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Essential spectrum of linearized operator for

MHD plasma in cylindrical region

7717 & Z{. : ( KAKO, Takashi ; Saitama Univ.)
(3% 2 X 3D

§1. Introduction
Concerning the plasma confinement and heating problems in
the controlled thermonuclear fusion research, the linearized

magnetohydrodynamic (MHD in short) equation:
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[grad(yP(div &)+(grad P)-£)]

+ %[erot(rot(Bxg))—(rot B)xrot (BXE) ] (1.1)

plays an important role. Here §&=£(t,x,v,z), (x,y,2) € Q CZR3
denotes the Lagrangian displacement of plasma, and p, P and B are
the density, the pressure and the magnetic field of the given

equilibrium which satisfy:
grad P = %(rot B)xB (P>0), div B = 0 (1.2)

in Q@ with an arbitrary positive function p, where y and u are
positive constants which denote the specific heat ratio and the
magnetic permeability respectively.

In this i1lecture, we consider the above equation in the
cylindrical region sufrounded‘by~an infinitely conducting wall

df? and investigate the spectral properties of the force operator



K in (1.1) in some appropriate Hilbert space. Especially, we
treat the essential spectrum of K by means of the analysis of
it’s resolvent.

In §2, we give a special equilibrium which depends only on
the ‘ radial argument, and.then' make the Fourier decomposition of
the operator K and establish thevselfédjoine realization of the
decomposed operator by determining it's resolvent. The main
point is the adequate treatment of the boundary condition at the
magnetic - ‘axis, which ' has not  been fully analyzed in
mathematically rigorous fashion ' up to now. The 'SeCOhd order

differential operator E

A (see (2.13)) plays an important role in

the analysis.

In §3, we shall study the spectrum of the Fourier decomposed
operator and determine it’s essenfial spectrum using the well
knoWn theorem thatbthe‘ essentiai epectrumvis invariant under
" compact perturbations. We work on the resolvent and to treat
the (seeming) singularity et the mégnetie axis; we»introduce an
adequate diagenaiizafion of the operatdr (see (3.8)).> |
It is shown thet there are two types of essentiai‘séectra in the
negative (stable) part which correspond to the Alfven and the
slow magnetosonic waves, and there are only possible discrete
spectra on the positive (unstable) part, i.e. it excludes the
possibility of,the exfra essential spectrum for this case (c.f.
Descloux-Geymonat [31]). |

Finally, ip the last section, we  present some results on
further’,problems on the discreteness of the positive part of the .

spectrum for partially Fourier decomposed operaters. But the
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defailed proofs and discussions will be given in the forthcoming
paper.

Here we shall make some comments on the previous works on
this problem. The linearized MHD equation in the form (1.1) has
been 1long known (see Bernstein et al. [2]) and, in the case of
cylindrical plasma, Hain-Lust [8] observed that the eigenvalue
problem ~: KE=AE, can be reduced to the so-called Hain-Lust
equation (see the remark in §2.3 after the proof of Lemma 2.1.).
Later, H.Grad [6] investigated the spectral properties of K and
pointed out the existence of continuous (or essential) speetrum
in the stable part of K (see also Appert et al. [1]).
J.P.Goedbloed [4] studied the seme problem and also the
axisymmetric case and determined the essential spectrum by
somewhat heuristic arguments (see also [3], [9] and [11] for the
mathematically rigorous treatments of the problem). In [71],
Grubb and Geymonat treated the problem of the essential spectrum
for the elliptic system of mixed order in general situations
using the theory of pseudo differential operators which could be
applied . to the present problem of MHD. In [10], the present
author investigated the spectrum of K in the case of slab plasma
and obtained the mathematically rigorous results for the
continuous spectrum of K. For the general survey and other
~relateditopics, see [5], [12]1,[13] and [14]. Recently, Descloux
and the present author treated the approximation problem for this
cylindrical case with a magnetic axis [16]1, where’the‘expreSSion

of the resolvent given in this paper plays an essential role.



‘The. author wishes tp express his hearty thanks to Professor
T. Ushijima of University of Electro-Communications for his
invitation to this field of reseérch and also for his continuing
valuable comments and discussions. He also thanks Doctors T.
Takeda, T. Tsunematsu and S. Tokuda of Japan Atomic Energy
Research Centgr for thier instructive comments on this work.
Lastly, he expresses his best thanks to Prof. J. Descloux at EPFL
who pointed out the weakness of the original proof of Lemma 3.4

and made useful comments of this article.

§2. Selfadjoint realization of force operator
2.1. Cylindrical plasma equilibrium
Let . us find .= out the equilibrium  solution of ideal

magnetohydrodynamic system of .equations::

3 . D - DV .
5% +.div(pVv)=0, BE(PQ Y)=O, pBE=~grad P + jxB,

| (2.1)
9B

. .1
gf;—rot E,. div B=0, E+YxB=O,. J=Er0t B

with D/Dt = 3/3t + Vggrad‘ ( convective derivative ).

Here V is theivelocity field, J the electric current density, E
the electric field and other gquantities have been already
introduced in 81. Replacing yP by P and up by p, we assume y=1 -
from now on. The equilibrium is a static, i.e. time-independent,

solution of (2.1) with zero velocity field: Vv=0. Then (2.1) is



reduced to (1.2). If we linearize the  equation (2.1) in the
vicinity of a given equilibrium and introduce the Lagrangian
displacement vector g along the given velocity field V{(t,x,vy,2z)

as the solution of the ordinary differential equation:
25 (t,x,y,2)=V(t,E(t,%,y,2)+(x,v,2)), £(0,%,v,2)=(0,0,0), (2.2)

we obtain the equation (1.1) for g. " The other linearized

quantities can be expressed by ¢ in the way:

§B=-rot(Bxg), §p=div(pg) and §P=-(grad P).g-yP(div g).

Let ( be the cylindrical region with radius r, -and 24R

0 0

periodicity in z-direction:

2 1
’ \ZeSR ER/ZWRO}

2
a={(x,y,2)|x sy?aric r,
0

={(r,6,2)|0<r<r0, 0<p<27, ZES; }r

and - consider the equilibrium which depends only "on the radial
coordinate r. Then, the gradient of P is, if it -is not zero,
parallel +to the radial direction and by (1.2) the magnetic field

is perpendicular to this direction. Hence, we can write B as

B=(0, b(r)sing(r), b(r)cos¢(r)) o . (2.3)

in cylindrical coordinates, and (1.2) is reduced to

P’ (r)=-b(r)b’ (r)-1b(r)?sin’¢(r) (2.4)
which is intégrated as

: r : ‘
p(r)+%b(r)2=p(0)+%b(o)Z—I Ib(s)%sin®e(s) ds. (2.5)
0



This solution is still valid in the case that there exists a
point for which grad P = 0.

In the following, we assume that the equilibrium quantifies are
smooth so that b(r) and ¢(r) are smooth functions of r with
" b’(0)=¢(0)=0, and P(r) is defined by (2.5). - We also assume that

the pressure‘P(r) is positive definite: P(r)> P,>0. In this

0
case, we have

b(r):b(0)+%b”(0)r2+0(r3) ~and ¢(r)=¢’(0)r+0(r2). (2.6)

Furthermore, we .shall assume that the density p is also a smooth.
positive definite.function depending . only on r: p=p(r), and hence

p’(0)=0.

2.2. Fourier mode decomposition
Using the equilibrium defined in .§2.1, let us consider the
special solution of (1.1) with the form:

ime+ikz

E(t,x,y,z)=e nlt,r) : | (2.7)

where m and Rok are fixed integers. Then (1.1) can be written
in cylindrical coordinates as

2

paT;l = K(m,k)n (2.8)
ot ~ g

with n=t(nr,ne,nz) and the reduced force operator K(m,k):

K(m,k)=U"K_(m,k)U

¢



10 o\ /1 0 0
={ 0 cos ¢ sin ¢ K¢(m,k) 0 cos ¢ -sin ¢ . (2.9)
0 -sin ¢ cos ¢ 0 sin ¢ cos ¢

Namely, K¢(m,k) is the representation by the local coordinates

e ey and- ey, with radial direction e direction of magnetic

rl
field e,= B/|B| and the remainder direction e, =ey xe s and is

given as:

K¢(m,k)=
2 + b2sin2¢ 2 2 2,sin ¢

_ - . Y .
Br(b +YP)8r r(f——;i——) bk<|> 713r(b +YP)m¢ 2ib k——;r—- 18rYPk¢
.2 t,5:1.2,8in ¢ 2.2 .22 _
i(b +YP)m¢ar+21b k - m¢(b fyP) b k¢ | m¢k¢YP
. Cat ' ' 2
1YPk¢8r . —m¢k¢yP —k¢YP

with 3 _=3/3r=' and 8%T=13 r, (2.10)
r r rr

and k,=k(cos &)+ %(sin ) and =§(cos b)-k(sin ¢)..

¢ Mo
We can prove this formula after some tedious but Straightforward

calbulations ( c.f. Goedbloed [4]). As is easily seen, K¢(m,k)

is formally selfadjoint in the Hilbert space ]6=(L2(O,r0;rdr))3;

By changing the weight rdr to dr, the operator K,(m,k) is

¢
transformed  into /;K¢(m,k)/% = H(m,k) which is formally
selfédjoint in ]Z;(Lz(b,ro;dr))3; iFurther,‘to clarify rhé nature :

of a seeming singularity at a magnetic axis r=0, We chaﬁge the
variable r to. s defined by s=log r (or r=e®). The interval

[O,ro] is then mapped to the semi-infinite interval (-«, s,]

0



with so=log Tor and if we define the transformation W from ]%f to

Q% E(LZ(—w,so;ds))3 as

/

W: z(r)= (;i(r))i=1'2,3+.(W;)(s)=es 2;(e5)=((w;)i(s))i=1,2,3,

—_— _— *
it is unitary and we have as=w(/rar/r)w .

‘ * ,
Further, H(m,k) is transformed to WH(m,k)W =Y(m,k), and using the

notations; as=d/ds=', r=r(s)=es, b=b(r)=b(es) and so on, we have

Y(m,k)=
 (b%4yP). ,b’sin’ 2 b24yP) 2. sin | p
g AD +YB)y (R SIN by, yp2 55 (D aYP), _pyp%sin 6 55 ¥By
S 2 s r2 ) s r ¢ r S r ¢
2 .
. (b”+YP) .2, 5in ¢ 2.2 2,2 _
i T m¢as+21b k T m¢‘b +yP)-b k¢ m¢k¢yP
i YPy -m k yP ~k2yP
% Mo oY oY
(2.11)
We write ¥(m,k) as (g* 2) with 1x1 operator A, 1x2 operator B,
*
2x1 operator B and 2x2 operator C. Here and hereafter we use B

as the notation for this operator instead of the previous
notation for the magnetic field.
Now, the original equation (2.8) is rewritten as

2
3L oM 2ym,x07 20, g(s)=p" 2 (SWME UL (1)) (5).
ot .

Hence we shall investigate the operator p_1/2Y(m,k)p_1/25Yp(m,k)

in the following.



2.3. Resolvent and selfadjoint realization

We shall now determine fhe selfadjoint operatbr which
corresponds to the formal operator K(m,k) or !equivalently
Yp(m,k)ﬂ There is a cruéiél difference betWeén the case m=0 and
the cases m#0. When m=0, the function m¢(r) defined in (2.11)
is uniformly bounded on (0, ro]. So the coefficients of the -
operator K¢(m,k) are all bounded and if wg fol}owﬁ,thé sémg
arguments developed in the case of the'slab (br the flat torus)
plasma (cf. Kéko [10]), we can obtain thé’same resﬁlts imposihg
the reasonable boundary'éonditions on the rédial component which

are, in the case of the oper3£or‘K(m,k),

lim /Enr(r)=o and n_(r;)=0.
r-0

Therefore, we shall treat in this paber only the case m#0.
Further, we shall adopt the representation in Q?. Let d?&-be
the set of all smooth functions in lZ&._With compact support in
(-, so], then for sufficiently large positive A’the inverse of
Yp(m,k)-k in A?b is formally expressed as

(Yp<m,k)—x)‘1=

1

_1 , -1 -
1/2 Eyo “Eo (BCyp) 1/2
p P
1 x -1 S NS U U B -
"(CApB )E>\p CAp+(CXpB )EAp(BCAp) ‘ (2.12)
ith E N A 5
wi Ap‘AAp—BCApB , AkpzA" o and Cxp=C— P.
In fact, since (Yp(m,k)—A)_1=p1/Z(Y(m,k)—Ap)—1p1/2 and the

equation;



10

A)\p B ) £\ _[u
* C ' » v
B Ap g

can be solved, for sufficiently large X, by the calculations:

—c lvoc 1B e
and
(A, -BCI'B*)f=(E, f=)u-c'v
AP Ap’ AP Ap !
we obtain (2.12). Hence to define the operator Yp(m,k), we have

only to determine the bounded selfadjoint operator from the
formal operator in (2.12) and to show that it is one to one.

To this end, we shall prepare the following lemmas.

Lemma 2.1. For positive A, the operator E)\p has an
expreséion:
EAp= 3SF(s;A)BS—G‘s;A) ' (2.13)
where

F(s;A)zg%E%%% ’ N(s:k):(b2+yP)(Ap+w1)(Ap+w2)

2
¢

2

¢(k2+m$)] (2.14)

) (b2+yP) (Ap) +byPk :

and D(s;A):rz[(Ap)2+(k$+m

‘ ' |
with w =b2k2 (Alfven frequency) and w,=w Xe (slow
@1 ¢ : 2 152,y
+YP
magnetosonic wave frequency), and
b2sin29 !
G(s;A):Ap+wT+v >
2
x2p2sinZy .2 2b2km¢sin o 5 ,
B(s;: 1) (b Ap+wa1)+ 5(s7 1) (YP+b )(Ap+w2) ’ (2.15)

- 10 -



which becomes positive definite for 1large A Uhiformlvaith
respect s.

Further, as S>-, F(s;k) and G(s;A) have limits:

lim F(s;)) = 5(10(0)+w, (0))=F_, | (2.16)
“lim G(s;A) = Ap(0)+w, (0)=G_, . | | (2,17)

§+-

and these convergences are of exponential decaying order.

Remark. The expression (2.13) for EAp was first introduced
by Hain & Lust [8] (see also Goedbloed [4]). The operator EAp
has an essential spectrum [Gw,M), but as we shall see in the next

section, it doesn't cause the extra essential spectrum of the

operator Yp(k,m).

Lemma 2.2. For positive A, the . operator BCX; has an

expression:

Bc;é=([-iasrm¢(b2+yp)(Ap+w2)+2ibzkr(sin ¢)(Ap+ypk$)]/n(s;x),

. Ly 2 .
[—1asryPk¢(Ap+w1)—21b kr(sin ¢)k¢m¢YP]/D(s,A))
E(-iBSB11+B1O, -185821+820), A (2.18)
where Bij (i=1,2 3j=0,1) are all uniformly bounded in (-«, s ]

and converge respectively to 611(—w)=1/m and 610(—m)=621(—m)=

820(—W)=0 as s+-~ with an exponential decaying order.

Using these lemmas, we can define the selfadjoint operator E)\p

- 11 -
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with the domain
J(E, 1ZE? (<=, s))NH! (==, s)
Ap A ¢ 0 A A
which is invertible for sufficienfly large A. "Heré Hp(—Q,.so)
is thé Sobolev space of order p in (-=, so) ahd Hg(—w, so) is a

subspace of Hp(—m, so) which is the completion in Hp(—m; so) of
the set of all smooth fﬁnctions,with compact,supéort in (-=, sb).
We remark that JY(EAO) includes sméoth functions Which satisfy
the original boundary condition at Sqv and we heed not'impqse any
condition at s=-» or equivalently at the magnetic axis r=0.

Next, using Lemma 2 we can define the operator expressed by
the righthand side of (2.12) aé a .bounded selfadjoint operator.
for sufficiently lafge positive A which will be denoted by the
same notation (Yp(m,k)—A)_1. Here the operator E;l(BC°1} in
(2.12) should be intervpreted as the uniqgque bounded extension of
the oﬁerator restriétéd to the set of smboth functions with
compéct support in (-wo, so), and we use this kind of implicit
interpretatioh'kalso in the rest of this  paper. Fufther; the

null space of this operator is trivial, because

(¥ (m, k) -2 (f)=o

g
implies'
E_1f—E-1(BC_1)§=O S - a (2 {é)
at " Eap P00 B - S .
and
~(c71 M) (e (e 8 e (BT ) g=0 . ©(2.20)
Ap Ap Ap Ap Ap' T AP ®

- 12 -



1 _* h
and, multiplying (2.19) by (CA;B ) from the left and adding it to
{2.20), we obtain Ci;g=0 which implies g=Q. So, by (2.19),_we

have E;;f=0 and then £=0.

Summarizing these, we obtain the next theorem.

Theorem 2.3. For smooth equilibrium p, P and B defined in

§2.1 through (2.3) and (2.5), there exists a ﬁnique selfadjoint

operator Yp(m,k) which has the resolvent defined by the righhandi

* *
side of (2.12). Further, if Yp(m,k) is restricted into Xg
which is the set of all smooth functions decreasing rapidly as
s+-o and vanishing at Sqgr the restricted operator is essentially

selfadjoint.

8§3. Essential spectrum of force operator

In this section, we study the spectrum'of the forcg operator
Yp(m,k)‘defined ih §2;3. Espéciélly, thé‘essent;élﬂspéétrum'of
Yp(m,k) will be determined by the investigation of the resolvent

of Yp(m,k) in detail.

Lemma 3.1. For sufficiently large positive A, the operator

E™! is expressed as

-1 - 2 2.-
E. =F @ -
AP -9 (aS m-)

1F;B+ R, (3.1)

where g+g=1 and R, is compact, and ag-mz is a' selfadjoint -

- 13 -
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operator in L2(—w,sojds) with domain Hzi—w,so)(\Hgflw,so).

a B

Further, if F; and/or F; are/is replaced by F(s;l)_a and/or

F(s;A)—B, we have the same types of expression.

Lemma 3.2. For sufficiently large positive A, the operator

-1 .
asEApas is expressed as

-1 - T B . -1
3 Erpds= F(5i) [1+§AQG(S,A)+EAD[F(S,A)G(S,A)]’EADBS]

1 m4

a3y _m 2, -1
= F(s;A) + Ap+w1(0)

(32-n%) 7"+ Ry, (3.3)

where %XO is a differential operator BSF(S;A)ES - G(s}A) with the

Neumann boundary condition at Sg* asf(s0)=0,'and R2 is a compact

operator.

"Lemma 3.3. For sufficiently large X, the operator BSEA;1 and
-1

E as are expressed as

Ap

BSEA;1= f;“as(ag-mz)‘1F;B+R3, (3.6)

E,-lo = FP02n?) "o r%e], (3.7)
where a + B = 1 and R3 and R; are compact operatofs.

Now, using these lemmas, we obtain the expression of

(Yp(m,k)-x)‘1 as follows.

- 14 -
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Proposition 3.4. For sufficiently large A, the resolvent of

Yp(m,k) is expressed as
-1 v 0\ /[0 0 0 Ak 0

(Yp(m,k)—A) = v 0\> 0 —(A+w1p)_1 _1> ( \Y 0 +R.
0 01 0 0 ~(X+m2p) o 0 1

Here w1p'= w,/p and Wy, = w,/p, and the operators V and V¥ are

unitary in L2(-°°,so;ds)2 and R is a compact operator in‘%}.
Proof. Using Lemmas 2.2 and 3.2, we have after some

calculations that

1

clve'8%) e (BeTH)
Ap AD Ap A

p
-1 2 2.-1 2 =1
-(Ap+wy ) -(3 -m7) mT(Ap(-®)+w, (-=)) 0 ‘R,
0 (e
(3.9)
where R4 is. a compact operator. Hence, using the éxpression

(2.12) for the resolvent of Yp(m,k)‘together with Lemmas 3.1 and

3.3, we have

-1/2 =1 -1/2_
P (Y, (kym)-2)"p =
po1/2 (32 12y 15=1/2 p= 17232 02y (13 ym-TE1/2 0\
F;1/2(ias)m-1(ag_mz)-1F;1/2 -(Ap+w1)‘T-F;1/2(a§-m2)*1F;1/2 0
0 ‘ | 0o | —(rptw,) ]
i p k2
4 R, \ (3.10)

- 15 -
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with Fm=m—2(kp(0)+w1(0)) (see (2.16)) and the operator R

5 is
compact. This formula can be rewritten as
-1/ T -1 . -1/2
o™ 2 (v, (k,my 1) T/
(3%-m?) "m? (3%-m%)" 1 (i3 )m 0
-1/2 s s s -1/2
=[(Ap+w, ) . 1 e (Ao+w, ) L
1 . 2 . 2.-1" : 2 2.-1_2 1.
iog _m(3_-m™), -1-(97-m") m 0
s S S
o 1

with a compact operator R6'
Now we diagonalize the part of 2X2 matrix operator with
constant coefficiets in (3.11). ° To this end, we first write

this operator in the form:

2,

x a2 2.1 2 2 -1, . ‘
POd 0 _(Bs—m ), m (Bs—m ) & (1asm) POd 0
L . 2 2,.-1 2 2. -1 2
0 Pev 1asm(Bs—m ) —1—(Ss—m ), m 0 Pev
ok ;0 ‘ 76 ~ : ,o ' oo o . . ,
- Poa A ' _ J )(Pod : ) :
’ ' * o 2 2 -1 2 _2.-1, 2 *
0 gv 0 —[(Bs—m Yewe — (Bs—m ) Im 0 Pev
(3.12)
Here P and P are isometfic operators from JZ_ = L2(--°° s,3ds)
od ev p = 1S
to JZE L2(—W,W;ds) defined as
. : {'(1//§)f(x), X<
P . f = . o : o
od ~( VD E(5y-(x-54)), 15,
| (1/V2)E(x), . x<s,
P f = '
v (1/V2)E(s4-(x-5,), x>s

0o

- 16 -
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* *
The adjoint operator POd and Pev are then defined as

*x P l
Pog 9 = (1/V2)[g(x) - g(sy-(x-54))]
and

%* . —
P9 = (1/V2)lg(x) + g(sy-(x-s4)) 1.

Furthermore, the bperators (az—mz)* and (Bi—mz)** are defined as

2

the differential operators Bi-m in o with domains HZ(—W,w) and

Hi(—W,w) respectively, where H2(—W,w) is a set of functions in

H2(—w,w) with zero trace at‘so. ‘As well known, the second part
of the expression (3.12) is compact. The riéhtfupper component
(ag—mz);1(iasm) is a natural unique éxtension of the operator
with the same form restricted to some dense set of smooth
fuhctions. |

. Introducing the_unitafy operator in (JZ")Zvas

* . n
P 0 -iad m ' P 0"
Y= od * s (_82+m2)—1/2 ev
0 P m id s * 0 P
ev. ‘ s/ _ - od

* 0
e [Pev 2 “idg om 32,.2y-1/2 [ Fea 0 ) -
- 0 P m i3 (-0 g+m™) 4 0 P !
od s ‘ ev.

we can diagonalize the 2X2 matrix operator in (3.11) modulo

compact operator as‘follows:

aV (8 _?) Yo + R, VR7 is compact in (jz_)z. - (3.13)
o o0 o 0)?
Finally, if we remark that <6 1 > = - (0 1) and

- 17 -
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) (P:v 0 >< o 0 )(Pod 0 )
- 2 2.-1/2 iy a2, 2.=-1/2 :
0 Pog /\m(-3g+m™), "Ta_ -~ -i3 (-3 +m") ey O Pov

with o = (Ap+m1)f1/2 and
a(x), X<s
a X) = .70
ev!*) {a(so—(x—so)), xSy 1
we get the final results. In fact, from the results in

Appendix, the commutators

m(—agfmz);1/2aev - aevm(—a§+m2);1/2

and ‘ S . - :
2 2.-1/2. 2 2.-1/2

I (-9 +m7), e - 0 (-9 4mT) y

Tev ev's
are compact; since aev(x) is contihuous and tends to respective
constants as x+w.r This is turn admits to put a(x) inside of the
expression (3.13) modulo compact operators, and we have the final

expression (3.8). , ’ ~g.e.d.
From Proposition 3.4, we deduce the following theorem.

Theorem 3.5. The essential spectrum of Y (k,m) consists of

GA and OS with

O'A={)\| A%—w1p(r)l Oérérozf and Os={>\l A:—wzp(r), Oérgros . .

In particular, there is no positive (unstable) essential spectrum

of ¥ (k,m).

- 18 -
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Proof. This is a consequence of the fact that the essential
spectrum is invariant by the compact perturbations -and the

spectrum mapping theorem. ' - g.e.d.

§4, Some results on partially decomposed operators

So far, we have been concerned with the spectral properties
of Yp(m,k) which is the Fourier decomposed  operator ' of the
original one. Hence, summing up the spectrum of these operators
with respect to m and k and taking the closure of the union, we
have the total spectrum. - 1In that case, there will be some
possibility of - the accumulation of eigenvalues and the limit
points will be new essential spectra. If the point is in the
unstable part of the spectrum, it will be hopeless in the fusion
research to controle the whole unstable modes by using the
feedback devices.
| In this chapter, we show some partial results on this
problem which exclude the possible unstable essential spectrum
for the operator Yp(k) which is defined as the Foufier decomposed
operator with respect to thg z-direction k. Namely, we have the

following theorem.
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Theorem 4.1 The positive part of the operator K(k) defined

through the formula

k(e ®%n(r,8)) = e %x(x)n(z,0),

which 1is the operator with respect to the arguments r and 0, is

discrete under the same condition as before.

Proof. We prove this by showing that ,for any fixed positive
A0>0, there exists no eigenvaluevof the operator Yp(m,k) for
sufficiently large m in the interval‘(AO,w)° The eigenvalue
problem K(m,k)n:kn; whiéh is equivalent to. Yp(m,k);:kc, can be

reduced to the problem

Epr E—{BSF(S;A)GS - G(s;k)}? =0 (4.1)
at least for positive A. ~We can prove this by the same
calculation as that just before Lemma 2.1 in § 2.3. Since

BSF(s;X)Bs is a negative operator, if we can prove that G(s;A) is
strictly positive for sufficiently large m and for A>Ao>0, we

obtain the results. We write G(s;A) as

G(s;A) = Ap + Wy + I+ II + III (4.2)
where (see (2.15))
bzsin2¢);
2 14

r

I=(

- 20 -
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2,2

IT = - 4k%bZsinp(b%rp + YPw, ) /D(s;1)

and

IIT = [2b%km sin ¢(YP + b)(Ap + w,)/D(s;A)1’

¢

with AP
D(s;A) = r2[(Ap)? + (kZ+m2) (b%+yP) (Ap) + DPyPKZ(

-2 2
ot ™My k +m¢)]1

o

Then, after some algebraic calculations and estimates, we can

prove that
| T | < Clrp+wy)/|m| , - (4.3)
| 11 | < c/m®> , ‘ (4.4)
and
| 111 | < ¢/ |m]. (4.5)

Here, the constant C may depend on k and A, >0, dut does not

0
depend on m and A(>AO). The essential point to make those
estimates is to remember the~properties of equilibrium quantities
such as b, p and ¢, especially near the magnefic axis r=0 (s=-o),
From the estimates (4.3)-(4.5), taking m large enough, we can
prove the non-existence of eigenvalues of Yp(k,m)vin the interval

[Ar,®), which in +turn implies that the partially decomposed
0

operator K(k) has only discrete spectrum in (0,«). g.e.d.

Remark : Making use of thqxsame kind of estimates for G(s;A),
we can prove that the original operator K is itself upper semi-

bounded. The details will be given in the forthcoming papers.
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Appendix

In this appendix,  we present some results which might
already be known, concerning the commﬁtators of some operators
and their dompactness. First, we remark that the operator
(-32+m2)~" (we omit * in this section), 3=d/ds, maps

=L2(—w,W;ds) into H2, the . Sobolev space of order 2, and

2+m2)_1/2 maps J, into H1. If a(x) is a bounded function

(-9
which tends to respéétive cons't‘ants'oz+ as x‘tends to *x=, taking a
smooth function &(x) which also tends to o, as x tends to +o and

satisfies

A0 () = 1jnd " (0 = 0,

we have
(-32+m2) 24 (x) - a(x)(-32+m2)"1/2
= (-32+m?) 2% (%) - ¥ix)(-32+m?)" 12 | R,

Here ‘R is a compact operator by - the same reasoning as the proof
of Lemma-3.1. - Next, we remark the following formula (see Yosida

(151, p. 260(4)) .which can be proved easily by the Fourier

transform:
(_32+m2)‘1/2; 1 ? 1 (X + ( 32 2)-1))-1( 32 2)_1 ax
=w ) vx (A (=3%m -3%+m
=',}'{)7x(>\(—3+m)+1)—d)\
as an identity for operators in L. 'Especially, the integral is

the 1limit in operator norm in £L> of the integral on the interval

[§,-6] as 6§ tends to zero. Hence, calculating the commutator as

- 22 -



23

(~32+0%) "1 25 (x) - ¥(x)(-0%+m?)"1/2

-1
8 )
= lim 2 [ a=a%am®) + 1) TN/AGY (%) + 287 (x)/R0) X
60 ) , ‘

x(A(=-924m%) + 1)°"

di
and remembering the>compactness arguments- in the proof of Lemma
3.1, we can conclude that the commutator is a cdmpact operator

in L. Furthermore, using the same technique, we can prove that

the commutator

3(-3%+m2) V2§ (x) - ¥(x)a(-32+m?) /2
-1
§
= lim 1 [ o1 (/R0) (-(/30) 2eam?+1) T [V/REY ! (x) 4267 (x) (/XD) I
§+0 " § :

x(-/X2)%+ am?+ 1)7Tan - &7 (x)(-3%4m?) " 1/2

is compact.
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