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2
Let Q be  a Dbounded domain in R with smooth boundary

8. In Qp 1= @x(0, T, we consider the following

magnetohydrodynamic equations for an ideal incompressible fluid

coupled with magnetic field:

2
atu + (u, Vyu - (B, VB + V((1/2)IBl > + Ym = { in QT’
atB - AB + (u, VDB - (B, VW u = 0 : . in QT’
(%) divu=20, div B =0 ' ' in QT’
u-v = 0, B-v =0, rot B = 0, on 3Qx(0, T),
Uliy.0 = s Bl = B
1 2
Here u = u(x, t) = (u (x, t), u (x, t)), B = B((x, t) =
1 2 .
(B (x, t>, B (x, t)) and n = n(x, t) denote the unknown

velocity field of the fluid, magnetic field and pressure of the
1 2
fluid, respectively; £ = £f(x, t) = (f (x, t>, £ (x, t)) denotes

1 2
the given external force, u, = Uy(x) = (Yy(x), Yy (x)) and B,
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i 2
= By (X) = (By(X), By(x)) denote the given initial data and v

denotes the unit outward normal on -3%.

The first purpose of this paper is to state the existence

and uniqueness of a global weak solution of (%) without

restriction on the data. In case B is identically equal to-
zero, i.e., in the case of the Euler equations, such a problem

for global weak and classical solutions was solved by Bardos [1]

and Kato C4], respectively. (Kikuchi [5] extended the result of
Kato [41 in an exterior domain.) Using the energy method

developed by Bardos [1]1, we can obtain a global weak solution in

our case.
Our second purpose is to state the existence and uniqueness

of a local‘ classical solution of (%). Although the method of

characteristic curves for the vorticity equation plays an

important role in a global classical solution of the two-

dimensional  Euler equations, such a method seems to give us only

a local classical solution of (%) because of the additional terms

(B, B and (u, V)B - (B, V)u. Our result on classical
solution is considered, however, a generalization of that of Kato

[4] in some sense.

1. Notation.

Let us introduce some function spaces. C: 0(52) denotes the

E 1 2
set of all C -real vector-valued functions ¢ = (¢ , ) with
compact support in Q such that div ¢ = 0. H 1is the



2
completion of Cg 0(Q) with respect to the L -norm Il ; ¢, )

. 2
denotes the L -inner product. V denotes the set of all vector-

1
valued functions u in H () with divu=0 in 8 and

u-v = 0 on 3R. Equipped with the norm Il Iii

2 2 2
Mall” = Hrot ull” + llull”,

v is a Hilbert spacé. By Duvaut-Lions [2, Chapter 7 Theorem

6.11, we have

Hall sclull for all u V.
H (D '
Hence the norm Ml Wl is equivalent to the one usually induced
1
from H (%) and V is compactly imbedded into H.
1If X is a Hilbert space, then LF(0, T; X) (1 £ p < o

denotes the set of all measurable functions u(t) with values in

is the norm in X).

T
X such that [ Hu(t)H§ dt < @l iy
,

Lm(O, T; X) denotes the sét of all essentially bounded (in the

norm of X) measurable functions of t with values in X.

Let Cm([O, T1; XD denote the sef of all X-valued m-times

continuously differentiable functions of t (0t ST),

C?([O, T); X) is the set of all X-valued m-times continuously
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differentiable functions on {o, T with compact support in
o, ™.

cK** 8y with integer k 2.0 and 0 S « < 1 denotes the

usual Holder space of continuous functions on Q. | |k+a

denotes the norm in Ck+a(Q), Ck’J(éT) with integers k, j 2 0

is the set of all functions ¢ for which all the 8§8£¢ exist

and are continuous on QT  for 0 = lql sk, 0sr=sj.

Ck+a,j+B

(@) with integers k, j 20 and 0 S «, B< 1 is the

subset of Ck’J(éT) containing all functions ¢ for which all

the 3§8§¢, 0 S lgql Sk, 0O Sr £ j, are Holder continuous with

exponents « in x and K in t. If

B - __4 ’ _ , o
($) = $yP t)GQTIdP(x, t) P(x’, t)l/lx x|+
(x’ ,t)eQT
Ilx-x°1<1
+ sup - {$(x, t) - $(x 't’)I/lf - t’lB
?x,t)eQT- ’ ’ ’
,t2)eQ
lt=t’1<1T
. ’ . k+ax, j+B =
we define the norm | !k+a,j+B in C (QT) by
8 .9
| ¢ . = sup ) qua LPx, © + § K* (0] 53 ¢).
k+a?J+B (x, t)EQ lqlsk Iql—

rsij



For the spaces of vector-valued functions, we shall use the bold-

facéd letters analogously.

2. Definitions and results.

Our definition of a weak solution of (#) is as follows.

' ‘ : ‘ 2 L2
Definition. Let u, € H, Bob€H and f €L (0, T; L ().

A prair of measurable vector functions u and B on QT is

called a weak solution of (%) if

’ ‘ 2 2
(i) uel®(0, T; HYAL (0, T; V), BelL”0, T; HOAL (0, T; V);

T
(ii) J {-(u, 8t®) + ((u, Vu - (B, V)B, &)} dt
0

T

= (u,, 9(0)) + [ (f, &) dt
0

I {-(B, 9,%) + (rot B, rot &) + ((u, V)B - (B, Vyu, &)} dt
o ‘

= (B,, $(0))

for all @€ Cy (L0, T); V).

Concerning the uniqueness of weak solutions of (%), we have

Proposition. There exists at most one weak solution of (%).

liv {u, B} is the Weak solution of (%), after a suitable

redefinition of wu(t) and B(t) on a set of measure zero of the

17
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o]
(o

time interval [o, Ti, we have that ueC(Lo, Ti; H) a

Be€ Cclo, T1; H).
For the proof of this proposition, see Temam [6, Chapter 3

Theorem 3.2], we omit it.

Our result on the existence of a weak solution now reads:

, v S )
Theorem 1. Let u, € V, B €V and fE€L (0, T; L (®)

2 2 '
with rot £f €L (0, T; L (R)). Then there exists a weak solution
{u, B} of (%) such that ueé Lw(O, T; VO>NC(L[O, Tl; H) and

2 2 ' X
BEL (0, T; H (R))NCCLO, T1; V).

We next proceed to our result on classical solutions. To
this end, we make the following assumptions on the domain 9‘ and

the given data u,, B, and f.

Assumption 1. The boundary 3% of @ consists of m + 1

sufficiently smooth, simple closed curves S§,, S;,..., Sm, where

Sj(j =1,...,m) are inside of S; and outside of one another.

Gunter [3, p.22] refers to the above assumption as ’’Case

J”
Assumgtion42. For some 0 < 8 < 1, u,¢ C1+e(§), B, € C2+8(Q)
. 1+8,0 = iq
and fecC Q). Moreover, u, and By satisfy the



conditions div u, = 0, div By = 0 1in &, u,+v = 0, By-v =0

on 9.

Our result on the existence and uniqueness of classical

gsolutions reads:

Theorem 2. Let the assumptions 1 and 2 hold. Then there is

a positive number Cyu = C*(Q, T, 'u0l1+8’ Ifl1+e’0) such that if
' 11 -
|Bo|2+e s C*, there exists a solution {(u, B, n} € C (QT)x
2 1 - 1 0 o
xC ’ (QT)XC ’ (QT) of (%), Such a solution is unigue up to

adding an arbitrary function of t to .

Remark. Taking B, = 0 in &, we may cover the result of

Kato [4].
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