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Abstract

An explicit formula for the number of n-variable “clique functions” is given, which
contain “bad” parameters related to the numbers of certain monotone functions. We
compute the number of n-variable clique functions for up to $n=7$ through the evaluation
of the parameters.

List of Notations

$E$ $\{0,1\}$

$E^{n}$ $n$ -dimensional cube
$P$ the set of Boolean functions
$M$ the set of monotone increasing functions
$N$ the set of clique functions
$a$ a point in $E^{n}$ , i.e. a vector $a_{1}\cdots a_{n}$ , where $a_{i}\in E,$ $1\leq i\leq n$

$O,$ $1$ $0\cdots 0,1\cdots 1$

$a$ and $b$ intersecting $a\wedge b\neq 0$

$a\preceq b$ $a_{1}\leq b_{1},$
$\ldots,$

$a_{n}\leq b_{n}$

$E_{-}^{n},$ $E_{+}^{n}$ lower and upper halves of the cube
$I_{f}$ $=\{a|f(a)=1\}$

$I_{f}^{-}$ $=$ {$a|f(a)=1$ and $f(b)=1$ for no $b\preceq a,$ $b\neq a$ }
$O_{f}$ $=\{a|f(a)=0\}$
$O_{f}^{+}$ $=$ {$a|f(a)=0$ and $f(b)=0$ for no $b\succeq a,$ $b\neq a$ }
$Q(n)$ $=\{f|f\in M\cap N, I_{f}^{-}\subseteq E_{-}^{n}\}$

$Q_{r}(n)$ $=$ { $f|f\in Q(n)$ and $|I_{f}^{-}|=r$ }
$\overline{a}$ complement of $a$ , i.e. $\overline{a}=$ 召 1 $\overline{a}_{n}$

$\overline{A}$ $=\{\overline{a}|a\in A\}$

$\lfloor a\rfloor$ the largest integer $\leq a$ , i.e floor of $a$
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1. Introduction

Let $E=\{0,1\}$ . A Boolean functions $f$ : $E^{n}arrow E$ is called a clique function if it satisfies

the following condition (1):

if $f(x_{1}, \ldots, x_{n})=f(y_{1}, \ldots, y_{n})=1$ then $x_{i}=y_{i}=1$ for some $i$ . (1)

If $a_{i}=b_{i}=1$ then the vectors $a=a_{1}\cdots a_{n}$ and $b=b_{1}\cdots b_{n}$ are said to be intersecting

at the i-th coordinate. By taking as vertices the vectors $x$ such that $f(x)=1$ , and

connecting every pair of intersecting vectors by an edge, we obtain a “complete graph”

or a “clique” in the graph theoretical terminology, under the above-mentioned condition

(1). This is why we use the word “clique” for such a function.

The set of clique functions has been investigated in several papers: it is known to be a

submaximal set of functions in the ordinary Post algebra [Pos21], and it is a maximal set

in some modified Post algebra (cf. $[Ibu68,KaF78,Noz82,MSHMF88]$). It appears also

in the universal algebra where the functional constructions are studied from algebraic

standpoint [Ber83].

We are interested in counting the number of clique functions with $n$ variables, since

it has been paid no attention so far. It is deeply related to the number of monotone

functions with $n$ variables (the famous Dedekind’s problem [Ded97]), on which there

are a number of investigations $[Kle69,Kor81,Hro85]$ .
In Section 3 we give a formula for the number of n-variable clique functions. Although

the formula is an explicit one, it contains a series of “bad” parameters related to the

number of certain monotone functions. In Section 4 we give an efficient algorithm to

evaluate the parameters, and determine the numbers of clique functions for up to $n=7$ .

2. Definitions and Notations

The set of n-variable clique functions is denoted by $N(n)$ . The set of n-variable mono-

tone (increasing) functions is denoted by $M(n)$ , which is defined by

$M(n)=$ { $f|f(x_{1},$
$\ldots,$

$x_{n})\leq f(y_{1},$
$\ldots,$

$y_{n})$ if $x_{i}\leq y_{i}$ for all $i$ }.

Let $c_{0}$ and $c_{1}$ be the constant-valued functions of n-variables assuming the values $0$ and

1, respectively (we allow to write $c_{0}$ and $c_{1}$ regardless of the number of its variables).

For a set $F$ we denote the number of its elements by $|F|$ .
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Let $a=a_{1}\cdots a_{n},$ $b=b_{1}\cdots b_{n}\in E^{n}$ . We denote $a\preceq b$ if $a_{i}\leq b_{i}$ for all $i,$ $1\leq i\leq n$ .
For each vector $a$ we define lower shadow $S^{-}(a)$ $:=\{b|b\preceq a\}$ and upper shadow
$S^{+}(a):=\{b|a\preceq b\}$ . Finally we set $S^{+}(A):= \bigcup_{a\epsilon A}S^{+}(a)$ and $S^{-}(A)$ $:= \bigcup_{a\in A}S^{-}(a)$ .

For a function $f$ , a O-point (or l-point) of $f$ is a vector $x$ such that $f(x)=0$ (or

$f(x)=1$ , respectively). Let us denote the set of l-points and the set of O-points of

$f$ by $I_{f}$ $:=\{a|f(a)=1\}$ and $O_{f}$ $:=\{a|f(a)=0\}$ , respectively. Now define two sets

of extremum points: the set of maximum O-points, denoted by $O_{f}^{+}$ (which is the set

{$a|f(a)=0$ and $f(b)=1$ for all $b\in S^{+}(a)\backslash \{a\}$ }) and the set of minimum l-points,

denoted by $I_{f}^{-}$ (which is the set $\{a|f(a)=1f(b)=0$ for all $b\in S^{-}(a)\backslash \{a\}\}$ ). The

set of minimum l-points for the function $c_{0}$ and the set of maximum O-points for the

function $c_{1}$ are defined to be empty.

Let $A=\{a_{1}, \ldots, a_{k}\}$ be a set of $k$ points. We call $A$ incomparable if each two points

$a_{i}$ and $a_{j}$ are incomparable, i.e. $a_{i}\not\leq a_{j}$ for any distinct suffices $i$ and $j$ . A singleton

set $\{a\}$ is incomparable. The set $A$ is called intersecting if every pair of elements

are intersecting. A singleton set $\{a\}$ is intersecting except when $a=0$. Thus every

singleton set is incomparable and intersecting except when $a=0$ .

Lemma 2.1. Let $A=\{a_{1}, \ldots, a_{k}\}$ be a set of $m$ points and $O_{f}^{+}=A$ (or $I_{f}^{-}=A$) for a

function $f\in P$ . Then $A$ is incomparable. Conversely, for any incomparable set $A$ there

exists a function $f$ such that $O_{f}^{+}=A$ and a function $f’$ such that $I_{f}^{-},$ $=A$ .

Proof. Obvious. $\square$

Corollary 2.1. For any incomparable set $A$ there exists a unique monotone function
$f\in M$ such that $O_{f}^{+}=A$ and a unique monotone function $f’\in M$ such that $I_{f^{-}},$ $=A$ .

3. The number of n-variable clique functions

Let $E_{t^{n}}$ be the t-th layer of the cube $E^{n}$ , i.e. $E_{t^{n}}=\{a\in E^{n}|w(a)=t\}$ , where $w(a)$

denote the number of l’s in $a$ . For $n$ even let $E_{n/2:upper}^{n}$ denote the upper half of the

mid-layer, i.e. { $a|a=1a_{2}\ldots a_{n}$ and $w(a)=n/2$ }. Let $E_{-}^{n}$ denote the lower half of the

cube which is defined by $E_{-}^{n}= \{a\in\bigcup_{t=0}[n/2]E_{t}^{n}\backslash E_{n/2:upper}^{n}\}$ . The upper half of the cube

$E_{+}^{n}$ is also defined by $E_{+}^{n}=E^{n}\backslash E_{-}^{n}$ .

Lemma 3.1. Let $f$ be a Boolean function. If $I_{f}\subseteq E_{+}^{n}$ , then $f\in N$ .
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Proof Consider $a=a_{1}\cdots a_{n}$ and $b=b_{1}\cdots b_{n}$ such that $f(a)=f(b)=1$ . Then

$a,$ $b\in I_{f}\subseteq E_{+}^{n}$ . Hence $w(a)\geq n/2$ and $w(b)\geq n/2$ . If $w(a)>n/2$ or $w(b)>n/2$ then

$a\wedge b\neq 0$ is obvious. In the case $w(a)=w(b)=n/2$ we have $a\wedge b=1c_{2}\ldots c_{n}\neq 0$ by

definition of $E_{+}^{n}$ . $\square$

Lemma 3.2. If $a\wedge b\neq 0$ then $a’$ A $b’\neq 0$ for any $a\in S^{+}(a)$ and any $b\in S^{+}(b)$ .

Proof Obvious. $\square$

Lemma 3.3. If $a\wedge b=0$ then $a\preceq\overline{b}$ and $b\preceq\overline{a}$.

Proof Obvious. $\square$

In the sequel we need special subsets of monotone clique functions defined as follows.

$Q(n)$ $:=$ {$f|f\in M\cap N$ and $I_{f^{-}}\subseteq E_{-}^{n}$ } and $Q_{r}(n)$ $:=\{f\in Q(n)||I_{f}^{-}|=r\}$ .

Note that $Q(n)=Q_{0}(n)\cup Q_{1}(n)\cup\backslash$ . $.Q_{m}(n)$ , where $m$ is the maximum number of

the elements of the sets of minimum l-points for all $f$ satisfying $I_{f}^{-}\subseteq E_{-}^{n}$ . We will

determine $m$ later.

Consider $f\in Q_{r}(n)$ . Define extended shadow of $f$ by

$X_{j}$ $:=\{S^{+}(I_{f}^{-})\backslash I_{f}^{-}\}\cup\{E_{+}^{n}\backslash S^{-}(\overline{I_{f}^{-}})\}$ ,

where $\overline{I_{f}^{-}}is$ the ’omplement of $I_{f}^{-},$ i.e. $\overline{I_{f}^{-}}=\{\overline{a}|a\in I_{f^{-}}\}$ .

Lemma 3.4. For any $f\in Q(n)$ and any $A\subseteq X_{f}$ , if $A\cup I_{f^{-}}=I_{g}$ then $g\in N$ .

Proof We must show $a’$ A $b’\neq 0$ for any $a,$ $b\in A\cup I_{f}^{-}$ . There are three possibilities.

1) $a,$ $b\in E_{+}^{n}$ then $a’$ A $b’\neq 0$ by Lemma 3.1.

2) $a,$ $b\in E_{-}^{n}$ then $a’\wedge b’\neq 0$ by Lemma 3.2.

3) $a\in E_{-}^{n},$ $b\in E_{+}^{n}$ . Assume $a\wedge b=0$ . Then by Lemma 3.3

$b\preceq\overline{a}$ . (2)

Since $a\in E_{-}^{n}$ there is $c\in I_{f}^{-}$ such that $c\preceq a$ . Therefore

$\overline{a}\preceq\overline{c}$ . (3)

From (2) and (3) follows
$b\preceq\overline{c}$ .
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Thus $b\in S^{-}(\overline{I_{f}^{-}})$, hence $b\not\in X_{f}$ . This means $b\not\in A$ . Since $b\not\in I_{f^{-}}$ (because $b\in E_{+}^{n}$ ),

we have $b\not\in A\cup I_{f}^{-}$ . A contradiction. $\square$

Lemma 3.5. For $f\in Q_{r}(n)$ set $D(f)$ $:=\{g\in N|I_{g^{-}}\cap E_{-}^{n}=I_{f}^{-}\}$ . Then

$|D(f)|=2^{2^{n-1}-r}$ .

Proof Consider extended shadow $X_{f}$ . By Lemma 3.4 $D(f)$ is the set of all functions

constructed by choosing arbitrary values ( $0$ or 1) for $a\in X_{f}$ and setting value 1 for any

$a\in I_{f}^{-}$ . From this follows $|D(f)|=2^{|X_{f}|}$ . Since $X_{j}=\{S^{+}(I_{f}^{-})\backslash I_{j}^{-}\}\cup\{E_{+}^{n}\backslash S^{-}(\overline{I_{f}^{-}})\}$

and $S^{+}(I_{f}^{-})\cap S^{-}(\overline{I_{f}^{-}})=\phi$ , in view of the symmetry we have $|S^{+}(I_{f}^{-})|=|S^{-}(\overline{I_{f}^{-}})|$ , and

finally $|X_{f}|=|E_{+}^{n}|-|I_{f}^{-}|=2^{n-1}-r$ . $\square$

We are going to count the number of n-ary clique functions in a systematic way by

partitioning them into the following $m+1$ classes according to the size of $I_{f}^{-}\cap E_{-}^{n}$ : class

$r$ is the set of clique functions $f$ such that

$|I_{f}^{-}\cap E_{-}^{n}|=r$.

Thus we have the following equality.

Lemma 3.6.

$|N(n)|=2^{2^{n-1}}+2^{2^{\mathfrak{n}-1}-m} \sum_{r=1}^{m}|Q_{r}(n)|2^{m-r}$ ,

where $m:= \max_{f\in Q_{r}(n)}|I_{f}^{-}|$ .

Proof 1) Case $|I_{f}^{-}\cap E_{-}^{n}|=0$ . The number of clique functions is $2^{2^{\mathfrak{n}-1}}$ by Lemma

3.1. 2) Case $|I_{f}^{-}\cap E_{-}^{n}|=i$ . For each function $g\in Q_{r}(n)$ we have $2^{2^{n-1}-r}$ clique

functions $f$ which satisfies $|I_{f}^{-}\cap E_{-}^{n}|=r$ and $I_{f}^{-}\cap E_{-}^{n}=I_{g^{-}}$ . Hence the number of

clique functions satisfying $|I_{f}^{-}\cap E_{-}^{n}|=r$ is $2^{2^{n-1}-m}\cdot|Q_{r}(n)|2^{2^{n-1}-r}$ . Therefore we have

$|N(n)|=2^{2^{n-1}}+|Q_{1}(n)|2^{2^{n-1}-1}+\cdots+|Q_{r}(n)|2^{2^{n-1}-m}$ . $\square$

Now we determine the number $m$ .

We introduce a notation. For a subset $A\subseteq E_{t}^{n}$ of t-th layer we denote the subsets of

its shadow that are included in $t+1$ -th and $t-1$ -th layer, respectively, by

$S^{+1}(A)$ $:=E_{t+1}^{n}\cap S^{+}(A)$ ,

$S^{-1}(A)$ $:=E_{t-1}^{n}\cap S^{-}(A)$ .

We have the following lemma.
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Lemma 3.7. For $A\subseteq E_{t}^{n},$ $1<t<\lfloor n/2\rfloor$ holds

$|S^{+1}(A)|>|A|$ .

Proof cf. [Kor81, Lemma 1.1, p.9]. Note that we have strict inequality in above case.
口

Lemma 3.8. For $f\in Q(n)$ , if $I_{j^{-}}\not\subset E_{1^{n_{n}}/2]}$ for $n$ odd or $I_{f}^{-}\not\subset E_{n/2;lower}^{n}$ otherwise, then

there is $g\in Q(rt)$ such that $|I_{g^{-}}|>|I_{f}^{-}|$ and $I_{g^{-}}\subseteq\{E_{L/2\rfloor}^{n}E_{n/2\cdot.lower}^{n^{n}}$ $noddotherwise$

Proof We consider two cases $n$ odd and $n$ even separately.

1) $n$ odd. Let $t_{1}$ be the lowest layer which contain at least one minimum l-point of

$f,$ $i.e$ .
$E_{t^{n_{1}}}\cap I_{f^{-}}\neq\phi$ and $E_{t}^{n}\cap I_{j}^{-}=\phi$ for $t<t_{1}$ .

If $t_{1}=\lfloor n/2\rfloor$ then we are done. Now $t_{1}<\lfloor n/2\rfloor$ . Consider $A$ $:=S^{+1}(E_{t}^{n_{1}}\cap I_{f}^{-})$ . The

following properties hold for $A$ .
1. $I_{j}^{-}\cap A\neq\phi$ (by Lemma 3.2).

2. $a$ and $b$ are intersecting for any $a,$ $b\in A$ (by Lemma 3.1).

3. For any $a,$ $b$ such that $a\in A$ and $b\in I_{f}^{-}\backslash E_{t}^{n_{1}}$ $a$ and $b$ are intersecting because

for $a$ there is $a’\in I_{f}^{-}\cap E_{t^{n_{1}}}$ such that $a’\preceq a$ and $a’\wedge b\neq 0$ . Hence we have $a\wedge b\neq Q$

by Lemma 3.1. Therefore the set $(I_{f}^{-}\backslash (E_{t}^{n_{1}}\cap I_{j}^{-}))\cup A$ is intersecting and incomparable.

Hence there is $f_{1}\in Q(n)$ such that $I_{f_{1}^{-}}=(I_{j}^{-}\backslash E_{t}^{n_{1}})\cup A$ . By Lemma 3.7

$|A|=|S^{+1}(E_{t_{1}}^{n}\cap I_{f}^{-})|<|E_{t_{1}}^{n}\cap I_{f}^{-}|$ .

Therefore
$|I_{f_{1}}^{-}|>|I_{f}^{-}|$ .

This procedure of constructing $f_{1}$ from $f$ (lifting of minimum l-points) can be re-

peated until the whole set of minimum l-points goes into $E_{\lfloor n/2\rfloor}^{n}$ . This last function is

the function $g$ we need.

2) $n$ even. The above procedure of lifting minimum l-points still works up to $E_{n/2-1}^{n}$

in this case, too. However, we have just one half of $E_{n/2}^{n}$ . So lifting to $E_{n/2}$ directly

doesn’t work. Now consider a function $f’$ such that

$I_{f}^{-},$ $=A\cup B,$ $A\subseteq E_{n/2-1}^{n}$ and $B\subseteq E_{n/2;lower}^{n}$ .
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It is easy to see that $B\cap S^{+1}(A)=\phi$ . Let $S^{+1}(A)=V+\cup V^{-}$ , where

$V_{+}\subseteq E_{n/2:upper}^{n},$ $V_{-}\subseteq E_{n/2:lower}^{n}$

The following properties hold.

1. $\overline{V+}$ $\subseteq$ $E_{n/2:lower}^{n}$ ,
2. $V_{-}\cap B$ $=$ $\phi$ ,
3. $\overline{V_{+}}\cap B$ $=$ $\phi$ ,
4. $\overline{V_{+}}\cap V_{-}$ $=$ $\phi$ . ダ

The properties 1 and 2 are obvious.

3. Assume that there is a vector $a$ in $\overline{V_{+}}\cap B$ . We have $a$ E $B$ and $\overline{a}\in V_{+}$ . There
is $a’\in A$ such that $a’\preceq\overline{a}$. Since for $a\in B$ and $a$

‘ E $A$ we have $a\wedge a’=0$ : a

contradiction.

4. Assume that there exists $a\in\overline{V_{+}}\cap V_{-}$ . We have $a$ E $V_{-}$ and $a$ E $V_{+}$ . There are
$a’,$ $a”\in A$ such that $a’\preceq a$ and $a”\preceq\overline{a}$ . Since $a\wedge\overline{a}=0$ , we have $a’\wedge a’’=0$ . A

contradiction.

Now using properties 1-4 and Lemma 3.7, we obtain

$|I_{f^{-}},|=|A|+|B|<|S^{+1}(A)|+|B|=|V_{+}|+|V_{-}|+|B|=|\overline{V_{+}}|+|V_{-}|+|B|$

$\leq|E_{n/2:lower}^{n}|$ .

Therefore for the function $g\in Q(n)$ defined by $I_{g^{-}}$ $;=\overline{V_{+}}\cup V_{-}\cup B$ (it is easy to check

that $g\in Q(n))$ we have $|I_{g^{-}}|>|I_{f}^{-},|$ . $\square$

Here we need a lemma from a result in [Kat68] which is a special case of an Erdos-

problem concerning a set of finite sets.

Lemma 3.9. Assume that $n$ is even and $C\subset E_{n/2}^{n}$ . If $|C|\leq$ $\frac{1}{2}(n/2n)$ then

$|S^{-1}(C)|\geq|C|$ where the equality holds only when $|C|= \frac{1}{2}(\begin{array}{l}-n1(n-1)/2\end{array})$ .

Proof Our lemma is a direct consequence of [Kat68, Lemma 7, p. 205, eq. (67)]. $\square$

We are to determine $m$ the maximal possible number of minimum l-points for $f$

where $f$ runs through $Q(n)$ . From Lemma 3.8 the number of elements of a maximum

intersecting set in the top layer of $E_{-}^{n}$ gives it. This is determined by the following

theorem.

7



309

Theorem 3.1. The number of elements of a maximum intersecting set in $E_{-}^{n}$ is

$m= \frac{\lfloor n/2\rfloor}{n}$ . $(\lfloor n^{n}/2\rfloor)$ .

Proof We separate two cases. 1) $n$ even. We are to find a maximal intersecting subset

of the top layer of $E_{-}^{n}$ : $E_{n/2:lower}$ . It is easy to see that $E_{n/2:lower}$ itself is such a set.

Indeed, for each $a\in E_{n/2;lower}$ we have $w(a)=n/2$ and $a$ begins with a leading $0$ , i.e.

$a=0a_{2}\ldots a_{n}$ . Hence each pair in $E_{n/2:lower}$ is intersecting. Thus $m= \frac{1}{2}(_{n/2}n)$ .
2) $n$ odd. We show that the set of all points in $E_{(n-1)/2}^{n}$ having a common intersecting

coordinate $i$ is a maximal intersecting set, where $i$ may be any of 1 $\leq i\leq n$ . To

show this assume that a maximal intersecting set $C$ is divided into two subsets by

the first bit, i.e. $C=1A+0B$, where $A$ $:=$ { $a|a=a_{2}\cdots a_{n}$ and $1a_{2}\cdots a_{n}\in C$}
and $B$ $:=$ { $b|b=b_{2}\cdots b_{n}$ and $0b_{2}\cdots b_{n}\in C$}. Thus $A$ and $B$ are subsets of $E^{n-1}$

and $B$ is intersecting. Further, each pair of $n-1$-vectors, one from $A$ and the other

from $B$ , is intersecting $(*)$ . Now the sets $0\overline{A}$ and $1\overline{B}$ are subsets of $E_{(n+1)/2}^{n}$ . Further,

$S^{-1}(1\overline{B})=0\overline{B}+1S^{-1}(\overline{B})$ and obviously $0$ ET and $1S^{-1}(\overline{B})$ are subsets of $E_{(n-1)/2}^{n}$ . We

separate two cases.

2.1) $A=E^{n-1}$ . We show that $a\not\in A$ for each $a\in S^{-1}(\overline{B})$ . Assume $a\in A$ for some
$a\in S^{-1}(\overline{B})$ . Then there is $a’\in\overline{B}$ such that $a’\succeq a$ . That is, $\overline{a’}\in B$ , and this means
$a\wedge\overline{a’}\neq 0$ from the above-mentioned property $(*)$ , but this is a contradiction. Since $A$

contains all $n-1$ -vectors, $B$ should be empty.

2.2) $A\neq E^{n-1}$ . We may assume that $B$ is not empty. We have

$|B| \leq\frac{1}{2}(\begin{array}{l}-n1(n-1)/2\end{array})$ .

Because, otherwise we have some $bEE_{(n-1)/2}^{n-1}$ such that $b,$ $\overline{b}\in B$ which contradicts

that $B$ is an intersecting set. Then from Lemma 3.9 we have $|S^{-1}(\overline{B})|\geq|B|$ (note

that $|B|=|\overline{B}|$ ). Then obviously $D$ $:=1A+1S^{-1}(\overline{B})$ is intersecting and $|D|\geq|C|$ .
From maximality of $C$ we have $|C|=|D|$ , that is $D$ is also maximal. Then $D$ must

contain all vectors with the leading bit 1 (otherwise $D$ can be extended to such a set,

contradicting maximality of $D$ ), i.e. $D=\{1a|a\in E^{n-}, w(a)=(n-3)/2\}$ . Hence we

have $m=(\begin{array}{l}-\backslash n1-3)/2(n\end{array})$ .
Combining the results of cases 1) and 2) we obtain the formula for $m$ , which is

indicated in the theorem. $\square$
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Let $k(r, n)$ $:=|Q_{r}(n)|$ , i.e. $k(r, n)$ is the number of sets { $a_{1},$ $\ldots,$
$a_{r}|a_{i}$ and $a_{j}$ are

intersecting and incomparable in $E_{-}^{n}$ }. By definition we set $k(O, n):=1$ . From Lemma

3.6 and Theorem 3.1 we have

Theorem 3.2.
$|N(n)|=2^{2^{n-1}-m}$ . $\sum_{r=0}^{m}2^{m-r}\cdot k(r,n)$ ,

where $m= \frac{\lfloor n/2\rfloor}{n}$ . $(\lfloor n^{n}/2\rfloor)$ .

Note that the values $k(r,n)$ can be known for some $r$ through combinatorial consider-

ations: $k(0, n)$ $:=1,$ $k(1,n)=2^{n-1}-1,$ $k(2,n)=(1/2)\Sigma_{t=1}^{\lfloor\langle n-1)/2\rfloor}(\begin{array}{l}nt\end{array})(2^{t-1}-1)(2^{n-t}-$

$2)+(1+(-1)^{n})/2(n^{n}/2)(2^{n/2-1}-1)(2^{n/2}-2)$ and $k(m, n)=1$ for $n$ even and $=n$ for $n$

odd.

4. Algorithm for enumerating $Q_{r}(n)$

We are to count the numbers of elements of $Q_{r}(n)$ for $r=1,$ $\ldots,$
$m$ . We conveniently

represent the cube $E^{n-1}$ by the set of $2^{n-1}$ integers $\{0, \ldots,2^{n-1}-1\}$ represented by

usual binary number system, where each integer $0\leq k\leq 2^{n-1}-1$ corresponds to a

vector in $E^{n-1}$ . We generate each r-subset (subsets containing $r$ elements) of the set

$\{1, 2, \ldots, 2^{n-1}-1\}$ for $1\leq r\leq m$ and check whether it is incomparable and intersecting

(we delete the point $0=0\cdots 0$ from our consideration since no subset is intersecting if it

contains o). In view of the following “saturation” property which both incomparability

and intersection obey, lexicographic enumeration of all subsets of $\{1, \ldots, 2^{n-1}\}$ is efficient

since we can use “cut” of enumeration (cf. [StM@8]):

if $\{a_{1}, \ldots, a_{r-1}\}$ is not intersecting (incomparable), then
$\{a_{1}, \ldots, a_{r-1}, a_{r}\}$ is not intersecting (incomparable).

In the sequel, we assume that each r-subset is represented as a sequence $a_{1}a_{2}\ldots a_{r}$

where $1\leq a_{1}<\ldots<a_{r}\leq 2^{n-1}$ . Recall the definition of lexicographic order of subsets.

For two subsets $a=(a_{1}, \ldots, a_{p})$ and $b=(b_{1}, \ldots, b_{q}),$ $a<b$ is satisfied if and only if

there exists $i(1\leq i\leq q)$ such that $a_{j}=b_{j}$ for $1\leq j<i$ and either $a_{i}<b_{i}$ or $p=i-1$ .
This order has an important property that enables efficient enumeration of all subsets

having the above-mentioned property.
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The lexicographic enumeration of subsets (cf. $[NiW78]$ ) goes in the following manner

(for example, let $n=3$):

1, 12, 123,

13,

2, 23,

3.

Determination of the next subset is executed in two phases. The enumeration is in

“extend” phase when it goes from “left” to “right” staying in a row. If the last element

of a subset reaches $2^{n-1}-1$ then the algorithm shifts to the next row. We call this phase

“reduce” phase. Besides these two phases we will use in the algorithm below another

phase called “cut” phase. This phase will be used when the algorithm goes from some

subset to another subset in a lower row (not necessarily in the subsequent row), skipping

several subsets.

The “cut” occurs in our algorithm either when r-subset is not incomparable or not

intersecting or when the number $r$ of the elements in a subset is greater than $m$ . The

last case can be conveniently implemented in the extend phase, since $r$ increases only

in this phase. It is easy to see that each subset containing $2^{i}$ for $i=0,$ $\ldots$ , $n-1$ is

comparable if it is intersecting, hence we can skip these subsets. However, it is not

efficient to insert a check of $2^{i}$ in the algorithm. It is sufficient to start our enumeration

from 2 skipping $2^{0}=1$ .
In PASCAL-like notation we present the algorithm for enumerating all r-subsets of

$E^{n-1}(1\leq r\leq m)$ that are incomparable and intersecting (cf. $[StM88]$ ). Every r-subset

of $\{2, \ldots , 2^{n-1}-1\}$ is represented in the algorithm below by a sequence $j_{1},$
$\ldots,$

$j_{r},$ $1\leq$

$r\leq m,$ $2\leq j_{1}<\ldots<j_{r}\leq 2^{n-1}-1$ .

Note that the singleton set {1} and $\{2^{n-1}-1\}$ is never checked in this algorithm, so

the obtained $k(1, n)$ should be increased by 2 after the algorithm. The incomparability

and intersection of $j_{1},$
$\ldots,$

$j_{r}$ can be checked easily (it requires at most $r$ incomparabil-

ity and intersection checks assuming inductively that $j_{1},$
$\ldots,$

$j_{r-1}$ is incomparable and

intersecting).

10



$\delta_{-}l\ell$

Fig. 1. Lexicographic enuneration of $Q(r, n)$ for $r=1,$ $\ldots m$

begin
read(m,n); $r$ $:=1;j_{r}$ $:=2$ ;
repeat

if $j_{1},$ $\ldots,j_{r}$ is incomparable and intersecting then
begin
print out $j_{1},$ $\ldots,j_{r}$ ;
if $j_{r}<2^{n-1}-1$ then extend else reduce;
end

else cut;
until $j_{1}=2^{n-1}-1$

end;
$extend\equiv begin$ if $r<m$ then $\{j_{r+1} :=j_{r}+1;r :=r+1\}$ else $j_{r}$ $:=j_{r}+1$ end;
$reduce\equiv beginr:=r-1;j_{r}$ $:=j_{r}+1$ end;
$cut\equiv$ if $j_{r}<2^{n-1}-1$ then $j_{r}$ $:=j_{r}+1$ else reduce.

We have enumerated all incomparable and intersecting sets for $n=6,7$ . The compu-

tation time needed for $n=7$ case is 7 minutes by a computer FACOM M780 (executing

about 30 MIPS).

The data in Table 1 is obtained by this algorithm (up to $n=5$ one can calculate by

hands). We give the numbers of n-variable clique functions $|N(n)|$ in Table 2.

5. Concluding discussions

We have shown that the formula given in Theorem 2 reduces the calculation of $|N(n)|$

to the enumeration of the numbers $k(0, n),$
$\ldots,$

$k(m, n)$ which are now feasible for small

numbers of $n$ (up to $\leq 7$).

Define a graph $G$ (called intersection graph) by setting: the set of vertices $:=E^{n}\backslash$

$0\cdots 0$ and the set of edges $:=$ two vertices $a$ and $b$ are connected if and only if $a$ and
$b$ are intersecting. We show $G$ for $n=3$ in Fig. 2. Then the number $|N(n)|$ equals

the number of cliques of $G$ , that is the sum of the numbers of O-cliques, l-cliques, 2-

cliques,. . . , and m-cliques (the size of a maximal clique in the intersection graph $G$ is

denoted by $m$ as in Theorem 1).

For the dual “clique” functions

11
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$N’=$ { $f|$ if $f(x_{1},$
$\ldots,$

$x_{n})=f(y_{1},$
$\ldots,$

$y_{n})=0$ then $x_{i}=y_{i}=0$ for some $i$ },

we have the same result because of duality.

We may investigate relations of the set of clique functions and the set of monotone

functions. This may help us to understand both problems which remain now as difficult

enumeration problems.
Acknowledgments. We are indebted to Professors T. Hikita and H. Machida for many stimulating

discussions. We also acknowledge the institutions of the authors whose support made this jointwork
possible.

O-clique (empty set) 1
l-cliques (vertices) 7
2-cliques (edges) 15
3-cliques $(\triangle s)$ 13

$\frac{4- c1iques(\emptyset s)4}{|N(3)|=40}$

Fig. 2. Intersection graph for $n=3$ .
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Table 1. Numbers of $k(r, n)$

$n=1$ $n=2$ $n=3$ $n=4$ $n=5$ $n=6$ $n=n=7$
$m=0$ $m=1$ $m=1$ $m=3$ $m=4$ $m=10$ $m=15$

$\ovalbox{\tt\small REJECT} r_{01111111}\backslash k(r, 1)k(r, 2)k(r, 3)k(r, 4)k(r, 5)k(r, 6)k(r, 7)$

1 1 3 7 15 31 63
2 3 30 195 1, 050
3 1 30 605 9, 030
45780 41, 545
5543 118,629
6300 233,821
7135 329,205
845 327,915
910 224, 280

10 1100, 716
11 29,337
12 5,950
13 910
14 105
15 7

Table 2. Numbers of clique functions $N(n)$

$N(1)=$ 2
$N(2)=$ 6
$N(3)=$ 40
$N(4)=$ 1, 376
$N(5)=$ 1, 314, 816
$N(6)=$ 912, 818, 962, 432
$N(7)=$ 291, 201, 248, 266, 450, 683, 035, 648
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