46

On Quasi-Hadamard Product of Certain p-Valent Functions with Negative Coefficients

日本大学薬学部 関根忠行 (Tadayuki Sekine)

1. INTRODUCTION

In [1], Kumar showed some results for the quasi-Hadamard product of certain univalent functions with negative coefficients.

In the present note, we show that Kumar's results [1] are generalized to the case of certain p-valent functions with negative coefficients.

Let $\mathbf{A}(p)$ be the class of analytic and p-valent function $\mathbf{f}(\mathbf{z})$ of the form

$$f(z) = z^{p} - \sum_{n=1}^{\infty} a_{p+n} z^{p+n}$$
 $(a_{p+n} \ge 0, p \in N)$

in the unit disk $U = \{z: |z| < 1\}$.

Let $T^*(p,\alpha)$ and $C(p,\alpha)$ denote the subclasses of A(p) which satisfy $\text{Re}\left(\frac{zf^{'}(z)}{f(z)}\right) > \alpha$ and $\text{Re}\left(1 + \frac{zf^{''}(z)}{f^{'}(z)}\right) > \alpha$, for $0 \le \alpha < p$, respectively.

Clearly the function in $T^*(p,\alpha)$ and $C(p,\alpha)$ are p-valent starlike function and p-valent convex function of order α , respectively.

For these classes, Owa has obtained the following results in [2].

<u>LEMMA 1.</u> A function f(z) is in the class $T^*(p,\alpha)$ if and only if

$$\sum_{n=1}^{\infty} (p + n - \alpha) \leq p - \alpha.$$

The result is sharp.

 $\underline{\text{LEMMA 2.}}$ A function f(z) is in the class $C(p,\alpha)$ if and only if

$$\sum_{n=1}^{\infty} (p + n)(p + n - \alpha)a_{p+n} \leq p(p - \alpha).$$

The result is sharp.

Let $\mathbf{A}_0(\mathbf{p})$ denote the class of analytic and p-valent function $\mathbf{f}(\mathbf{z})$ of the form

$$f(z) = a_p z^p - \sum_{n=1}^{\infty} a_{p+n} z^{p+n}$$
 $(a_p > 0, a_{p+n} \ge 0, p \in \mathbb{N})$

in the unit disk U.

Furthermore, let $T_0^*(p,\alpha)$ and $C_0(p,\alpha)$ be the subclasses of $A_0(p)$ as follows:

$$T_0^*(p,\alpha) = \left(f(z) \in A_0(p) : Re \left(\frac{zf'(z)}{f(z)} \right) > \alpha \quad (0 \le \alpha < p) \right)$$

and

$$C_{O}(p,\alpha) = \left(f(z) \in A_{O}(p) : Re \left(1 + \frac{zf''(z)}{f'(z)} \right) > \alpha \quad (0 \le \alpha < p) \right).$$

For these classes, by Lemma 1 and Lemma 2, we easily obtain the following theorems, respectively.

THEOREM 1. A function f(z) in the class $T_0^{\ \ \, *}(p,\alpha)$ if and only if

$$\sum_{n=1}^{\infty} (p + n - \alpha) a_{p+n} \leq (p - \alpha) a_{p}.$$

THEOREM 2. A function f(z) is in the class $C_0(p,\alpha)$ if and only if

$$\sum_{n=1}^{\infty} (p + n)(p + n - \alpha)a_{p+n} \leq p(p - \alpha)a_{p}.$$

We now introduce the subclass $S_{\hat{Q}}(k,p,\alpha)$ of the class $A_{\hat{Q}}(p)$ as follows.

A function f(z) belongs to the class $S_0(k,p,\alpha)$ if and only if

$$\sum_{n=1}^{\infty} \left(\frac{p+n}{p} \right)^{k} (p+n-\alpha) a_{p+n} \leq (p-\alpha) a_{p},$$

where k is any real number.

Evidently, $S_0(0,p,\alpha) \equiv T_0^*(p,\alpha)$ and $S_0(1,p,\alpha) \equiv C_0(p,\alpha)$.

From now on, let the functions of the class $\mathbf{A}_0(\mathbf{p})$ be the following forms:

$$f_{i}(z) = a_{p,i}z^{p} - \sum_{n=1}^{\infty} a_{p+n,i}z^{p+n} \quad (a_{p,i} > 0, a_{p+n,i} \ge 0)$$

and

$$g_{j}(z) = b_{p,j}z^{p} - \sum_{n=1}^{\infty} b_{p+n,j}z^{p+n} \quad (b_{p,j} > 0, b_{p+n,j} \ge 0),$$

respectively.

Let us define the quasi-Hadamard product $f_i*g_j(z)$ of the functions $f_i(z)$ and $g_j(z)$ by

$$f_{i}(z)*g_{j}(z) = a_{p,i}b_{p,j}z^{p} - \sum_{n=1}^{\infty} a_{p+n,i}b_{p+n,j}z^{p+n}$$

2. RESULTS

Consequently, we have the following theorems. we can prove these theorems by using the same way as Kumar [1].

THEOREM 3. Let the functions $f_i(z)$ belong to the classes $T_0^*(p,\alpha_i)$ for each $i=1,2,3,\cdots,m$, respectively. Then the quasi-Hadamard product $f_1^*f_2^*f_3^*\cdots^*f_m(z)$ belongs to the class $S_0(m-1,p,\beta)$, where $\beta=\max\{\alpha_1,\alpha_2,\alpha_3,\cdots,\alpha_m\}$.

THEOREM 4. Let the functions $f_i(z)$ belong to the classes $C_0(p,\alpha_i)$ for each $i=1,2,3,\cdots,m$, respectively. Then the quasi-Hadamard product $f_1*f_2*f_3*\cdots*f_m(z)$ belongs to the class $S_0(2m-1,p,\beta)$, where $\beta=\max\{\alpha_1,\alpha_2,\alpha_3,\cdots,\alpha_m\}$.

THEOREM 5. Let the functions $f_i(z)$ belong to the classes $T_0^*(p,\alpha_i)$ for each $i=1,2,3,\cdots,m$ and for each $j=1,2,\cdots,q$, let the functions $g_j(z)$ belong to the classes $C_0(p,\beta_j)$, respectively. Then the quasi-Hadamard product $f_1^*f_2^*f_3^*\cdots^*f_m^*g_1^*g_2^*g_3^*\cdots^*g_q(z)$ belongs to the class $S_0(m+2q-1,p,\gamma)$, where $\gamma=\max\{\alpha_1,\alpha_2,\alpha_3,\cdots,\alpha_m,\beta_1,\beta_2,\beta_3,\cdots,\beta_q\}$.

THEOREM 6. Let the functions $f_i(z)$ belong to the class $C_0(p,\alpha)$ for each $i=1,2,3,\cdots,m$ and let $0 \le \alpha \le r_0$, where r_0 is a root of the equation $(p+1)^m(p-mr)-p(p-r)^m=0$ in the interval $(0,\frac{p}{m})$. Then the quasi-Hadamard product $f_1*f_2*f_3*\cdots*f_m(z)$ belongs to the class $S_0(m-1,p,m\alpha)$.

<u>REMARK.</u> If we put p = 1 in these theorems, we have the Kumar's results [1].

REFERENCES

- [1] V. Kumar, Quasi-Hadamard product of certain univalent functions, J. Math. Anal. Appl. 126, 70-77(1987).
- [2] S. Owa, On certain classes of p-valent functions with negative coefficients, SIMON STEVIN, A Quart. J. Pure Appl. Math. 59, No4 385-402(1985).