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Two-points/spectral closures have contributéd much to the understand-
iné of the physics of turbulence. However, bécause of the complexity of
the closure equations, the application of the closures has been rather
limitted‘to homogenéoﬁs and'isdtrépic_tUrbulence, and the 'applicatiqn to
more realistic cases, 1.e., inhomogeneous and/or anisotropic cases has
been regarded foVbe difficult in practice. The principal difficulty is
associated with the convolution sums like fQ(p)Q(q)G(k)ﬁg(k—p—q) (in a
symbolic notafion), which arise from the nonlinearity of the Navier-Stokes

equations. The computation of such sums is in general quite difficult if



Q . .
the assumption of igfropy can not be used. In order -to make closures

applicable to realistc cases, it is therefore necessary to develope an

efficient method to compute such convolution sums.

Only few studies seem to have been done in this direction. Among them
are the 'pioneering works by Leslie(1973), Herring(1974) and Cambon et
al.(1881). 1In the ‘study of homogeneous anisotropic turbulence, they
expanded spectral quantities such as the energy spectrum Q(k) and the
response function G(k) around the isotropic state. By retaining only few
terms 1in such expansions, they could reduce the full complicated closure
equations to simpler solvable forms. Such a method may be efficient for
nearly isotropic turbulence. It is, however, not clear that it is also
efficent when the anisotropy is not weak. It is therefore interesting to
develope a method which is efficient not only for weakly but also for

strongly anisotropic cases.

Recently we have developed a method of computing the convolution sums
by using Fast-Fourier-Transforms. The advantage of this method is that it

enables us to directly compute spectral quantities on each discretized

vavenumber vector k, so that we need not assume the turbulence to be

nearly isotropic. Moreover, no preliminary analytical reduction, which

would be sometimes quite heavy task, is required.

.We applied this method to a closure for two-dimensional anisotropic
turbulence obeying the Navier-Stokes equations. Among various- closures; we

used here a Lagrangian renormalized apporximation (say, LRA) proposed
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ealier by one of the présent authors (Kaneda,1981). The reason of our
using the LRA is triple-folded; .

(1) The LRA 1is a deductive and.self—consistentvapproximatioﬁ which con-
tains no ad-hoc adjusting parameter or quantity.

(2) The equations of .the LRA are much simpler than those of the other
Lagrangian closures such as the ALHDIA and the SBALHDIA. The generaliza-
tion of ‘the isotropic LRA equations to. anisotropic and/or * inhomogeneous
cases is much easier than that of the TFM equations. |

(3) The LRA applied to -isoptropic turbulence has been found in good
agreement with experiments and numerical simulations over a wide range of
Reynolds number in both two and three dimensions. The LRA is competitive

in performance to the TFM.

We have made a computer code (say, A-Code) implementing the method
noted . above. In order to test the code, we made several runs for isotropic

cases and compared the results with those obtained by another code (say,

.I-code) which 1s efficient but only applicable to isotropic cases. The

agreement was found to be satisfactory. We have also made a direct numeri-
cal . simulation code, and compared the results of a few runs with those of
the numerical simulation by Herring et al.(1974). All of the results by
the  A-code, I-code and . our simulation code were in good agreement with

those of Herring et al.

Regarding the discretized mesh width:Ak in -the wavenumber space and
the time: interval At to solve closure equations, it was conjectured that

they may be taken quite larger than those to simulate random @ turbulent



field, since closures deal with only averaged quantities whose dependence
on k and the time t is milder than that of the turbulent field. In order
to test this conjecture, we made runs with various Ak and At. It was found
.that the results are quite insensitive to Ak, and the admissible Ak is
larger than  expected. Moreover, the comparison of these runs with and
without aliasing errors suggests that the aliasing is not very crucial.

These facts are helpful for saving machine time and memory.

We have then made simulation- and closure- runs of anisotropic
decaying turbulence without mean flow. An interesting phenomenqn found by
ﬁhe'simulations is ‘an over-relaxation of return to isotropy. It was found
that initially non zero( i.e. anisotropic) AE E«Qﬁ>—<u§> tends to zero at
early stage, but it then over-relaxes, i.e. changes the sign and the
deviation from zero increases with time at the later stage; AE‘ approaches
to zero not monotonically but oscillatingly. Such an over-relaxation is
well reproduced also by the closure computation (cf.Fig.l). 'By' the wvay,
such an over—relaxation' is also observed in the simulations of inviscid
case. We therefore think that the non-linearity of the Navier-Stokes

equations plays the key role in this phenomenon.

Figure 2 shows an example of the decay of vorticity components. The
closure result is seen to be in good agreement with the simulation. - The
>comparison of Figs.1 and 2 shows that the return to-isotroy is faster at
high wavenumbers. Since various gaphic facilities are now available, we
cén'get ihformations from various graphics. Figure 3 ;s an example of such

graph ‘ics for the response function in the wavenumber space, from which we
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can see immediately how anisotropic it is.

Finally we would like to mention two points;
(1) It 1is possible to extend the present method of computing convolution
sums to the case of non-uniform discretized mesh in the wavenumber space,
so as to acceralate the computation at high Reynolds number.
(2) The present method and our code can be easily generalized for the
other two-dimensional turbulent phenomena inclﬁding the Navier-Stokes
turbulence with linear mean flow and also -plane turbulence in geophysi-

cal fluid mechanics.
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Fig.1

Evolution of energy components Ex=<Z:ux(k)ux(—k)>,'Ey=<Z:uy(k)

" uy(-k)> and the total energy E=Ex +Ey (normalized by E(t=0)).
Solid lines are closure values(At=0.0075, Ak=3, RL=39) and
dashed lines are simulation values(one realization At=0'001'-d
Ak=1, R, =38). The initial spectrum is E(k,0)=1672/T v, (k/ky ) k,"
exp[—(3k§ + 0.3k; )/k: ] with v, =1.0 and k,=8.0, J =0.005.
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Fig.2

Evolution of vorticity components Dy =<§:k uyx (k)ux (-k)>, Dy=
<" k?uy(k)uy (-k)> and the total VOIthlty D= D,(+Dy (normallzed
by D(t=0)) of the run of Fig.1
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Fig.3

(a) Perspective view of the response function G(k,t,s) with.
t=0.225,s=0.
(b) Contour for G(k,t,s) with t=0.225,s=0.



