NOTES ON P-VALENTLY BAZILEVIĆ FUNCTIONS

SHIGEYOSHI OWA (近畿大•理工 尾和重義)

ABSTRACT

The object of the present paper is to improve the former results for p-valently Bazilević functions which were recently proved by the author and others.

I. INTRODUCTION

Let $A_{\mathbf{D}}$ denote the class of functions of the form

(1.1)
$$f(z) = z^{p} + \sum_{n=p+1}^{\infty} a_{n} z^{n} \qquad (p \in \mathbb{N} = \{1, 2, 3, ...\})$$

which are analytic in the unit disk $E = \{z: |z| < 1\}$. A function f(z) belonging to A_p is said to be p-valently starlike if and only if it satisfies the condition

(1.2)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0 \qquad (z \in E).$$

We denote by S_p^* the subclass of A_p consisting of functions which are p-valently starlike in E.

A function f(z) belonging to the class A_p is said to be p-valently Bazilević of type β and order γ if there exists a function g(z) belonging to S_p^* such that

(1.3)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)^{1-\beta}g(z)^{\beta}}\right\} > \gamma \qquad (z \in E)$$

for some β (β > 0) and γ (0 $\leq \gamma$ < p).

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 30C45.

^{*} This research of the author was carried out at Research Institute for Mathematical Sciences, Kyoto University while the author was visiting from Kinki University.

Also we denote by $B_p(\beta,\gamma)$ the subclass of A_p consisting of all p-valently Bazilević functions of type β and order γ in E. The concept of Bazilević functions was first introduced by Bazilević [6]. Thomas [8] has called a function in the class $B_1(\beta,0)$ a Bazilević function of type β . Further, Nunokawa [3] has proved that a function f(z) in the class $B_p(\beta,0)$ is p-valent in the unit disk E.

In particular, the class $B_p(\beta,\gamma)$ for g(z)=f(z) is called is the class of p-valently starlike functions of order γ . Further, we note that the class $B_p(\beta,0)$ for g(z)=f(z) is equivalent to S_p^* .

Let $A_p(\alpha,\beta)$ be the subclass of A_p consisting of functions which satisfy the condition

(1.4)
$$\operatorname{Re}\left\{(1-\alpha) \frac{zf'(z)}{f(z)} + \alpha\left[1 + \frac{zf''(z)}{f'(z)}\right]\right\} > \beta \qquad (z \in E)$$

for some real α and β .

The class $\Lambda_1(\alpha,0)$ when p=1 and $\beta=0$ was introduced by Mocanu [2], and was studied by Miller, Mocanu and Reade [1], and Sakaguchi and Fukui [7].

Let $C_p(\alpha,\beta)$ be the subclass of A_p consisting of functions satisfying the condition

(1.5)
$$\operatorname{Re}\left\{(1-\alpha) \frac{zf'(z)}{f(z)} + \alpha\left[1 + \frac{zf''(z)}{f'(z)}\right]\right\} < \beta \qquad (z \in E)$$

for some real α and β (β > p).

The class $\binom{n}{p}(\alpha,\beta)$ was recently introduced by Nunokawa and Owa [4].

2. SOME PROPERTIES

In order to derive our results, we need the following lemmas.

LEMMA [([5]). If a function f(z) belongs to the class $A_p(\alpha,\beta)$ with $\alpha > 0$ and $0 \le -\beta/\alpha \le 1/2$, then f(z) ϵ $B_p(1/\alpha,2^{2\beta/\alpha})$, and therefore f(z) is p-valent in the unit disk E.

LEMMA 2 ([4]). Let a function f(z) belong to the class $C_p(\alpha,\beta)$ with $\alpha \neq 0$, $\beta > p$, and $|\beta/\alpha| \leq 1/2$. Then f(z) is p-valent in the unit disk E. Moreover, if $0 \leq -\beta/\alpha \leq 1/2$, then $f(z) \in B_p(1/\alpha, 2^{2\beta/\alpha})$.

Applying the above lemmas, we prove

THEOREM I. If a function f(z) belongs to the class $A_p(\alpha,\beta)$ with $\alpha>0$ and $0\leq -\beta/\alpha\leq 1/2,$ then f(z) ϵ $B_p(1/\alpha,p2^{2\beta/\alpha})$.

PROOF. For a function f(z) in the class A_p , we define the function g(z) by

(2.1)
$$g(z) = f(z)^{1/p}$$
$$= z + g_2 z^2 + g_3 z^3 + \dots$$

Then g(z) is in the class A_1 , and satisfies

(2.2)
$$\frac{zf'(z)}{f(z)} = p \frac{zg'(z)}{g(z)}$$

and

(2.3)
$$1 + \frac{zf''(z)}{f'(z)} = 1 + \frac{zg''(z)}{g'(z)} + (p-1) \frac{zg'(z)}{g(z)}.$$

It follows from (2.2) and (2.3) that

$$(2.4) \qquad (1-\alpha) \frac{zf'(z)}{f(z)} + \alpha \left[1 + \frac{zf''(z)}{f'(z)}\right]$$

$$= (p-\alpha) \frac{zg'(z)}{g(z)} + \alpha \left[1 + \frac{zg''(z)}{g'(z)}\right].$$

Therefore, we have

$$(2.5) \quad f(z) \in A_{p}(\alpha,\beta) \iff \operatorname{Re}\left\{\left[1 - \frac{\alpha}{p}\right] - \frac{zg'(z)}{g(z)} + \frac{\alpha}{p} \left[1 + \frac{zg''(z)}{g'(z)}\right]\right\} > \frac{\beta}{p}$$

$$\Leftrightarrow$$
 g(z) $\epsilon A_1(\alpha/p,\beta/p)$.

Applying Lemma 1 for p = 1, we see that

$$g(z) \in A_1(\alpha/p, \beta/p) \implies g(z) \in B_1(p/\alpha, 2^{2\beta/\alpha}).$$

It follows that

$$f(z) \in A_{p}(\alpha, \beta) \implies g(z) \in B_{1}(p/\alpha, 2^{2\beta/\alpha})$$

$$\iff \operatorname{Re}\left\{\frac{zg'(z)}{g(z)^{1-p/\alpha}h(z)^{p/\alpha}}\right\} > 2^{2\beta/\alpha} \quad (h(z) \in S_{1}^{*})$$

$$\iff \operatorname{Re}\left\{\frac{zf'(z)}{f(z)^{1-1/\alpha}(h(z)^{p})1/\alpha}\right\} > p2^{2\beta/\alpha} \quad (h(z)^{p} \in S_{p}^{*})$$

$$\iff f(z) \in B_{p}(1/\alpha, p2^{2\beta/\alpha}).$$

This completes the assertion of Theorem 1.

REMARK I. Noting $p2^{2\beta/\alpha} \ge 2^{2\beta/\alpha}$, we see that

$$B_p(1/\alpha, p2^{2\beta/\alpha}) \subseteq B_p(1/\alpha, 2^{2\beta/\alpha}).$$

Thus Theorem 1 is the improvement of Lemma 1 by Nunokawa, Owa, Saitoh, Yaguchi and Lee [5].

Taking p = 1 in Theorem 1, we have

COROLLARY I. If f(z) ϵ A₁(α , β) with α > 0 and 0 \leq - β / α \leq 1/2, then f(z) ϵ B₁(1/ α ,2^{2 β / α}).

Using the same manner as in the proof of Theorem 1, we have

THEOREM 2. If a function f(z) belongs to the class $C_p(\alpha,\beta)$ with

 $\alpha \neq 0$, $\beta > p$, and $0 \leq -\beta/\alpha \leq 1/2$, then $f(z) \in \beta_p(1/\alpha, p2^{2\beta/\alpha})$.

Finally, letting p = 1 in Theorem 2, we have

COROLLARY 2. If f(z) ϵ $C_1(\alpha,\beta)$ with $\alpha \neq 0$, $\beta > 1$, and $0 \leq -\beta/\alpha \leq 1/2$, then f(z) ϵ $B_1(1/\alpha,2^{2\beta/\alpha})$.

REMARK 2. We note that Theorem 2 is the improvement of Lemma 2 due to Nunukawa and Owa [4].

REFERENCES

- [1] S. S. Miller, P. T. Mocanu and M. O. Reade, All α -convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37(1973), 553 554.
- [2] P. T. Mocanu, Une proprieté de convexté generalisée dans la théorie de la representation conforme, Mathematica (Cluj) 11(1969), 127 133.
- [3] M. Nunokawa, On the Bazilević analytic functions, Sci. Rep. Fac. Edc. Gunma Univ. 21(1972), 9 13.
- [4] M. Nunokawa and S. Owa, A remark on certain multivalent functions, Chinese J. Math., to appear.
- [5] M. Nunokawa, S. Owa, H. Saitoh, T. Yaguchi and S. K. Lee, On certain subclass of analytic functions. II, Sci. Rep. Fac. Edc. Gunma Univ. 36(1988), in press.
- [6] E. Bazilević, On a class of integrability in quadratures of the Loewner-Kufarev equation, Mat. Sb. 37(1955), 471 476.
- [7] K. Sakaguchi and S. Fukui, On alpha-starlike functions and related functions, Bull. Nara Univ. Educ. 28(1979), 5 12.
- [8] D. K. Thomas, On Bazilević functions, Trans. Amer. Math. Soc. 132(1968), 353 361.

Department of Mathematics Kinki University Higashi-Osaka, Osaka 577 Japan