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A Note on the Hilbert Irreducibility Theorem,

the Irreducibility Theorem and the Strong Abproximatioanheorem
By Yasuo Morita

Introduction

Let k be a finite algebraic number field. Forvan&
irreducible polynomial f({,z) in k({)Ix]1 , let Uf,k denote
the set consisting of all elements tq € k such that f(to,x)
is defined and irreducible in k[x] . A subset of k of this
form is called a basic Hilbert subset of k . Further, an
intersection of a finite number of basic Hilbert subsets of Kk
with a non-empty Zariski open subset of k: is called a Hilbert

subset of k

In this paper, we shall prove the following theorem:

Main Theorem. Let Q = Qk be the set consisting of all
primes of a finite algebraic number field &k , let g be an
element of Q , and let S be a finite subset of Q - {9} such
that Q-S-{g9} contains only non-archimedean primes of k . Let
€ be any positive number, and for any p € § , let ap be any

~element of k . Then, for any Hilbert subset H# of k , there
exists an element o € H such that
lotmt | < & for any p € S , and

pp

Ialp <1 for any p € Q-S-{qg} .

Clearly, this theorem shows that the Hilbert irreducibility



theorem and the strong approximation theorem for  k is
compatible. It is easy to reduce this theorem to the well-known
Hilbert irreducibility theorem if S contains only non-
archimedean primes (in particﬁlar, in the function field case),
but it seems non-trivial if S <contains archimedean primes. It
should be also noted that this theorem does not follow from the
usual Hilbert irreducibility theorem with the density condition
(cf. e.g. Inaba [1]), because

{ o € @k ; locl1 <t ., lo-o, | < g (i¥l)}

‘m ?’lw i‘m

Coa €0 5 dal, <t (i21) )

lim

tow
for a fixed € > 0 if [k:01 > 1 , where @k denotes the ring
of integers of k , and the | ‘i » denote the archimedean

primes of k . We shall prove the main theorem by modifying an

argument in S. Lang [21, VIII, §1.
§1. Hilbert sets and rational points of algebraic curves

Let k be a finite algebraic number field, and let H Dbe
a Hilbert subset of k . We assume that there exists a Zariski

open subset O of k such that O n H is an intersection

n
oOn (n Uf\ k) of a Zariski open subset O of k and sets of
i=1 "4’ ‘

the form Uf P where fi(t,w) are irreducible polynomials in
i’

k(t)>[x] . Here, by changing the above Zariski open subset O if

necessary, we may assume that the polynomials’ fi(t,x)' belong

to k[t1[z]l , and they are irreducible in kI[t,z]

" Let f(t,z) be one of the Fit@ Gi=1,2,...,m) . Let
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k(t) be the algebraic closure of k() , and write

T . , _
fet,z) = a¢ty W (z-atp ( a(t) € k[t1 , o, € kc<ty ) .
h=1

Let f(t,z) = g(z)h(x) be a factorization of f(t,x) €
k(t) [zl in k() [zl . Since fet, is irreducible in
k(t)lzl , g(xr) does not belong to k(&)Iz]l for any such

factorization. In other words, for any such factorization
F(t,z) = glxYh(x) in k(t)Ixl , there exists at least one

coefficient ¥ of g(z) such that“y € k(t) but y £ k)
Let € = C(f,9,h,y) denote the plane algebraic curve

Spec k[f,y]l . Then the function field k(C) = k(t,y) of ,C is
a non-trivial extension of k(&)

tO

Let be an element of the above Zariski open subset O ,

and let B(to) be the specialization § —— to . We extend

this specialization to a k -valued place of k(f) , and denote

it by the same symbol ﬂ(to) . Let fit,z) = g(xYh(x) in

K(DIz] . let p = deg g(z> , q = deg h(z) , and let b(t) and
c¢(f) be the coefficient of P of g(x) and the coefficient
of z¥ of A , respectively. Then g(x) and h(Z) are
ﬁ(to) -finite if b(L) , ¢(t) and the ®, are %(to) -finite.
Since this assumption excludes only a finite'numﬁer of elements
of O , by changing O if necessary, we may assume that g(z)
and h(z) are ﬁ(tO) -finite. Thég this factorization induces

another factorization f(to,m) = go(w)hp(w) in kl[zl .

Put yO = ¥ (mod %(to)) . 1f this factorization f(to,x),=



go(m)ho(m) holds in k[zl , yO is an. element of &k . Hence

the pair: (to,yo) gives a k -rational point of C

For any algebraic curve C defined over k , let C(k)
denoté the set of all k& -rational points of Kk . For any"
non-trivial k -rational function on € , and for any subring
kR of k , we‘pﬁt’ ,

0

O ¢R;no PecCk satisfies tP) = t° ).

Ut,R(C) = {t |
Then we have proved the following theorem (cf. S. Lang [2],

viii, §iy:

Theorem 1. Let H be a Hilbert subset of Kk , and let ¢
be a transcendental element over &k . Then there exist a Zariski

open subset O , a{finite number of elements y(i) (i=1,2,...,M)

of k(f) such that y(i) £ k({) , and the plane algebraic
curves C(i) = Spec k[t,y(i)1 (i=1,2,...,M) satisfy

M
ONnH=0n(n Ut k( Gy

t=1

§2. Proof of the main theorem

Let &k be a finite algebraic number field, let Q = Qk be
the set of all primes of k , and let g ©be an‘element of Q
Let S be a finite subset of Q - {9} such that Q-S-{q}
contains only non-archimedean primes of k , and let

R = {a€k; lol ;< 1 for any p € Q-S-(a} ) .
Then R is a normal ring which is finitely generated over Z

Let & be a positive number, and let ‘ab (p €5 be elements

11
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of k . Hence the notation and assumption are as in the main
theorem. We use the strong approximation theorem for &k , and
take an element B8 of R such that

lB-apl < e/2 for any p € S

Let ¢ be a transcendental element over k , and let ¥

be an element of k() such that ¥ € k(t) , let C =
Spec k[t,yl , and let U, ,(C) and U, ,(C) be as in §1. We
t,k t,R
assume that this plane algebraic curve € 1is one of the C(i)
(i=1,2, ...,M) of Theorem 1.
If C 1is not absolutely irreducible, then there exists an
algebraic extension k over k and an absolutely irreducible

1

algebraic curve C1 defined over ki sdch that k1 # k , and
such that the set C(k) of all k -rational points of C is
contained in the intersection Cl(kl) n Clq(kl) of Cl(kl) and

its conjugate Clo(klo) . Since C1 #Z Clo ) CI(E;) N CIO(EI)
is a finite set. Hence C(k) c Cl(kl) n Clo(klo) is also finite.
Hence the complements of Ut,k(C) and Ut,R(C) are also finite
sets. Therefore, to study R - valued points of the Hilbert set
H of the main theorem, (by replacing the set O ifvnecessary;)
we may assume that C is absolutely irreducible.

If the genus g(€) of C is not smaller than 1 , then it
follows from the Siegel theorem that the set Ut,R(C) is a
finite set (c¢cf.e.g. Lang [2], p.127, Theorem 3). Therefore, to
study the Hilbert set H of fhe»main theorem, we replace the |

Zariski open subset O 1if necessary, and disregard such curves,

Note that, by the Mordell conjecture proved by Faltings, the



complement of Ut,k(C) is a finite set if g > 1
If C has no -k -rational points, then 1Ui;k(C) = k
Hence such curves make no trouble to study # . Hence we assume
that the genus of € is 0 , and that € has at least one
k -rational points. Then k(C> ia a rational function field.
Now we use Neron's trick and study a certain subset of

Ut R(C)' more closely (c¢f. Lang [2]1, p.144).

Let ¢,y ,C, B etc. be as above. Let U Dbe a

1}

transcendental element over k(C)

integer = 3 , and put f(u) = ub + 8 , €' = Spec klt,y,ul

kt,y) , let 1 Dbe an

/(Fewy-t) , % = u (mod f(ud-t ) € kI[t,y,ul/(fw)-t) . Let

C and C' be the complete non-singular models of € and C' R
respectively. Then there is a natural covering map
Rt C' 3P = (t,y, ) — (t,y) =P €C,
and P' € C'(k) if and only if P € C(k) and U € k . Hence
¢0

Uy p© = ¢ t° € R s no P e C(k) satisties tP) = t°)

> fky N Ut,R(C)

0 0

= {t €R; t% = 7% with a certain u® € &
and no P € C(k) satisfies ¢€(P) = ¢t~}

Fiky n { tO € R ; no P' € C'(k) satisfies ¢t(P') =1

H

Ftky n Ut,R(C')

Now we assume that there exist at least three &k -rational

points: P of C such that t(P) =8 or o , Let P

be all such points of C . We assume that [ is prime to the
degree . [k(C):k(t)>]1 , and that 1 1is prime to the ramification

indeces of these points. It is obvious that this condition can
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be satisfied with a suitable 1 for-all C = C(i) (i=1,2,...,4)
which satisfy our assumption. We claim that the genus g(C') of
k(C') - is greater than 1 , and hence such curves cause only.

finitely many exceptions.

In fact, let k be the algebraic closure of k . Since

ﬁl = ¢ - B, the prime divisors of E(i) corresponding to the

points t =8 and t = » ramify fully in k(t) b /k(t) . Hence
the ramification index in k(&)(¥)/k(t) of any prime divisor of-

k(t)(@) which is over ¢t = 8 or t = » is exactly L . On

the other hand, the ramification indeces of 3P1 , P2,~... for

k(C>/k(t) are prime to 1 . Since k(C') = k(C)(W) , the
equality [E(C'):E(C)]'= ! holds, and the ramification index
for E(C')/E(C) of any point of C' which is over one of the

points Plb, P2 y «... is exactly 1 . It follows that C' is

absolutely irreducible. Therefore, by the Hurwitz formula, the

genus g(C') of C' - satisfies g(C') 2 (l+1)/2 2 2. Hence, by
the Siegel theorem, the complement of Uf R(C} 'is a finite set.

Since we have prbved'the claim, we may assume that the

number of points P on C such that &(P) = 8 or « is at
most 2. Since (t-8) is a principal divisor of ‘the rational
function field k(C) , the number of the poles of ¢-B . is equal

to the number of zeros of t-8 . Since { is not a constant,

these numbers. are both equal to 1 . Hence these two k& -rational

points are both &k -rational.



Let 2 ‘be an element of k() : such that 2 :generates

k(C) over k(i) , and such that =z has a simple pole at the

point of € where .t-8 has a pole..Then (t—B)z—r -has no pole

on € for a suitable positive integer r . It follows d =

15.

(t-B)zfr. is a non-zero constant in k . Hence we can write 1§ =

B +dz" (de€ek ., z€k& ,reN). Since [kC):k(t)] =7 ,
it follows from our assumption on I that r is prime to 1
Further, since k(C) # k(t) , we have 7 2 2 . Therefore we have

proved the following theorem:

Theorem 2. Let k , H , and R be as before. Let B8 be
any element 6f k . Then the Hilbert set H contains an

intersection of a Zariski open subset O of k and a set of

the form

I L r,

N {(teRrR ; t=8+u (ueR),t¢B+diz£‘forany ziek),
i=1 )
where [ , L , ri are positive integers, T, > 2 , (ri,l) =1,

and di are non-zero constants in k

By using Theorem 2, we can completé the proof of the main
theorem. |

Let the notation and assumption be as in the main theorem,
let R -and B8 be as in the’beginning of this section, and let

I, 1, di » Ty ete. be as in Theorem 2. Let be an element

Po
is prime to di for all ¢

of Q@ -5 -{9} such that pO

Then it is obvious that, if the order ord, (£) of € € k at @~

Po
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is not congruent to 0 {(modulo ri) , then ¢ 1is not

r.
contained in dik Y | Since all ri are greater that 1 , it

Po

follows from the strong approximation theorem for k that there

exists an element t1 of R such that ordp (tl) is prime to
0

r, for any i , and Itllp < €8/2 for any p € S . Since 1l is
l

prime to ri for any ¢ , the | -th power ¢ =’(t1) of this

element belongs to

I r.
n (terY, tedk .
. 1

i=1

It follows from Theorem 2 that o =8 + £t € R is an element of

H . Since t is an element of R satisfying Itlp < g/2 for

any p € §, and since B satisfies IBIp < g/2 for any p €

p
the proof of the main theorem.

S, o € R satisfies |l < & for any p € S . This completes
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