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On the initial bouﬁdary value problem for the Boltzmann equation

Seiji Ukai #BRE) T o=

Osaka City University (KR P AR L)

1. Introduction
The motion of a gas contained in a vessel QI C R"is described by the

following initial boundary value problem for the Boltzmann equation;

(1.1) £, 4+ £V,f + a(x-ﬁ)'Vef - Q[f] ,
(1.2) vE = My'g,
(1.3) - fleo - £ -

Here the unknown f= f(t,x,£) is the density of gas particles at time t > O,
at the position x = (xl’XZ""’xn) € Q and’velécity £ = (51,52,...,§n) e .
(1.1) is the Boltzmann eguation, in which « stands for the scalar product in'v
Rn' V# = (a/axl,..f,a/axn) and similariy for Vf’ ‘while a(x,€) 1is a given
vector which is the external force acting on a gas particle and Q is a
quadratic integral operator in € describing the collision of articles. 1In
this paper we assume the cutoff interaction potential in the sense of Grad
[3].

The equation (1.2) is the boundary condition which describes the

reflection of gas particles by the wall 8Q of the vessel. Let n(x) be the

+
outward normal to 801 and define the trace operators ¥ by

' +.
(1.4) vy f= fls
: +
where

(1.5) st = ((x,6) € 8@™ | n(x)+£  0) (same signs).
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Clearly 1+f (resp. y £) describes the density of particles incident to
(resp. reflected by) the wall 80. Thus (1.2) is the reflection law

specified by the boundary operator M. Typical examples are ..

(1.6a) perfect absorption: .M =0, .
(1.6b) ~specular reflection: M1+f -_f(t,x,f—Z({-n(x))n(x)),
‘(1.§c) diffuse reflection:

MY'E = p(6) £(t,%,€') In(x) €' | a&'
: n(x)«£'>0

where p_(£) - (2“)-(n-1)/2T;(n+1)/2 exp(4|§|2/2Tﬁ),'T&‘being thé temperature
of the wall 3Q.
The aim of this paper is to discuss the local (in t) solvability of the

problem (1.1)-(1.3). To this end we shall first solve the linearized

probleh,

(1.7a) ft + €'fo + a(x,§)6V€f =0
(1.7b) ' ' yE = MyYE
(1.7¢) o f| f

t=0 "0 -

Denote the solution operator (semi-group) by U(t);
(1.8) , : f = U(t)f0
is the solution to (1.7). Then if f is a solﬁtion of (1;1)—(1.3), it solves

the integral equation

t
(1.9) ) f(t) - U(t)f0 + I U(t-s) Q[f(s)] ds .
0

Since we assume Grad's cutoff potential, this can be solved locally by the

successive approximatioﬁs described in [3], once U(t) is shown to exist as a
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uniformly bounded operator in some time interval [0,T] in a suitable family
of Banach spaces, see section 4.

As will be shown in section 3, (1.7) is easy to solve if |M| < 1, but
the case [M| = 1, which involves the important classical examples (1.6b) and
(1.6c), is delicate. So far, three different methods have been developed,
using the duality [6], the principle of limiting absorption [2] and the
monotonicity [4], respec-tively. Each method solves (1.7) in a generalized
sense. However it is not known in general whether or not the solutions
coincide with each other. Thus, the Qniqueness of the solution is open.
All the difficulty comes from the fact that the trace theorem associated
with the operator

(1.10) A= g—t + 6T, + alx,€)ev

e ’
is not compatible with the boundary condition (1.2) or (1.7b). This will be
described in the next section, and the duality method in section 3. The

result of this paper is reported in {8].

2. Trace theorem

We begin by studying the characteristic equation of (1.7a);

1, E_z, E_ iz
(2.1) ds > ds ! ds ’ !
f‘s=0 =t X's-O,'== X E's=0 = ¢
Putting y = (t,x,g), we write the solutiép as
(2.2) Y(s,y) = (7(s,y), X(s,y), E(s,y))
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Assume that
(2.3) " @ is a domain 1in kn, boundéd or unbounded, with piecewise
C2 boundary 4@ ;

(2.4) - a(x,§) =-V b(x) + a;(x,§) where
(L) b(x) € 02(5), with b(x) 2 1 (a potential bounded below).

.. 1= n ' :
(ii) al(x,f) e CC(AxR) with e-al - Vf'al = 0.
Furthermore, for any fixed T > 0, we set
D=0 xB&",
V=(0,T) xD, X =(0,T) xaa x R" ,
. ' B +
(2.5) s = (0,T) x S— ,
D' = (T} xD, D = {0) xD,

+  _+ +
AV~ = 37 U D™

Theorem 2.1. Assume (2.3) and (2.4). Then for each y e Vu 8V+ U av-,
»there exists a closed bounded interval.Iy - [-ti(y),t+(y)]{ ti(y) 2 0, such
that ,

(i) (2.1) has‘a uniquessolétion Y(g,y) on I; ,

(i1)  Y(s,y) € V for all s € iy,— Cem,.eten

(1is) v,y e ot

(iv)  t5(y) = 0 for y € V% (same signs).

Proof: Let y € V. Since a € Cl, Y exists at least for small |s|. Then
the energy,
(2.6) H(y) = Hx,6) = b + 2 €17,
is conservéd,

2.7y H(Y(s,y)) = H(y) ,
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due to (2.4). Since b(x) 2 1, this implies an & priori estimate. for Y, so Y

_can be continued as long as it remains in V. Since 7(s,y) is simply solwved

by 7(s,y) = t-s, and since 7 € (0,T) is required, the maximal -interval of

extension is bounded. At some s e,;ti(y), ¥ meets V. for. the first , time
as |s| increases, implying (ii). To prove kiii), w; put Y+ - Y(t+(y),y).
Obviously Y+ e.;I-or Y+ € (0,T) x 80 x kn. If the létter occurs, then )(+ -
X+(t+(y),y) € 8. Suppose 30 is smooth near X+; i;e., it is expfessed by

the equation ¢(y) = O near X" where ¢ € 02 with |Vx¢} = 1. Assﬁme further

$(y) <0 if x €0 and ¢(x) >0 if x € and note thereof n(x) =V ¢. X

Then we have,

+
dx +
dt {s=t (y)

ntx) -ty - v

_ _dé(X)

ds s=t+(y) =0,

whence (X+,E+) € S+ or Y+ € Z+. This proves thé (+) part of (iii), and
+
similarly for the (-) part. The above argument is also true of y € aVv,
+ , '
with t7(y) = 0, and the proof of the theorem is complete.

1

Recall A of (1.10) and let f € Lloc(V). If there exists a g € L1

loc

)
such that
(£,6) = - (8,19)

holds for all ¢ € Cé(V), we write g = Af. Here ( , ) means

(£,h) = j £(y) B(y) dy (dy = dt dx df) .
v

Note that the formal adjoint of A is -A by the assumption VE-a1 = 0. For £

= f(y), put £(s,y) = £(¥(s,y)). Then we can show



Lemma 2,2. Af = 3f/3s a.a. y€ V and s € Iy‘

Therefore if Af € Libc(v)’ then £ is absolutely continuous along

characteristic curve Cy = (Y(s,y) | s € Iy}, so that we can define
+ v

traces v, f of £ n 4V by the limits

(2.8) (1,6 () = lim BT ()+e,y)
- -0

‘ + +

for almost every y € V and subsequently for almost all Y € gV . We
show that these Y, are bounded operators. More precisely, define,
p € [1,=],

(2.9) u_ = (£ elPv) | af e LP(V)), |g], = [£] + ||Af]
p Py P

P | ()
* Poayt.
YI—> LY (av™; » day) )
where »
(2.10) p(y) = t+(y) + t'(y)',
In(x),€] dt do_ &€ , y e
do_ = X : .
y ds d¢ , . yeD

dax denoting the measure on 3{1. Note that p(y) < T. We can prove the

the

the

‘can

for

+ +
Theorem 2.3. For any p € [1,»], 4~ are bounded from Wp to Y; (same signs).

7

In the above the weight function p(y) which is not bounded away from 0

cannot be removed, so some authors have discussed traces only belonging to

+
Lgoc(zi; day) & Y;), [4], [8]. The above theorem was given in [6] for the

case a(x,£) = 0.

+
The space Wp is a nice space to solve (1.7a), but Y;-traces which are

natural traces for A are not adequate for the boundary condition (1.7b); 7+f

are required to belong to the space
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~+ P +; :
(2.11) Y; LY (Z7; de) ’

Ijifli,‘p - a‘yif"Lp(Zi'da N
Y

=t + .
but Y; g Y; if p € [1,o). Set

o

: +
Note that Y; -

-~ ~F
. W = {f
{(2.12) b N € wp ] 7if € Y;)

The following Green’s formulas are useful in the next section.
Theorem 2.4. (1) For any £ e,ﬁp, p € [1,o), we have

P ) + p-1
(2.13) |-y+f|+,p |1_f|_’p P Re(éf, |f§ sgn(f)) ,

where sgn(f) = £/|£]| (£(x) = 0), = 0 (£(x) = 0).

1 -1

(ii) For f € wp and g € ﬁq with p - + q = 1, it holds that

(2.14) (Af,g) + (f,Ag) = <7+f,—7+y>+ - <7_f,1‘g>_ ,

where
<¢,¥p>, = J é(y) ¥(y) do_ .
et y

Corollary 2.5. Suppose f € Wp’ pe[l,=). If 1,f € ?;, then v f € ?;, and

vice versa.
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3. .Linear problem

+ ;
Let us solve (1.7). Evidently vy in (1.7b) and fitmo in (1.7¢) should

be understood as
(3.1) v f = 4, f] f " £f(0) = 4 £
. v Y ’ -0 - _ s
+ zi ’t 0 ID

where 7, are trace operators defined by (2.8). We also write f(T) = 7+f’,+.
+ ) D

~F y +
Note that Y; -y~ @ Lp(D) where
+ + :
(3.2) YOF - P In(x)+6)| dt do_ag)

We set

Iely s = H°HYP,1 .

Il

e Il
Y @)

The boundary operator M in (1.7b) is assumed to satisfy
(3.4) _ M; YP'* 5 YP'7  is bounded with M} =<1 .
Let M* be the adjoint of M: If p € [1,»), (3.4) implies (FLQ‘;() o
o

(3.5) w*; ¥ " + ¥%'* is bounded with |M¥| = 1 .

For p = «», this is taken as an-additional assumption..

Let X > 0 fixed. Instead of (1.7), we solve
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(A+ M)f =0,
(3.6) v E = MyTE

{ £(0) = £, .

f is said to be a strong solution if f € ﬁp and solves (3.6) in the
LP.sense. Define for p € (1,=],

% ~ * - ‘ . .
W-tged 1 vg-MYg gm0, p gt -1

If f e Wp is a strong solution of (3.6), we see from (2.14) that
(3.7) (£,(A-N)g) = - <f,,8(0)>

holds for all g € ﬁ;, where
<top> = [ 4% axac .
D

Definition 3.1. Let p € (1,o] and £ £ L ®. feL ®) is a weak

solution of (3.6) 'if (3.7)‘holds for all g € w;.

Theorem-3.2. Let X > 0 and p € (1,»]. Under the assumptions (2.3),

(2.4), (3.4) and (3.5), a weak solution exists for any f, € LP(D).

0
~%
Proof: Since p € (l,»], we have q € [1,). Apply (2.13) to g € Wp to
deduce

(3.8) lel e ] = clia-ngl
Lq(V) q Lq(V)

This indicates that the mapping g - h = (A-))g is one to one so that
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2(h) = - <£,,g(0)>
'is a well-defined functional on thé.spacé
z h A-2 e @)
p = f(-)glg‘ "D

Clearly, Zp is a 1linear subset of Lq(V); and (3.8) also shows that £ is

bounded,
L (‘)

By the Hahn-Banach theorem, therefore, £ has an extension Z to LI(V), and
then, by Riesz’ representation theorem, there exists an f € Lp(V) such
that Z(h) = (£f,h) holds for any h € Lq(V). Restricting h in Zp’ this £
is seen to be a desired weak solution.

Noté that this proof doés not work in Ll(V) but it does iﬁ L?(V)* =

ba(v) if M| < 1.

Theorem 3.3. If |M] < 1, the weak solution of Theorem 3.2 is a unique

strong solution. And it satisfies

(3.8), [E3 TP 1 oY TS e 3 IR FN
L (V) ’
or
P p . P TP P
(3.8), Ap"f"Lp(V) +JEID + a-M® Il | = 155
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according to p = @ or p € (1,w).

This is proved using the following characterization of the weak

solution.

Theorem 3.4. Llet f € LP(V) be a weak solutioh. Then,
¢9) fe Wp and satisfies (A+A)f = 0.

(ii) £(0) = £, € LP(D).

0
(iii) Let xe(y) be such that Xe = 1 (p(y) > €), =0 (p(y) < €), and

set f€ - xef. Then as € = 0,
v E -MyY'E +0 in¥YPS
€ €
‘ *
weakly (p < =) or weakly (p = =).
Corollary 3.5. A weak solution f is a strong solution if f € ﬁP"
Proof of Theorem 3.3: Let f be a weak solution. For the case p = «,

since W_ = ﬁm? f is a strong solution. By Lemma 2.2, we have a(eAslfl)/as =

eAS(A}A)f = 0, and hence

+ -
A My £(vhy ) = e Dy 27y

Taking the supremum over y € V,

e, L MED, s maxclEcO ], IvEl, O

@, -

Since vy f = M7+f and M| < 1, we get (3.8),-

-11—
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For the case p < + =, put g _ - 7-fe-My+f€, which are uniformly Eounded

in Y?'7 for ¢ > 0, due to Theorem 3.4 (iii). Since |M| < 1, we have

A

"¢ |IP " P
le I8 . = il Be M, + Be

+e P
(1-8) [|v fcﬂp’+ +C,

A

with some §,C > 0 independent of ¢. This and (2.13) then give

P +o 4P p p-1
3.9 e I + sl IF L < I5l7 + ¢ + ple 170 N p

But (A+A)f6 - xe(A+A)f = 0 since Axe = 0, so that passing to the limit
¢ » 0, and by Theorem 2.1, (3.9) shows that'7 f+e Y T; Hence f is a strong
solution, thanks to Corollaries 2.4 and 3.5. Now (3.8)p follows from
(2.13).

The case M| = 1 is hard to prove the existence of a strong solution.

Instead, we will show the

Theorem 3.6. Even if ||M|| = 1, there exists a weak solution f € LPvy,

p € (1,o], satisfying
3.10 g f(T < |f .
(3.10) lel, < Il
Proof: Owing to Theorem 3.3, the problem (3.6) with M replaced by «M,
« € (0,1), has a unique strong solution fx. By (3.8) (with "Mﬂ = k), there

exists a subsequence such that .as k = 1,

£+ £ inP(V), £(D -~y in LP(D) ,

—12—
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Veaklyv (p <+ ) or weakly* (p - w?.v It'is‘not hard tec see that this limit

f is a yeak solution and f(T);— Y. Then_(3.iO) follows from (3.8), going to

the limit. ’ a - | .
However, the uniqueness. of thexweak solution is not known without

further conditions on O and ME (2].

A

Note that if f is a (weak) solution of (3.6), then e tf is a solution

of (1.7), i.e., (3.7) for A = 0, and (3.10) holds also for A = 0. Since T
may be arbitrary (even negative), we can define the operator U(T), by
(3.11) U(T)f0 - £(T) , -0 < T<o
This is the operator desired in (1.8).

Theorem 3.7. If P € (1,o), U(t) is a Co-group on Lp(D).

This is not the case for p = «. For other methods of constructing
U(t), see [2], [4]), [8]. Note that in order to solve the nonlineér problem
(1.9), the L”-solution operator U(t) 1s required, in contrast to the

transport theory of [4], [8], in which the Ll-solution is discussed.

4. Nonlinear problem.

Now (1.9) is solved by the contraction mapping principle in the space

4. 1) X, = UE = £ | s, gE € LT

where D is as in (2.5) and Pa,B is the weight function defined by

P g%, 6) = exp(ali(x,©)) HEx, P2,

=13 —
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with H(x,£) given by (2.6). Formula (4.1) is a Banach space with the norm
bl 5= oy ol . -

@ TeB N0y

First, we shall discuss U(t) of (3.11) (fo: A =0) in Xa 8 Putting g

=7, ﬂU(t)fO’ we see that since Apa = 0 due to (2.7), g solves

B
Ag = 0 inV ,
- + +

(4.2) v g = Ma,ﬂ7 g on X ,

g(0) - g, on D,
where
(4.3) Moo= Ml

' a,p " Pa,fa,p

and gy = pa,ﬂfO' Therefore, if Ma;ﬂ satisfies (3.4) and (3.5) for p = o,

(3.10) gives Hg(T)Hw's Hgonm, or equivalently,
(4.4) lucergol, 5= 150l 5 -
Next, since we assume Grad’s angular cutoff potential it holds [3] that

2
(4.5) lQteil, 5., = S, plERS 5

for any a >0, = 0. Here vy € [0,1] is a constant specific to the

potential, while Ca 8 > 0 depends only on a,8 decreasing in «, and Ca -0

B
(¢ » @), » » (@ + 0). Note that if y > 0, Q is an unbounded operator on
Xa 8 and (1.9) cannot be solved by successive approximations, due to the

loss of weight.
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In ordéf to control this unboundedness, we vary ar with t. Then the
integration in t in the last term of (1.9) plays a role of the smoothing

operator. To see this, define the operator No by

t
Nolt] = [ uce-) atEs)) as
0
and put T = a/2x and

1€, . g = sup_ [£(B)]

0<t=<T a-xt,p -

Lemma 4.1. Let a > 0 and # 2 0. There is a constant C0 = 0 such that

for any « > O,

% 2
4.6) INEN g o 55 o2 THENNZ ¢ g

holds, if (4.4) with a replaced by a-xt holds for any t € [0,T].

Proof: For O < s < t, we have

-1 -1 o (E-S)H /2

pa—ns,ﬂ-v - pa-nt,ﬂ

Therefore by (4.4) and (4.5), both with o replaced by a-xs, we get

t
ERGIOIE jo e (-9 1/ 2)q1£¢0) 1|

Pa-xt,B a-ks,B-vy ds
t
-k(t-s)H v/2 2
< Jo e H Ca-ns,ﬁ"f(s)"a-ns,ﬂ ds

—15 —
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S
sc . [ [Femnte-sr 12 2
= a2 Io, N a) sy,

The last integral is majorizédﬁby anH'1+7/% x Lfor v € [0,2], whence
(4.6) follows with Co = Ca/2,ﬁ'
Define the operator N by

N[f] - U(e) £, + Ny[£] .

Then to solve (1.9) is to find a fixed point of N. Let Ba be a ball
{f | I'lf'lla,n,ﬂ < a). For f € Ba’ (4.4) and (4.6) give

’ S 2
“r NI g = Mgl g+ 7 2 -

Choose « > 0 so large that d = 1~4C0||f0|[u ﬂ/n 2 0. Then set a = x(l-Ja)/2C0
which is the smaller root of the quadratic equation (Co/n)az-a+"foua g =0
With this choice of a, (4.7) indicates that N maps Ba into itself. Further,

since Q is quadratic, it follows from (4.6) that

C
|IIQ[f] ) Q[g]Illa’K"ﬂ = —;9. ||!f+g|ll,a;"ﬂ Illf-gilla,n,ﬂ ’

which is majorized, if f,g € B_, by p'||f-g]||a,n,ﬂ with p = 2Cja/k = 1-]d
< 1. Hence N is a contraction mapping on Ba’ having a unique fixed point £

€ B_. Note that a < 2"f0"a,ﬂ' To summarize, we proved

Theorem 4.1. Let a > 0 and 8 = 0. Assume (2.3) for Q and (2.4) for

a(x,€). Further, suppose M is such that for any a' € [a/2,a], Ma, 8 of (4.3)
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satisfies (3.4) and (3.5) for p = =, Then for any fo € xa g’

x > 0 and (1.9)fhasfa.dnique:solution for 0<t=<T=a/2x satisfying

there is a

HIEH, o p = 20500, 5 -

Note that if M is given by (1.6a) or (1.6b), then Ma ﬂ_ M and satisfies

?

(3.4), (3.5) for any a. In the case of (1.6c), we see that Ma then

,ﬂ

satisfies then only for a = T, so the above theorem does not apply.

However, solutions can be constructed by the method of [1].

—17—
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