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Abstract. We show a general theorem on collapsing bounded query

classes. From this theorem, we derive some new results, for examole,

NPltlog nl

pNPllog 21 _ , etc.
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1. Introduction .

Recently several results about the collapse of certain oracle
hierarchies have been proved (see [Hem 871, [Kad 871, [SW 871 and [Wag 87D.

For example, in [Hem 87) it was proved that PNE = NPNE and hence the

NE NPNE
strong exponential hierarchy SEH = E UNEUNP ~ UNP U...collapses

E = U DTIMEQ®™), NE = U NTIMEC®™).  These results have been
c>0 c>0

proved by using census functions énd the proofs are rather complicated."

In the present paper, wé show one general theorem on collapsing
complexity classes with restricted number of queries to the oracle.
This theorem gives some new results concerning some well-known complexity
classes. The general theorem is proved briefly by using the power of

hard sets for certain complexity classes. We do not use census

2. Prelimi haries

We mostly follow standard terminology and notations for complexity
theory (see, e.g., [HU 79D. We assume that the alphabet X contains
at least two letters 0, 1. Let 2* denote the set of all finite strings
consisting of letters in X . A subset of 2* is called a language.

For x in Z*, let |z | denote the length of z. The empty string
is denoted by e, |e| = o.

Our model for computation is oracle machines. ' A mondeferministic
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(resp., determinisitic) oracle machine M is a nondeterministic (resp.,
deterministic) multitape Turing machine with a query tape and three
Vspecial internal states called QUERY, YES and NO. Let MA(x) denote
an oracle machine M that is given T as an input and A as an oracle
and let M) denote Mg(x). When MA(Q:) enters the state QUERY, the
machine asks the oracle A whether the string written on its query tape
belongs to A or not. If the string is in A, then the»machine enters
YES. Otherwise, it enters NO. A transducer is a Turing machine
with a read only input tape an\d a write only output tape.

The notions of time bounded oracle machines and space bounded
oracle machines are defined as for the usual Turing machines. For
space bounded oracle machines, we do not bound the input tape and
the query tape.

For a space bound S and an oracle 4, let NSPACE(S’)A (DSPACE(S‘)A
} denote the class of languages accepted by ,nondeterministic (resp.;
deterministic) oracle machines that have A as the oracle and that
operate within space bound S(n), and let NSPACE(S) (DSPACE(S’)) denoté
NSPACE(S)Q (resp., DSPACE(S)@).'

For a time bound T such that T(n) 2 n, and an oracle 4, let
NTIME(T)A (DTIME(T)A) ’denote the class »of languages accepted by
nondeterministic (resp., deterministic) oracle machines that have A as
the oracle and that operate within time bound 7(n), and let NTIME(®

7] %] ’

(DTIME(T))/ denote NTIME(T)™ (resp., DTIME{) ).

We define the classes of languages discussed in this paper.
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Let LA, ..oy PSPACEA be the classes
14 = DsPACE(log m4,
pcsL? = DsPACEmY,

pd = U pTiMERHS,
i21

NP = U NTIME(R DY,
121

NPlA = U NTIMECcS,
c>0

g4 = U priMEQ®™4,
c>0

NE? = U NTIME@S™A,

c>0 ‘
A 'ni A
EXP® = U DTIMEQ™ )%,
| iz1 -

A ni A

NEXP® = U NTIMEQ™ )%,
i21

PSPACE® = U DSPACEmYH
iz1

= U NSPACEmH? by Savitch's Theorem [Sav 70D).
iz1 -

%]

Let L, ..., PSPACE denote L™, ..., PSPACEg respectively.

If A and B are subsets of 2* and 1(n) is a function, we say that

A is im)-space many-one reducible to B (4 5. B) if there is
. 1(n)-space

a deterministic transducer M that computes a function f(z) within space
i(lz|) such that, for any z in 3, r € A if and only if f@) € B.

For any class €, a set C is a -hard set for € if A

s.
1(n)-space

s. C for any set A in €.
{n)-space




3. The main theoxrem

In this section, we state and prove our main theorem. First we

define some notations.

Definition 3.1. Let q(n), s(m) and {(n) be functibns. ForAany‘oracle

A, DTIMEGmyAldm!] Alg(m],

accepted by deterministic {(m)-time (resp., S(nm)-space) bounded  oracle

machines that make -at most 0(Q(n)) queries to A. For any complexity

class €, let DTIMEGmny ?4™] U DTIMEC@n 9™ ang
_ A€ 8

psPACEsm» E 1™ - DpspacEsmnAI™],

AE B

In this definition, we assume 0 = q(n) = {(n) for DTIME and 0 = q(n)
= 20°s('n) for some ¢ for DSPACE.

Now, we present the main theorem.

Theorem 3.2. Let f(m) (2 log 'ﬁ). gm), hm) and i(n) be functions
and let 8 denote the class of languages accepted by Turing machines
that firstly make an hmn) time bo'unded deterministic compulalion
and then a 9hn)) time bounded mnondelerministic computation. If
A is éi('n)-space_hard for €, then

DTIMECh(ny N TIME@@IL )] Atfal

C DSPACE(max{i(n + O(f(mM, f(u))

Proof. Let L be a language accepted by a DTIME(h(n)) machine M using

-4 -

(DSPACE(s(m) ) denotes the class of languages
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an oracle B € NTIME(@(®)) and making at most O(f(n)) queries to B.

Consider the following procedure :

begin
{x is the input of length n to M}
uz=e;
while <z, w> ¢-Cl do
if <x, w> € (,‘2
then u :=ul {the query answer is 'yes'}
else % :=u0 {the query answer is 'no'} ;
if <z, w> € (,‘3
then halt and accept
else halt and reject

end

Here Cl = {Kz, w>: M) does not query to ‘B any more}, 6‘2 =
{Kz, w> : M(x) queries to B at least one more time and its answer is
'yes'} and CS = {Kz, w> : M) does not query to B any more and accepts}.
Here, for the j-th query to B A SJj S |u|), M@ does not query to
B and’uses the j—th bit of % as the answer. Clearly, the languages
C1 and CS are in DTIME(A(n)) and the language 6'2 is in €. Hence the
procedure canv use the set A as oracle (4 is a éi(n)—space—hard set'éi
for 8).

Since M makes at most O(f(n)) queries to B, the length of u 15




at most c1 + fin) for some constant Cl’ and % can be represented within

space cl‘f(n). The length of <z, u> is at most n+clof(n)+02 for
some‘ constant 02. Hence the redﬁctions from Cl, C2, 6'3 to A éan be
performed within space bound i(n+cl °f(n§+02'). Note that it is not
necessary‘ to. represent <r, > on a working tape as the input to the
reduction because x and u are on the input tape and a working tape.
2 € "

J(m)} and consequently within space max('i,('n+03‘f(n)), Sm) for some

Hence, our 'procedure operates within space max{i(n + c1 + fin) + ¢

constant 03. It is obvious that the procedure makes at most O((n)
queries to A Thus, L € DSPACEmax(i(n + ¢, * f(n)), FayyAS ™I,
Therefore, ' |

DTIMECR )N MBI MY - b crmax i + ¢y + Fn, FanAV®1

4. Conseguences of the main theorem

Using universal sets and . appropriate paddings, we can easily

construct hard sets for many complexity classes.

Lemma 4.1.

(1) There exisis = ~-hard sets for NP and NEXP in NP
log n-space 1

and NE respeciively.

cn
(2) There ezxists = -hard sels for NE and U NTIME(Z2 )
n-space C> 0

in NP1 and NE respectively.
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1
n A
(3) There exists = i+l -hard sets for NTIME@® ) in NP and

1
N~ -space
NE respectively.

Proof. We can easily prove the lemma by using two sets

-
|

0 = i, z, 0m> : Within time bound'm, the uniVersal Turing machine

finds that the nondeterministic Turing machine i1 accepts z},

.
]

L = ig, 0™ : Within time bound 2", the universal Turing machine
finds that the nondeterministic Turing machine 1 accepts x}

in 'NPI and NE respectively. [

Using Lemma 4.1 we have the following corollary of Theorem 3.2.

Corollary 4.2.

NP_[log "]
@ PI\IP[log nl - L 1
©) PNEXP[log nl - LNE[log n].
NP,[n]
@) VI pegr !
@ ENEXP[n] - DCSLNE[nJ.
i NP ['nq"]
® viz Dl BEXPP - opgpace U1
NEXP['n’i'] NE[ni]
6 (Vi 2 DIEXP = PSPACE L
The class F’NPUOg rl has been investigated recently in, for example.}.ﬁ
[Kre 861, .[Kad 871, [SW 871 and [Wwag 871. Many of the languages relatedﬁi,

1




to optimal solution size of NP optimization problems are members of

PNP{log _n]. For example, UOCLIQUE (Unique Optimal Clique), the set of

u‘ndirected graphs that have one clique containing more vertices than

each of other cliques of the graph, is one example of such languages

NPLlog n] seems to be a very

important natural class in the area between NP and PNP. Now,

NP[log n]

(see, e.g., [Kad 87D. Thus, the class P

Corollary 4.2 (1) shows that all of languages in P are accepted

within logarithmic space using O(log n) queries to a nondeterministic

linear time oracle.
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