infty}(0, T; X)$ denotes the set of all essentially bounded (in the norm of X) measurable functions of t with values in X.

Let $C^m([0, T]; X)$ denote the set of all X-valued m-times continuously differentiable functions of t $(0 \le t \le T)$. $C_0^m([0, T); X)$ is the set of all X-valued m-times continuously

differentiable functions on [0, T) with compact support in [0, T).

 $C^{k+\alpha}(\bar{\mathbb{Q}}) \quad \text{with integer} \quad k \geq 0 \quad \text{and} \quad 0 \leq \alpha < 1 \quad \text{denotes the usual Holder space of continuous functions on} \quad \bar{\mathbb{Q}}. \qquad | \ |_{k+\alpha}$ denotes the norm in $C^{k+\alpha}(\bar{\mathbb{Q}})$. $C^{k,j}(\bar{\mathbb{Q}}_T)$ with integers $k, j \geq 0$ is the set of all functions Φ for which all the $\partial_X^q \partial_t^r \Phi$ exist and are continuous on $\bar{\mathbb{Q}}_T$ for $0 \leq |q| \leq k$, $0 \leq r \leq j$. $C^{k+\alpha,j+\beta}(\bar{\mathbb{Q}}_T)$ with integers $k, j \geq 0$ and $0 \leq \alpha, \beta < 1$ is the subset of $C^{k,j}(\bar{\mathbb{Q}}_T)$ containing all functions Φ for which all the $\partial_X^q \partial_t^r \Phi$, $0 \leq |q| \leq k$, $0 \leq r \leq j$, are Holder continuous with exponents α in x and β in t. If

$$\begin{split} \mathbb{K}^{\alpha,\mathcal{B}}(\phi) &= \sup_{(x,t) \in \overline{\mathbb{Q}}_{\underline{T}}} |\phi(x,t) - \phi(x',t)| / |x - x'|^{\alpha} + \\ & (x',t) \in \overline{\mathbb{Q}}_{\underline{T}} \\ |x - x'| < 1 \end{split}$$

$$+ \sup_{(x,t) \in \overline{\mathbb{Q}}_{\underline{T}}} |\phi(x,t) - \phi(x,t')| / |t - t'|^{\beta},$$

$$(x,t') \in \overline{\mathbb{Q}}_{\underline{T}} \\ |t - t'| < 1 \end{split}$$

we define the norm $| |_{k+\alpha, j+\beta}$ in $C^{k+\alpha, j+\beta}(\bar{Q}_T)$ by

$$|\phi|_{\mathbf{k}+\alpha,\,\mathbf{j}+\mathcal{B}} = \sup_{(\mathbf{x},\,\mathbf{t})\in \overline{\mathbb{Q}}_{\mathrm{T}}} \sum_{\substack{\mathbf{q}\mid\leq\mathbf{k}\\\mathbf{r}\leq\mathbf{j}}} |\mathbf{q}| \leq \mathbf{k}} |\mathbf{D}_{\mathbf{x}}^{\mathbf{q}} \partial_{\mathbf{t}}^{\mathbf{r}} \phi(\mathbf{x},\,\,\mathbf{t})| + \sum_{\substack{\mathbf{q}\mid=\mathbf{k}}} \mathbf{K}^{\alpha,\,\mathcal{B}} (\mathbf{D}_{\mathbf{x}}^{\mathbf{q}} \partial_{\mathbf{t}}^{\mathbf{j}} \phi).$$

For the spaces of vector-valued functions, we shall use the bold-faced letters analogously.

2. Definitions and results.

Our definition of a weak solution of (*) is as follows.

Definition. Let $u_0 \in H$, $B_0 \in H$ and $f \in L^2(0, T; L^2(\Omega))$.

A pair of measurable vector functions u and B on Q_T is called a weak solution of (*) if

(i) $u \in L^{\infty}(0, T; H) \cap L^{2}(0, T; V)$, $B \in L^{\infty}(0, T; H) \cap L^{2}(0, T; V)$;

(ii)
$$\int_0^T \{-(u, \partial_t \Phi) + ((u, \nabla)u - (B, \nabla)B, \Phi)\} dt$$

=
$$(u_0, \Phi(0)) + \int_0^T (f, \Phi) dt$$

$$\int_{0}^{T} \{-(B, \partial_{t}\Phi) + (\text{rot B, rot }\Phi) + ((u, \nabla)B - (B, \nabla)u, \Phi)\} dt$$

$$= (B_{0}, \Phi(0))$$

for all $\Phi \in C_0^1([0, T); V)$.

Concerning the uniqueness of weak solutions of (*), we have

Proposition. There exists at most one weak solution of (*).

If {u, B} is the weak solution of (*), after a suitable redefinition of u(t) and B(t) on a set of measure zero of the

time interval [0, T], we have that $u \in C([0, T]; H)$ and $B \in C([0, T]; H)$.

For the proof of this proposition, see Temam [6, Chapter 3 Theorem 3.2], we omit it.

Our result on the existence of a weak solution now reads:

Theorem 1. Let $u_0 \in V$, $B_0 \in V$ and $f \in L^2(0, T; L^2(\Omega))$ with rot $f \in L^2(0, T; L^2(\Omega))$. Then there exists a weak solution $\{u, B\}$ of (*) such that $u \in L^{\infty}(0, T; V) \cap C([0, T]; H)$ and $B \in L^2(0, T; H^2(\Omega)) \cap C([0, T]; V)$.

We next proceed to our result on classical solutions. To this end, we make the following assumptions on the domain $\,\Omega\,$ and the given data $\,u_0\,,\,B_0\,$ and f.

Assumption 1. The boundary $\partial\Omega$ of Ω consists of m + 1 sufficiently smooth, simple closed curves S_0 , S_1 ,..., S_m , where S_j (j = 1,...,m) are inside of S_0 and outside of one another.

Gunter [3, p.22] refers to the above assumption as 'Case J''.

Assumption 2. For some $0 < \theta < 1$, $u_0 \in C^{1+\theta}(\bar{\Omega})$, $B_0 \in C^{2+\theta}(\bar{\Omega})$ and $f \in C^{1+\theta,0}(\bar{Q}_T)$. Moreover, u_0 and B_0 satisfy the

conditions div $u_0 = 0$, div $B_0 = 0$ in Ω , $u_0 \cdot v = 0$, $B_0 \cdot v = 0$ on $\partial \Omega$.

Our result on the existence and uniqueness of classical solutions reads:

Theorem 2. Let the assumptions 1 and 2 hold. Then there is a positive number $C_* = C_*(\Omega, T, |u_0|_{1+\theta}, |f|_{1+\theta,0})$ such that if $|B_0|_{2+\theta} \le C_*$, there exists a solution $\{u, B, \pi\} \in C^{1,1}(\bar{Q}_T) \times C^{2,1}(\bar{Q}_T) \times C^{1,0}(\bar{Q}_T)$ of (*). Such a solution is unique up to adding an arbitrary function of t to π .

Remark. Taking $B_0 = 0$ in Ω , we may cover the result of Kato [4].

References

- 1. Bardos, C.: Existence et unicité de la solution de l'équation d'Euler en dimension deux. J. Math. Anal. Appl. 40, 769-790 (1972)
- 2. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Berlin Heidelberg New York: Springer 1976
- 3. Gunter, N.M.: Potential theory and its application to basic problems of mathematical physics. New York: Frederick Ungar Publish co. 1967

- 4. Kato, T.: On Classical Solutions of the Two-Dimensional Non-Stationary Euler Equation. Arch. Rat. Mech. Anal. 25, 188-200 (1967)
- 5. Kikuchi, K.: Exterior problem for the two-dimensional Euler equation. J. Fac. Sci. Univ. Tokyo Sec. IA 30, 63-92 (1983)
- 6. Temam, R.: Navier-Stokes Equations. 2nd Ed. Amsterdam: North-Halland 1979.