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THE DISCREPANCY OF SEQUENCES AND APPLICATIONS

(Abstract of a survey lecture)
Robert F. Tichy

Technical University Vienna

Let (xn)Oo denote a sequence of points in the s-dimensional

n=1
uniteubeUs=[O,1)s. We are interested in the distribution
behaviour of this sequence in U (xn) is called unlformly
distributed (u.d.) if the number A (x +I,N) of p01nts X
(1snsN)contained in an arbitrary s-dimensional interval

IcU is asymptotically equal N times the volume A(I) of I (N»w),

As a quantitative measure for the distribution behaviour we

may introduce the discrepancy

- A(D) |

A(xXp,I,N)
(1) Dy (x )= sup neos
%)= sgp| 2net

For an .arbitrary sequence (yn) of points in IR® we define
DN(yn) to be the discrepancy of the modulo 1 reduced sequence
({y }) One of the startlng p01nts of the theory of u.d.
sequences is the 1nvest1gat10n of the dlstrlbutlon behaviour
of (no), a irrational (Krohecker‘s approximation theorem). A
systematic treatment of the subject was initiated by H. Weyl
(1916) . Today there exist two classical monographs: one by L.

Kuipers and H. Niederreiter (1974) and one by E. Hkawka (1979).
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1.. SPECIAL. SEQUENCES

One basic problem in the theory of u.d. sequences is to give
‘estimates for the discrepancy of special sequences. For (na)

such estimates are well-known and classical, e.q.

14

if o has a bounded contlnued fractlon expan51on, and the
estlmate is essentlally best p0531ble. In some papers (ef.’a
jOlnt paper w1th G. Turnwald in Journal Number Th. 1987) I haye
been interested in sequences related to the sum s(q n) of g- ary
digits of the positive integer n. Wevconsider~the sequence
(YS&Urﬂ?;O , where x is of finite approximation type 7 i.e.

for every >0 ‘there exists a constant €>0 such that

(4) hx| 2_S
for all positive integers h( | .l denotes the distance to the

nearest integer).

THEOREMS Let x be of finite approximation type n. Then for

every £>0.

(g,x,€)
(logN) 1/42 €

for all integers N>1. If x is not of approx1matlon type n' for.

any n <n then for every s>0 and 1nf1n1tely many N

1

- Dy(xs(qin)) 2 ,
B (logN)’/ZZ’:€ ’

Furthermore for every irrational x and 1nf1n1tely many N

c' (4, x)

D (xs(qg;n))>
N _(1OgN)1/2



The maine tool for the proof are two general inequalities, namely

the inequality of Erd&s-Turan and Koksma's inequality.

2. IRREQULARITIES OF DISTRIBUTION.

The theory of irregularities of distributions answers the
question how bad the distribution of N poihts may be in a
certain region in the best possible case,_i.e. we ask forylower
bounds for the discrepancy. Starting point of this theory was a
problem of Van der Corbut (1935) who conjectured | |

(5) lim sup : NDN(xn) =00

N>oo

This conjecture was proved by Van Aardenne ~ Ehrenfest. K. F.

Roth (1956) improved the result to the estimate

(6) | Dy(x )2 cv/IogN

for infinitely many N and W. Schmidt (1972) gave a final

solution with the best possible estimate
(7) ND (x,) 2 c logN

for infinitely many N.

In 1987 thére appeared an excellent monograph by J. Beck and
W. Chen on the theory of irregularities of distribution
(Cambriage Uniﬁersity Press); Both authors have h&wily’influenced
this theory and theykare mainly interestedbiﬁ thé distfibution
behaviour of points’in special given regions (eg. circular
discs, on spheres etc.) As an example we consider a set
w={u1,...,uN} of N points in the circular disc D of unit - area

assigned with the weights a; with
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> +o.t0 =T,
;2 0 5, o N 1

For each disc - segment S(i.e. an intersection of D with a half-
plane) we define
(8) Dy (w3 S)_‘Iu s a,-u(s) |

with the usual.area/#JS) of the segment S. We set

(9) - A(N)=wi8f sup DN(w;S).
_ i S ; .
Then my Ph.D. student R. Winkler obtained in his thesis for

Sufficiently large N and arbitrary e€>0:

3

(10) A(N)> N4 ¢

This generalizes J. Begk's result for the welghts Oq=ae o =0=

and the estimate (10) is essentlally best possible.

3. WEIGHTED MEANS.

It is an easy exercise to prove that the sequence ((logn) ),
n>1 . is u.d. modulo 1, but (logn) is not u. d. mod 1. In 1953 the
Japanese mathemat1c1an Tsuji generallzed the deflnltlon of u. d.
sequences such that also sequences of very slow growth can be
treated, The idea is to con51der a general weight sequence

P=(pn) » P,>0 and the discrepancy-
' N

(11) Dy (P,x )= supi X pn1I({Xn })—A(I)’
I n=1" " .

3

),

where P(N)=2Np and 1ITdenotes the characteristic function of
n=1 | ' _

the interval I. The sequence (x,) is called P-u.d. mod 1 if"

DN(P,xn)+O for N+«, Tsuji proved that (logn) is P-u.d. for

Pp= T - In several papers (some of them jointly with H.



(12) £(z)=z"

Niederreiter) I investigated the weighted discrepancy (11).

In the following we conside;'the very impo:tan;vcese(of the
harﬁonic mean p¥(%) ana give an application to thertheory of
power series. The qﬁestion is to construct a power series which
is uniformly convergeﬁt on the,circle'of cenvefgence but not
absolutely convergent at any point of this circle. Thus the
circle of convergence is the natural border: an analytic
continuation beyond this circle is not possible. We consider the
power .series . ;

2 . _2milogn

n=2 nlogn

and set z=e21Tle (6€IR), since the circle of convergence is |z|=1.
Obviously f(z) is hot%absolutely.convergentvfor any z with |z|=1.
Furthermore we have by Abel's‘summation‘formula (xk=6k+iogkf

1 1
;Ii (logn 1og(n+1)

M+L e2Tri(8n+logn)
|2
n=M n logn

21 oy
7 £M1X
=1k K

(13)

Now it can be shown that the sequence (xk) is u.d. mod 1 with
respect to the harmonic mean. The proof of this result immediately
yields the estimate |

B 2mix, | 1-a
|z K e k| = 0(log "n)

(14)

with O<o<1. From this it follows that the sum (13). can be

estimated by
1

ﬁ a(;ogn)7+q .

Hence f(z) is uniformly, convergent on. |z|=1.
Further applications of u.d. sequences with respect to weighted

means are due to P. Schatte and K. Nagasaka: they investigated

._kg__



in detail Benford's law - a statistical law for the distribution

of digits of random numbers.

4. APPLICATIONS TO NUMERICAL ANALYSIS.

The basic tool for these applicatiohé is the inequality of

Koksma-Hlawka:

N
(15) | T f£(x)) - .../ £(x)da|< V(£)Dg(x )
n=1 Ug

Z=

for every function f of boundéd variation V(f) in the sense

of Hardy - - Krause and an arbitrary ‘sequence (xn) in Ug- The
s~dimensional integral is approgimated by a sum over a sequence
of N points with small discrepancy. By this method one obtains
the same order of convergence as by summing up over all lattice
points with mesh-width % , but one needs not so many points.
Of course, it is very important for this method .to determine
sequences with small discrepancy and which can be easily

computed. There are two general methods: The first one is to use

linear recurrences mod m, i.e.

yn+s=a1y-n+s—1+a2y ces ta y

n+s—-2 s*n

over va For special parameters a cer@gy me€Z the sequence

17"

Yn Y,. Ytae _ s
(—%, n;1,...,—£i§—l)ﬁ=é has a discrepancy<<ligﬁml~ .

This method was studied in several papers by Niederreiter. The
second method is the method of good lattice points which has been
developed inaependently by Hlawka and Korobov; see the

monographs by Hua-Wang (Springer 1981) and Korobov. This method

makes use of a lattice point gEﬂf such that the sequence

37
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m-1
J
(nm)n=0
(logm) S
is of small discrepancy, i.e. its discrepancy is —-—%——~
In several papers I have given applications of this method
to the numerical evaluation of Fourier coefficients and to

the numerical solution of partial differential equations.



