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1. Introduction

The purpose of this paper is to develop part of functional analysis concerned with

fixed point theorems within a relatively weak subsystem of second-order arithmetic,

known as $WKL_{0}$ . The interest of $WKL_{0}$ has been well established through ongoing

program, called Reverse Mathematics, whose ultimate goal is to answer the following

question: What set existence axioms are needed to prove the theorems of ordinary

mathematics? For information on the program, see [6], [7], [15], [16].

We here briefly describe the system $WKL_{0}$ and two other related systems $RCA_{0}$ ,

$ACA_{0}$ . $RCA_{0}$ is the system of recursive comprehension and $\Sigma_{1}^{0}$ induction. This is the

weakest system we shall consider, but is still strong enough to develop some basic

theory of continuous functions and countable algebras. The system $WKL_{0}$ consists
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of $RCA_{0}$ plus the weak K\"onig’s lemma: every infinite tree of sequences of $0s$ and

l’s has an infinite path. The first-order part of $WKL_{0}$ is the same as that of $RCA_{0}$ ,

but $WKL_{0}$ proves many important theorems which are not provable in $RCA_{0}$ , e.g.,

the Heine-Borel theorem. From the viewpoint of the traditional proof theory, both

$R_{I}CA_{0}$ and $WKL_{0}$ are as weak as Primitive Recursive Arithmetic, which is regarded

as a formal system suited for Hilbert’s finitism to a great extent. The third system

$ACA_{0}$ consists of $RCA_{0}$ plus the arithmetical comprehension axiom. This system is

strictly stronger than $WKL_{0}$ , and its first-order part is just Peano arithmetic.

In this paper, we discuss several forms of fixed point theorems and their applica-

tions within $WKL_{0}$ . A topological space $X$ is said to possess the fixed point property

if every continuous function $f$ : $Xarrow X$ has a point $x\in X$ such that $f(x)=x$ . An

elementary argument in $RCA_{0}$ shows that the unit interval $[0,1]$ has the fixed point

property. However, it is not provable within $RCA_{0}$ that $[0,1]^{2}$ (or the closed unit disc)

has the fixed point property. We indeed show that this statement is equivalent to

$WKL_{0}$ over $RCA_{0}$ . A general assertion of Brouwer’s theorem is that every nonempty

compact convex subset $C$ of $R^{n}$ has the fixed point property. We prove this asser-

tion within $WKL_{0}$ , provided that the set $C$ can be expressed as the completion of a

countable subset of $Q^{n}$ as well as that the complement of $C$ is expressed as the union

of (a sequence of) basic open sets. In fact, the assertion with the same proviso can

be proved in $RCA_{0}$ , since if the compact set $C$ contains two or more points, the line

segment connecting two distinct points in $C$ must be compact, which implies $WKL_{0}$ ,

and otherwise the assertion is trivial. We then extend Brouwer’s theorem to its infi-

nite dimensional analogue (the Tychonoff-Scahuder theorem for $R^{N}$) by adapting Ky

Fan’s technique based on the Knaster-Kuratowski-Mazurkiewicz theorem (see [5]).
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As an application of the fixed point theorem for $R^{N}$ , we prove the Cauchy-Peano

theorem for ordinary differential equations within $WKL_{0}$ , which was first shown by

Simpson [14] without reference to the fixed point theorem.

We next discuss the Markov-Kakutani fixed point theorem which asserts the ex-

istence of a common fixed point for certain families of affine mappings. While the

original proof due to Markov depended on TychonofF’s theorem, Kakutani [11] gave

a direct proof. We adapt Kakutani’s proof for $RCA_{0}$ . Kakutani [11] also proved

that the Markov-Kakutani theorem implies the Hahn-Banach theorem. We use his

technique to reprove the Hahn-Banach theorem for separable Banach spaces within

$WKL_{0}$ , which was first shown in a direct but somewhat unnatural way by Brown and

Simpson [3].

In section 2, we define the formal systems $RCA_{0},$ $WKL_{0}$ and $ACA_{0}$ . Section 3 is

devoted to the development of basic concepts of real analysis. In section 4, we discuss

uniform continuity and integration. In section 5, we investigate what set existence

axioms are needed to prove some variants of Brouwer’s fixed point theorems. In

section 6, we prove, within $WKL_{0}$ , the Tychnoff-Schauder theorem for $R^{N}$ , and apply

it to the Cauchy-Peano theorem. In section 7, we prove, within $WKL_{0}$ , the Markov-

Kakutani fixed point theorem for $R^{N}$ , and then use it to prove the Hahn-Banach

theorem for separable Banach spaces within $WKL_{0}$ .

2. The systems $RCA_{0},$ $WKL_{0}$ and $ACA_{0}$

In this section, we describe the formal systems $RCA_{0},$ $WKL_{0}$ , and $ACA_{0}$ , following

[3], [16]. The reader who is familiar with these systems may skip to the next section.

The language of second-order arithmetic is a two-sorted language with number
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variables $i,j,$ $k,$ $l,$ $m,$ $\ldots$ and set variables $X,$ $Y,$ $Z,$ $\ldots$ . Numerical terms are built up

from number variables and constant symbols $0$ and 1 by means of binary operations

$+and\cdot$ . Atomic formulas are $t_{1}=t_{2},$ $t_{1}<t_{2}$ , and $t_{1}\in X$ , where $t_{1}$ and $t_{2}$ are numer-

ical terms. Formulas are built up from atomic formulas by means of propositional

connectives, number quantifiers $\forall n$ and $\exists n$ , and set quantifiers $\forall X$ and $\exists X$ .

A formula is said to be arithmetical if it contains no set quantifiers. An arithmeti-

cal formula is said to be $\Sigma_{0}^{0}$ if all of its number quantifiers are bounded, i.e., of the

form $\forall n(n<tarrow\ldots)$ or $\exists n(n<t\ . . .)$ . An arithmetical formula is said to be $\Sigma_{1}^{0}$

(resp. $\Pi_{1}^{0}$ ) if it is of the form $\exists m\phi(m)$ (resp. $\forall m\phi(m)$ ) where $\phi(m)$ is a $\Sigma_{0}^{0}$ formula.

The system $RCA_{0}$ consists of the ordered semiring axioms for $(N, +, \cdot, 0,1, <)$

together with the scheme of $\triangle_{1}^{0}$ comprehension and $\Sigma_{1}^{0}$ induction. The $\triangle_{1}^{0}$ (recursive)

comprehension scheme consists of all formulas of the form

$\forall n(\phi(n)rightarrow\psi(n))arrow\exists X\forall n(n\in Xrightarrow\phi(n))$ ,

where $\phi(n)$ is a $\Sigma_{1}^{0}$ formula, $\psi(n)$ is a $\Pi_{1}^{0}$ formula, and $X$ does not occur freely in

$\phi(n)$ . The $\Sigma_{1}^{0}$ induction scheme consists of all formulas of the form

$\phi(0)\wedge\forall(\phi(n)arrow\phi(n+1))arrow\forall n\phi(n)$ ,

where $\phi(n)$ is a $\Sigma_{1}^{0}$ formula. At all times, we assume the law of the excluded middle.

The system $ACA_{0}$ consists of $RCA_{0}$ plus the arithmetical comprehension scheme

$\exists X\forall n(n\in Xrightarrow\phi(n))$ ,

where $\phi(n)$ is arithmetical and $X^{-}$ does not occur freely in $\phi(n)$ . We can easily see

that any arithmetical instance of induction scheme is provable in $ACA_{0}$ , and that

$ACA_{0}$ is a conservative extension of first-order Peano arithmetic.

$\not\simeq$
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The system $WKL_{0}$ is intermediate between $RCA_{0}$ and $ACA_{0}$ . Within $RCA_{0}$ , we

define $Seq_{2}$ to be the set of (codes for) finite sequences of $0’ s$ and l’s. A set $T\subseteq Seq_{2}$

is said to be a tree if any initial segment of a sequence in $T$ is also in $T$ . A path

through $T$ is a tree $P\subseteq T$ such that for any two sequences in $P$ , one of them is

an initial segment of the other. The axioms of $WKL_{0}$ are those of $RCA_{0}$ plus weak

K\"onig’s lemma: every infinite $tree\subseteq Seq_{2}$ has an infinite path. $WKL_{0}$ is known to

be conservative over Primitive Recursive Arithmetic with respect to $\Pi_{2}^{0}$ sentences.

3. The basic concepts of real analysis

This section is devoted to the development of basic concepts of real analysis,

including continuous functions, compactness and convexity in the spaces $R^{n}$ and $R^{N}$ ,

all within the system $RCA_{0}$ .

First of all, we use the symbol $N$ informally to denote the set of natural numbers.

We introduce total functions from $N$ into $N$ by encoding them as sets of ordered

pairs. Within $RCA_{0}$ , we can define most of elementary numerical functions (e.g.,

the exponential function $m^{n}$ ) in the usual way, and can prove their basic properties.

We then define (codes for) rational numbers to be certain ordered pairs of natural

numbers. The arithmetical operations on the rational numbers are defined in the

standard way. We write $Q$ for the set (or the field) of rational numbers thus defined.

We define an (infinite) sequence of rational numbers to be a function $f$ : $Narrow Q$ ,

and denote such a sequence by $\{a_{n} : n\in N\}$ or simply by $\{a_{n}\}$ , where $a$ . $=f(n)$ . $A$

real number is defined to be a sequence $\{a_{n}\}$ of rational numbers such that $VnVi(|a.-$

$a_{n+i}|\leq 2^{-n})$ . We use $R$ informally to denote the set of all real numbers. Note that

$R$ does not formally exist as a set within $RCA_{0}$ . Two real numbers $\{a_{n}\}$ and $\{b_{n}\}$ are

$6^{-}$
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defined to be equal, $\{a_{n}\}=\langle b_{n}$ }, iff $\forall n(|a_{n}-b_{n}|\leq 2^{-n+1})$ . The relation $<$ is defined

by { $a_{n}\rangle$ $<\{b_{r;}\rangle$ iff $\exists n(b_{n}-a_{n}>2^{-n+1})$ . Then it is easy to see that for any two real

numbers { $a_{n}$ ) and $\{b_{n}\}$ , exactly one of the following holds (in $RCA_{0}$ ) $:\{a_{n}\}<.$ $b_{n}$ ),

$\{a_{n}\}=\langle b_{n}$ }, \langle $a_{n}$ } $>\langle b_{n}$ }. We let $0=\langle 0;n\in N$ } and $1=\langle 1$ : $n\in N$ }. The operations

$+and$ . are defined by

$\{a_{n}\}+(b_{n}\}=\langle a_{n+1}+b_{n+1}\}$ ,

$\{a_{n})\cdot\{b_{n})=\{a_{n+m}\cdot b_{n+m}\rangle$ ,

where $m$ is the least number such that $\max(|a_{0}|, |b_{0}|)+1\leq 2^{m-1}$ . Within $RCA_{0}$ , one

can prove that $(R, +, \cdot, 0,1, <)$ is an Archimedean ordered field.

An infinite sequence of real numbers is defined to be a doubly indexed sequence

of rational numbers { $a_{mn}$ : $m,$ $n\in N\rangle$ such that for each $m,$ { $a_{mn}$ : $n\in N\rangle$ is a

real number. Such a sequence of real numbers is also denoted { $x_{m}$ : $m\in N\rangle$ , where

$x_{m}=\langle a_{mn}$ : $n\in N$ }. We write $R^{N}$ for the set of infinite sequences of real numbers.

Similarly, an n-tuple (or finite sequence with length n) of real numbers, for $n\geq 1$ , is a

doubly indexed sequence of rational numbers \langle $a_{ij}$ : $i<n,j\in N$} such that for each

$i<n,$ { $a_{ij}$ : $j\in N\rangle$ is a real number. We write $R^{n}(n\geq 1)$ for the set of n-tuples of

real numbers. In case $n=1,$ $R^{n}$ is identified with $R$ . Two elements in $R^{n}$ (or $R^{N}$ )

are defined to be equal, if their corresponding components are equal with respect to

the equality of $R$ .

We define $\max:R^{n}arrow R$ and $\min:R^{n}arrow R$ as follows:

$\max(\langle\langle a_{ij} : j\in N\} : i<n\})$ $=$ $\{\max\{a_{ij} : i<n\} : j\in N\}$ ,

$\min(\{\{a_{ij} : j\in N)$ : $i<n\rangle$ ) $=$ {$\min\{a_{ij} : i<n\}:j\in N$ ).

It is easy to check that the sequences on the right sides are “real numbers”. The
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finite sum $\sum$ : $R^{n}arrow R$ is defined by

$\sum(\{\{a_{ij} : j\in N\rangle : i<n\rangle)=\langle\sum_{i<n}a_{i(j+n-1)}$ : $j\in N$}.

Its well definedness is also clear. Although $\max,$ $\min$ and $\sum$ could be defined as

continuous functions from $R^{n}$ to $R$ (the notion of continuous functions will be given

later), we treat them like operations such $as+and$ . on $R$ .

The vector addition and scalar multiplication on $R^{n}$ and $R^{N}$ are defined in obvious

way. We define the norm $\Vert\cdot\Vert_{n}$ on $R^{n}$ by I { $x_{i}$ : $i<n\rangle$ $\Vert_{n}=\max|x_{i}|i<n$ Thus $R^{n}$ can be

viewed as a normed linear space. We also use $\Vert\cdot\Vert_{n}$ as a seminorm on $R^{N}$ by letting

$\Vert\{x_{i} : i\in N\rangle\Vert_{n}=\Vert\langle x_{i} : i<n\}\Vert_{n}$ . Then $R^{N}$ is a linear space with countably many

seminorms, and indeed a separable Frechet space.

We next discuss the topology on $R^{n}$ and $R^{N}$ . Let $Q^{n}(n\geq 1)$ be the set of (codes

for) finite sequences of rational numbers with length $n$ . $Q^{n}$ may be regarded as a

subset of $R^{n}$ . We assume that $Q^{n}$ and $Q^{m}$ are disjoint if $n\neq m$ . We then put

$Q^{<N}= \bigcup_{n\geq 1}Q^{n}$ . A code for a basic open set $B_{r}(a)$ in $R^{n}$ (resp. $R^{N}$ ) is an ordered

pair $(a, r)$ with $a\in Q^{n}$ (resp. $Q^{<N}$ ) and $r\in\{0\}\cup Q^{+}$ (the positive rationals). For

$a\in Q^{<N}$ , we define $\dim(a)$ to be the dimension of $a$ , i.e., $a\in Q^{\dim(a)}$ . A point

$x\in R^{n}$ (resp. $R^{N}$ ) is said to belong to a basic open set $B_{r}(a)$ in $R^{n}$ (resp. $R^{N}$),

denoted $x\in B_{r}(a)$ , if $\Vert x-a\Vert_{n}<r$ (resp. $\Vert x-a\Vert_{\dim(a)}<r$ ). By $x\in\overline{B_{r}(a)}$, we

mean $\Vert x-a\Vert_{\dim(a)}\leq r$ . We write $B_{r}(a)\subseteq B_{s}(b)$ in $R^{n}$ (resp. $R^{N}$) to mean that

$\Vert b-a||_{n}+r\leq s$ (resp. dim(b) $\leq\dim(a)$ and I $b-a\Vert_{\dim(b)}+r\leq s$). A basic open set

$B_{r}(a)$ is said to be nonempty if $r>0$ .

A code for an open set $U$ in $R^{n}$ (resp. $R^{N}$ ) is a sequence of (codes for) basic open

sets in $R^{n}$ (resp. $R^{N}$), i.e., a function $\phi$ : $Narrow Q^{n}\cross Q$ (resp. $\phi$ : $Narrow Q^{<N}\cross Q$ )

such that for each $n\in N,$ $\phi(n)$ is a code for a basic open set in $R^{n}$ (resp. $R^{N}$). A

7
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point $x\in R^{n}$ (resp. $R^{N}$ ) is said to belong to an open set $U$ with code $\phi$ in $R^{n}$ (resp.

$R^{N})$ , denoted $x\in U$ , if it belongs to a basic open set in the sequence, $i.e.$ , there exists

$n\in N$ such that $x\in\phi(n)$ . This definition of open sets is not identical with the

corresponding definition in [3]. Our definition guarantees that for any $x\in R^{n}$ and

any $r\in R$ with $r\geq 0,$ $\{y\in R^{n} : \Vert x-y\Vert_{n}<r\}$ is an open set.

We define closed sets to bejust complements of open sets. Remark that a closed set

has only negative information on its members, and so, in general, it is difficult to deal

with points in a closed set. We thus introduce the notion of countably representable

closed sets, which have both positive and negative information on their members. Let

$f$ be a function from $N$ to $R^{n}$ (or $R^{N}$). We informally identify $f$ with its range, say

$A$ , although $A$ may not exist as a set. A closed set $C\subseteq R^{n}$ (resp. $C\subseteq R^{N}$ ) is said to

be countably represented by $A\subseteq R^{n}$ (resp. $A\subseteq R^{N}$ ) denoted $C=\hat{A}$ , if for all $x\in R^{n}$

(resp. $x\in R^{N}$ ),

$x\in C$ $\Leftrightarrow$ there exists an infinite sequence \langle $a_{i}$ } from $A$ such that

for each $i,$ $\Vert x-a_{i}\Vert_{n}\leq 2^{-i}$ (resp. $\Vert x-a_{i}\Vert_{i+1}\leq 2^{-i}$ ).

For example, $[0,1]^{n}$ is countably represented by $A_{n}=\{\{q_{0},$
$\ldots,$

$q_{n-1}\rangle$ $\in Q^{n}$ : $0\leq q_{i}\leq 1$

for each $i<n$}, and $[0,1]^{N}$ by {{ $q_{0},$ $q_{1},$ $\ldots$ , $q_{n},$ $0,0,$ $\ldots\rangle$ $\in Q^{N}$ : $0\leq q_{i}\leq 1$ for each

$i\leq n\}$ .

A code for a continuous partial function $f$ : $R^{n}arrow R^{m}$ (or $R^{N}arrow R^{N}$ ) is a sequence

$\Phi$ of pairs of nonempty basic open sets such that

(i) $(B_{r}(a),\dot{B}_{s_{1}}(b_{1}))\in\Phi\ (B_{r}(a), B_{s_{2}}(b_{2}))\in\Phiarrow\Vert b_{1}-b_{2}\Vert_{k}<s_{1}+s_{2}$ ,

where $k= \min(\dim(b_{1}), \dim(b_{2}))$ ,

(ii) $(B_{r}(a), B_{s_{1}}(b_{1}))\in\Phi\ B_{s_{1}}(b_{1})\subseteq B_{s_{2}}(b_{2})arrow(B_{r}(a), B_{s_{2}}(b_{2}))\in\Phi$ ,

$S$



$(iii)(B_{r_{1}}(a_{1}), B_{s}(b))\in\Phi\ B_{r_{2}}(a_{2})\subseteq B_{r_{1}}(a_{1})arrow(B_{r_{2}}(a_{2}), B_{s}(b))\in\Phi$ .

Although $\Phi$ is formally a function from $N$ to $Q^{n}\cross Q^{+}\cross Q^{m}\cross Q^{+}$ (resp. $Q^{<N}\cross$

$Q^{+}\cross Q^{<N}\cross Q^{+})$ , we write $(B_{r}(a), B_{s}(b))\in\Phi$ if $\Phi(n)=(a, r, b, s)$ for some $n\in N$ .

Intuitively, $(B_{r}(a), B_{s}(b))\in\Phi$ means that $f(B_{r}(a))\subseteq\overline{B_{s}(b)}$ where $f$ is the continuous

partial function encoded by $\Phi$ . A point $x\in R^{n}$ (resp. $R^{N}$ ) is said to belong to the

domain of function $f$ with code $\Phi$ if for all $\epsilon>0$ (resp. for all $\epsilon>0$ and all $i\in N$ ),

there exists $(B_{r}(a), B_{s}(b))\in\Phi$ such that $x\in B_{r}(a)$ and $s<\epsilon$ (resp. $s<\epsilon$ and

$\dim(b)\geq i+1)$ . If a point $x\in R^{n}$ (resp. $R^{N}$ ) is in the domain of $f$ , we define $f(x)$

to be the point $y\in R^{n}$ (resp. $R^{N}$ ) such that if $x\in B_{r}(a)\ (B_{r}(a), B_{s}(b))\in\Phi$ then

$y\in\overline{B_{s}(b)}$. We can prove, within $RCA_{0}$ , that such a $y$ exists uniquely (up to the

equality of points). A continuous partial function $f$ : $R^{n}arrow R^{m}$ or $f$ : $R^{N}arrow R^{N}$ is

said to be a continuous function from a closed set $C$ to a closed set $D$ , if the domain

of $f$ includes $C$ and for each $x\in C,$ $f(x)\in D$ .

In the rest of this section, we discuss the notions of compactness and convexity,

which play the most important roles in fixed point theory. Let $C$ be a closed set in

$1$

$1$

$1$

$1$

$1$

!
$i$

$!$

$1$

$1$

;

$!$

$!$

$1$

$1$

$1$

$R^{n}$ or $R^{N}$ . $C$ is said to be compact (in the sense of Heine-Borel) iff for any open set $|$

\langle $B_{i}$ : $i\in N$ } with $B_{i}$ basic open, if $\{B_{i} : i\in N\}$ covers $C$ (i.e., all points in $C$ belong
$|$

to some $B_{i}$ ) then there exists $n\in N$ such that $\langle B_{i} : i<n\rangle$ covers $C$ . The notion

of compactness should be distinguished from related concepts such as the Bolzano-

Wierstrass property: every bounded sequence has a limit point. H. Friedman [7] has

shown that $WKL_{0}$ and the compactness (in the sense of Heine-Borel) of $[0,1]$ are

$J$

equivalent over $RCA_{0}$ , and that $ACA_{0}$ and the Bolzano-Wierstrass property of $[0,1]$

are equivalent over $RCA_{0}$ .

We here state the following lemma without proof.

$\eta$
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3.1 LEMMA$(RCA_{0})$ . The following are pairwise equivalent:

(i) $WKL_{0}$ ,

$(ii)_{n}[0,1]^{n}\subseteq R^{n}$ is compact, $n\geq 1$ ,

(iii) $[0,1]^{N}$ is compact.

For the proof, see Lemma 2.4 and 3.3 of Simpson [14] and the references given there.

We finally discuss the notion of convexity. Let $C$ be a closed set in $R^{n}$ or $R^{N}$ . We

define $C$ to be convex iff for all $x,$ $y$ in $C$ and for all $q\in[0,1]\cap Q,$ $qx+(1-q)y\in C$ .

Then the following holds.

3.2 LEMMA$(RCA_{0})$ . Let $C$ be a convex closed set in $R^{n}$ or $R^{N}$ . Then for any

finite subset $\{x_{0}, \ldots, x_{n-1}\}\subseteq C$ and for any set of non-negative reals $\{\alpha_{0}, \ldots, \alpha_{n-1}\}$

with $\sum_{i<n}\alpha_{i}=1$ , we have

$\sum_{i<n}\alpha_{i}x_{i}\in C$
.

PROOF. Fix any $\{x_{0}, \ldots, x_{n-1}\}\subseteq C$ . We first prove the following statement by

induction on $k\leq n$ :

$(*)$ for any non-negative rationals $\{q_{0}, \ldots , q_{k-1}\}$
with $\sum_{i<k}q_{i}=1$ ,

$\sum_{i<k}q_{i}x_{i}\in C$
.

We here notice that the statement $(*)$ is $\Pi_{1}^{0}$ , and so we can use the $\Pi_{1}^{0}$ induction

(which is equivalent to $\Sigma_{1}^{0}$ induction, see [8, Lemma 1.1]). Assume $(*)$ holds for $k$ .

Let $\{q_{0}, \ldots, q_{k}\}$ be a set of non-negative rationals such that $\sum_{i\leq k}q_{i}=1$ . We may

assume $q_{k}\neq 1$ . For if $q_{k}=1$ then $q_{i}=0$ for $i<k$ , and so $\sum_{i\leq k}q_{i}x_{i}=x_{k}\in C$ . Now

consider the set of rationals $\{\frac{q_{0}}{1-q_{k}}, \frac{q_{1}}{1-q_{k}}, \ldots, \frac{q_{k-1}}{1-q_{k}}\}$ . Then we have

$\frac{q_{0}}{1-q_{k}}+\frac{q_{1}}{1-q_{k}}+\ldots+\frac{q_{k-1}}{1-q_{k}}=\frac{\Sigma_{i\leq k}q_{i}-q_{k}}{1-q_{k}}=1$ .

/0
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So by the induction hypothesis,

$\sum_{i<k}\frac{q_{i}}{1-q_{k}}x_{i}\in$ C.

Finally, by the convexity of $C$ , we have

$\sum_{i\leq k}q_{k}x_{k}=(1-q_{k})(\sum_{i<k}\frac{q_{i}}{1-q_{k}}x_{i})+q_{k}x_{k}\in C$.

Thus, for any non-negative rationals $\{q_{0}, \ldots , q_{n-1}\}$ with $\Sigma_{i<n}q_{i}=1$ ,

$\sum_{i<n}q_{i}x_{i}\in C$
.

Since $C$ is closed, we can easily show that for any non-negative reals $\{\alpha_{0}, \ldots, \alpha_{n-1}\}$

with $\Sigma_{i<n}\alpha_{i}=1$ ,

$\sum_{i<n}\alpha_{i}x_{i}\in C$
.

This completes the proof. $\square$

4. Uniform continuity and integration

In this section, we discuss some important properties of uniformly continuous

functions, and then define the Riemann integration for those functions.

We begin with the following definition (cf. Aberth [1], Simpson [14]). Let $f$ be a

continuous function from a closed set $C(\subseteq R^{n})$ to $R^{m}$ . Then $f$ is said to be weakly

uniformly continuous on $C$ if for any $e\in N$ , there exists $d\in N$ such that for all $x$

and $y$ in $C$ , if $||x-y\Vert_{n}<2^{-d}$ then 1 $f(x)-f(y)\Vert_{m}<2^{-e}$ . $f$ is said to be uniformly

continuous on $C$ if there exists a total function $h$ : $Narrow N$ such that for all $e\in N$

and all $x$ and $y$ in $C$ , if $\Vert x-y\Vert_{n}<2^{-h(e)}$ then 1 $f(x)-f(y)\Vert_{m}<2^{-e}$ . Such a function

$h$ is called a modulus of uniform continuity for $f$ .

//
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4.1 LEMMA$(RCA_{0})$ . Let $C$ be a compact closed set in $R^{n}$ . Then any continuous

function $f$ : $Carrow R^{m}$ is weakly uniformly continuous on $C$ .

PROOF. Let $\Phi=\{(B_{i}, B_{i}’) : i\in N\}$ be a code for a continuous function $f$ :

$C(\subseteq R^{n})arrow R^{m}$ , where $B_{i}$ and $B_{i}’$ are basic open sets in $R^{n}$ and $R^{m}$ , respectively.

Fix any $\epsilon>0$ . Let $\mathcal{B}=$ { $B$ : $(B,$ $B’)\in\Phi$
.
and $B’=(a,$ $r)$ with $r< \frac{\epsilon}{2}$ }. From the

definition of the domain of a continuous function, it is easy to see that 6 is an open

covering of $C$ . So by the compactness of $C$ , there exists a finite subset of $\mathcal{B}$ which

also covers $C$ . Let $\{(a_{0}, r_{0}), (a_{1}, r_{1}), \ldots, (a_{k-1}, r_{k-1})\}$ be such a finite covering. Now

put $C=\{(a_{i}, r_{i}-2^{-l}) : r_{i}-2^{-l}>0, i<k, l\in N\}$ . It can be shown that $C$ is an

open covering of $C$ , too. Again by the compactness of $C$ , there is an $L\in N$ such

that $C_{L}=\{(a_{i}, r_{i}-2^{-l}) : r_{i}-2^{-l}>0, i<k, l\leq L\}$ also covers $C$ . We finally set

$\delta=2^{-L}$ , and show that for all $x$ and $y$ in $C$ , if $\Vert x-y\Vert_{n}<\delta$ then 1 $f(x)-f(y)\Vert_{m}<\epsilon$ .

Choose any two points $x$ and $y$ from $C$ such that $\Vert x-y\Vert_{n}<\delta$ . Since $C_{L}$ covers $C$ ,

there exists a basic open set $(a_{i}, r_{i}-2^{-l})$ in $C_{L}$ which the point $x$ belongs to. Then

both $x$ and $y$ belong to the basic open set $(a_{i}, r_{i})$ in $B$ , since $\Vert x-y\Vert_{n}<2^{-L}\leq 2^{-l}$ .

Hence, by the definition of $B$ , both $f(x)$ and $f(y)$ belong to a basic open set $(a, r)$

with $r< \frac{\epsilon}{2}$ that is, $\Vert f(x)-f(y)\Vert_{m}<\epsilon$ . This completes the proof. $\square$

4.2 LEMMA$(WKL_{0})$ . Let $C$ be an n-dimensional rectangle { $(x_{0}, \ldots, x_{n-1})\in R^{n}$ :

$a_{i}\leq x_{i}\leq b_{i}\}$ with $a_{i},$ $b_{i}\in R$ . Then any continuous function $f$ : $Carrow R^{m}$ is uniformly

continuous on $C$ .

PROOF. Let $f$ be a continuous function from the rectangle $C$ to $R^{m}$ . Within

$WKL_{0}$ , a rectangle $C$ is compact by Lemma 3.1. So we know from Lemma 4.1, that

for each $e$ , there exists $d$ such that $\Vert x-y\Vert_{n}<2^{-d}\Rightarrow\Vert f(x)-f(y)\Vert_{m}<2^{-e}$ . Look back

at the proof of Lemma 4.1. In the proof, the compactness of $C$ is used twice, first for
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the covering $\mathcal{B}$ and second for $C$ . If $C$ is a rectangle $[a_{0}, b_{0}]\cross[a_{1}, b_{1}]\cross\ldots\cross[a_{n-1}, b_{n-1}]$

with $a_{i},$ $b_{i}\in Q$ , we can easily decide whether a given finite subset of $\mathcal{B}$ (and $C$ ) covers

$C$ or not, and thus obtained $d$( $=L$ in the proof of Lemma 4.1) from $e$ in a recursive

way. We now want to reduce the general case $(a_{i}, b_{i}\in R)$ to this special case.

Suppose for each $i<n,$ $a_{i}=\{a_{ij} : j\in N\},$ $b_{i}=\{b_{ij} : j\in N\}$ with $a_{ij},$ $b_{ij}\in Q$ . For

each $j\in N$ , let $C_{j}$ be the rectangle $\{(x_{0}, \ldots, x_{n-1})\in R^{n} : a_{ij}-2^{-j}\leq x_{i}\leq b_{ij}+2^{-j}\}$.

Then it is easy to see that $C= \bigcap_{j\in N}C_{j}$ . Define $\mathcal{B}$ as in the proof of Lemma 4.1. Since

$\mathcal{B}$ is an open covering of $C$ and $C$ is compact, there exists $j_{0}\in N$ such that $\mathcal{B}$ covers

$\bigcap_{j<j_{0}}C_{j}$ . So we can effectively find a finite subset $\{(a_{0}, r_{0}), (a_{1}, r_{1}), \ldots , (a_{k-1}, r_{k-1})\}\subseteq$

$\mathcal{B}$ which covers $\bigcap_{j<k}C_{j}$ . Define $C$ as before. Now $C$ is an open covering of $\bigcap_{j<k}C_{j}$ .

We can then find a finite subcovering $C_{L}$ in an effective way. Thus, in $WKL_{0}$ , there

exists a total function $h:Narrow N$ such that for all $e\in N$ and for all $x,$ $y\in C$ ,

$\Vert x-y\Vert_{n}<2^{-h(e)}\Rightarrow\Vert f(x)-f(y)\Vert_{m}<2^{-e}$ . $\square$

For the reversal of the above lemma, see Aberth [1, Theorem 7.3] and Simpson

[13]. They indeed show that $WKL_{0}$ and the statment that any continuous function

on $[0,1]$ is uniformly continuous are equivalent over $RCA_{0}$ .

The next lemma shows that a uniformly continuous function from a countably

represented closed set $\hat{A}(\subseteq R^{n})$ to $R^{m}$ can be uniquely encoded by its restriction to

$A$ . Since a function from $A$ to $R^{m}$ is just a point in $(R^{m})^{N}\approx R^{N}$ , this lemma is very

useful to deal with certain function spaces (cf. the discussion before Theorem 6.2).

4.3 LEMMA$(RCA_{0})$ . Let $C$ be a closed set in $R^{n}$ . Suppose that $C$ is countably

represented by $A\subseteq Q^{n}$ . Let $f$ : $Aarrow R^{m}$ be a uniformly continuous function with a

modulus function $h$ (i.e., for all $a$ and $b$ in $A,$ $\Vert a-b\Vert_{n}<2^{-h(e)}\Rightarrow\Vert f(a)-f(b)\Vert_{m}<$

$2^{-e})$ . Then there exists (a code for) a unique continuous function $\hat{f}$ : $\hat{A}arrow R^{m}$ such
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that $f(a)=f(a)$ for all $a$ in $A$ .

PROOF. Let $f$ : $Aarrow R^{m}$ be a uniformly continuous function with modulus $h$ . Let

$\Phi(\subseteq Q^{n}\cross Q^{+}\cross Q^{m}\cross Q^{+})$ be a code for a continuous function $\hat{f}$ : $\hat{A}arrow R^{m}$ defined

by

$(a, r, b, s)\in\Phirightarrow\exists e$ ( $r<2^{-h(e)}$ and 1 $f(a)-b\Vert_{m}<s-2^{-e}$).

Note that the above definition is $\Sigma_{1}^{0}$ , and so $\Phi$ can be seen as a recursive enumeration

of its members. It is easy to see that $\Phi$ satisfies all the conditions to be a continuous

function code. It is also clear that $f(a)=f(a)$ for all $a$ in A. $\square$

We next discuss the integration of uniformly continuous function on a closed in-

terval $[a, b]$ with $a,$ $b\in R$ . $For$ simplicity, we do not deal with multi-variable functions

here. Recall that a continuous function on { $a,$
$b$ ] is always uniformly continuous in

$WKL_{0}$ , but not always in $RCA_{0}$ .

Let $f$ : $[a, b]arrow R$ be uniformly continuous with a modulus function $h$ . We define

a function $S:Narrow R$ by

$S(m)= \frac{b-a}{2^{m}}\sum_{k=0}^{2^{m}-1}f(a+k\frac{b-a}{2^{m}})$ .

Then the (Riemann) integration of $f$ on $[a, b]$ , denoted $\int_{a}^{b}f(x)dx$ , is defined to be

$\lim_{narrow\infty}S(h(n))$ . To see the existence of such a limit, we first show the following

lemma.

4.4 LEMMA$(RCA_{0})$ . If a sequence $\{x_{n}\}\in R$ satisfies $\exists n_{0}\forall n\forall i(|x_{n}-x_{n+i}|\leq$

$2^{n0-n})$ , then there exists $x\in R$ such that $\forall m\exists M\forall n\geq M(|x-x_{n}|\leq 2^{-m})$ . (cf.

Brown and Simpson [3, Lemma 4.1]).

PROOF. For $n\in N$ , let $x_{n}=\langle q_{n,k}$ : $k\in N$ } with $q_{n,k}\in Q$ . Let $x=\langle q_{n+no+2,n+n_{0}+2}$ :

$n\in N)$ . Then it is easy to see that $x\in R$ and $\forall n\geq m+n_{0}+1(|x-x_{n}|\leq 2^{-m})$ . $\square$

$/+$



58

Choose $m_{0}\in N$ such that $|b-a|\leq 2^{m_{0}}$ . Then by the uniform continuity of $f$ , for

any $x \in[a+k\frac{b-a}{2^{h\langle n)+m_{0}}},$ $a+(k+1) \frac{b-a}{2^{h(n)+mo}})$ , we have

$|f(x)-f(a+k \frac{b-a}{2^{h(n)+m_{0}}})|<2^{-n}$ .

Hence, for all $i\in N$ ,

$|S(h(n+i)-m_{0})-S(h(n)+m_{0})|< \frac{|b-a|}{2^{h(n+i)+m_{0}}}(2^{h\langle n+i)+m_{0}}\cdot 2^{-n})$

$=|b-a|\cdot 2^{-n}\leq 2^{m0-n}$ .

Therefore, by the above lemma, $\lim_{narrow\infty}S(h(n))=\lim_{narrow\infty}S(h(n)+m_{0})$ exists.

5. Brouwer’s fixed point theorem

In this section, we investigate what set existence axioms are needed to prove some

variants of Brouwer’s fixed point theorem. We begin with the following theorem.

5.1 BROUWER’S THEOREM I $(a)(RCA_{0})$ . For any continuous function $f$ : $[0,1]arrow$

$[0,1]$ , there is a point $x\in[0,1]$ such that $f(x)=x$ .

$(b)(WKL_{0})$ . For any continuous function $f$ : $[0,1]^{n}arrow[0,1]^{n}$ , there is a point

$x\in\lfloor 0,1]^{n}$ such that $f(x)=x(n\geq 2)$ .

PROOF. (a). We imitate Simpson’s proof for the intermediate value theorem [15].

Suppose that for all rational $q\in[0,1],$ $f(q)\neq q$ . With the $\triangle_{1}^{0}$ comprehension, we

define a nested sequence of rational intervals follows:

$[a_{0}, b_{0}]=[0,1]$

$[a_{n+1}, b_{n+1}]=\{\begin{array}{l}[(a_{n}+b_{n})/2,b_{n}]iff((a_{n}+b_{n})/2)>(a_{n}+b_{n})/2[a_{n},(a_{n}+b_{n})/2]iff((a_{n}+b_{n})/2)<(a_{n}+b_{n})/2\end{array}$
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By nested interval convergence (see Lemma 2.2 in Simpson [15]), there exists a real

$x$ such that $x= \lim a_{n}=\lim b_{n}$ . This $x$ is a fixed point for $f$ .

(b). Among several known proofs of this theorem, one given by D. Gale[9] seems

to be most easily carried out within $RCA_{0}$ . His proof nostly consists of manipulations

of finite objects (HEX), which do not use any set existence axiom. The only infinitary

argument or fact you need is that every continuous function on $[0,1]^{n}$ is uniformly

continuous, which is proved in our Lemma 4.2. For details, see Gale[9]. $\square$

We remark that part (b) is not provable over $RCA_{0}$ . In fact, we have

5.2 THEOREM $(RCA_{0})$ . The following are pairwise equivalent:

(i) $WKL_{0}$ ,

(ii) for any continuous function $f$ : $[0,1]^{2}arrow[0,1]^{2}$ , there is a point $x\in[0,1]^{2}$ such

that $f(x)=x$ .

PROOF. Since $(i)arrow(ii)$ is already proved by Theorem 5.1.(b), we only show

(ii) $arrow(i)$ . Our argument is essentially due to V. P. Orekov (cf. chapter IV of

Beeson[2]).

By way of contradiction, deny (i). Then $[0,1]$ is not compact by Lemma 3.1.

Let $\{I_{i} : i\in N\}$ be a sequence of rational open intervals which covers $[0,1]$ but has

no finite subcover. From $\langle I_{i}\rangle$ , we can easily construct a sequence of rational closed

intervals ( $J_{i}$ : $i\in N\rangle$ such that $\phi\neq J_{i}\subseteq[0,1],$ \langle $J_{i}$ } covers $[0,1]$ , and any two distinct

$J_{i}’s$ are disjoint or have only an endpoint in common. We may assume that $J_{0}$ has $0$

as its left endpoint and $J_{1}$ has 1 as its right endpoint. Define $A_{k}$ to be the union of

all $J_{i}\cross J_{k}$ and $J_{k}\cross J_{i}$ for $i\leq k$ .

From now, we construct a retraction $f$ of $[0,1]^{2}$ onto the four side of the square

$[0,1]^{2}$ . If such an $f$ is constructed, (ii) does not hold. For if $r$ is the rotation of $90^{O}$
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about the point $($ }, $\frac{1}{2}),$ $rof$ is a continuous function from $[0,1]^{2}$ into itself which has

no fixed point.

We define a retraction $f$ in stages. Suppose $f$ has defined on all $A_{i}$ for $i<k$ . We

want to define $f$ for $A_{k}$ , compatibly with the value already assigned. Decompose $A_{k}$

into its connected components $P_{1},$ $\ldots P_{l}$ . We can easily observe that each $P_{i}$ has at

least one free side on which $P_{i}$ does not adjoin $\bigcup_{i<k}A_{i}$ or any side of $[0,1]^{2}$ . Now

$f$ can be extended to $P_{i}$ by combining a retraction of $P_{i}$ onto the sides on which

the values of $f$ are already determined (or onto any one side if no such side). Since

$\bigcup_{k\in N}A_{k}=[0,1]^{2}$ , this procedure clearly defines a retraction of $[0,1]^{2}$ onto its sides.

More formally, we have to construct a code for this retraction. This is done by

enumerating the pairs of nonempty basic open sets $(B_{1}, B_{2})$ such that $B_{1} \subseteq\bigcup_{i<k}A_{i}$

for some $k$ and $f(B_{1})\subseteq\overline{B_{2}}$. Since this construction is just a routine, we omit the

details. $\square$

We now generalize Theorem 5.1 as follows:

5.3 BROUWER’S THEOREM $II(WKL_{0})$ . Let $\{a_{0}, \ldots , a_{k}\}$ be a finite subset of $Q^{n}$ .

Let $C$ be the closed set { $\sum_{i\leq k}\alpha_{i}a_{i}$ : $\alpha_{i}\in R,$ $\alpha_{i}\geq 0$ for $i\leq k$ , and $\Sigma_{i\leq k}\alpha_{i}=1$ }. Then

for any continuous function $f$ : $Carrow C$ , there is a point $x\in C$ such that $f(x)=x$ .

PROOF. As in the standard proof (see [17]), we will show that $C$ is a retract of

a sufficient large n-dimensional rectangle (in a certain coordinate system). Changing

coordinate systems is not essential, but makes it much easier to construct such a

retraction.

We first find a basis for the space $L$ spanned by $\{a_{1}-a_{0}, a_{2}-a_{0}, \ldots , a_{k}-a_{0}\}$ . This

can be done by simple calculations of rational matrices (e.g., Gaussian elimination).

Notice that the assumption $\{a_{0}, a_{1}, \ldots, a_{k}\}\subseteq Q^{n}$ (rather $than\subseteq R^{n}$ ) is necessary to
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determine whether some entries of the matrices in the computations are zero or not.

Let $\mathcal{B}$ be a base for $R^{n}$ including the base for the subspace $L$ spanned by $\{a_{1}-$

$a_{0},$ $a_{2}-a_{0},$ $\ldots,$ $a_{k}-a_{0}$ }. Using the coordinate system relative to the base $B$ , the points

$a_{0},$ $a_{1},$ $\ldots,$
$a_{k}$ can be expressed as n-tuples in $R^{l}\cross\{0\}^{n-l}$ , where $I$ is the dimension of

the subspace $L$ . So there exists $d\in R$ such that the convex hull $C$ of $\{a_{0}, a_{1}, \ldots, a_{k}\}$

is included in $[-d, d]^{l}\cross\{0\}^{n-l}\subseteq[-d, d]^{n}$ with respect to the new coordinate system.

There is an obvious retraction from $[-d, d]^{n}$ onto $[-d, d]^{l}\cross\{0\}^{n-l}$ . So if we can show

that $C$ is a retract of $[-d, d]^{l}\cross\{0\}^{n-l}$ , then we may conclude that $C$ has the fixed

point property (i.e., any continuous function from $C$ to itself has a fixed point) since

we already know from Theorem 5.1 that $[-d, d]^{n}$ has the fixed point property. Remark

that if $C$ has the fixed point property in the new coordinate system then it also has

in the standard coordinate system, since a continuous function code in the standard

coordinate system can be easily translated in the new coordinate system (and vice

versa).

From now on, we regard $C$ as a subset of $[-d, d]^{l}$ by ignoring the zeros in the $(l+1)-$

th to n-th coordinates. To clarify the shape of $C$ , we remove all the superfluous points

from $\{a_{0}, a_{1}, \ldots, a_{k}\}$ and construct the smallest subset $S\subseteq\{a_{0}, a_{1}, \ldots, a_{k}\}$ such that

the convex hull of $S$ is still $C$ . Note that $a_{i_{0}}$ is superfluous if there are $l+1$ points

$a_{i_{1}},$ $a_{i_{2}}$ , , .. , $a_{i_{1}+1}$ in $\{a_{0}, a_{1}, \ldots, a_{k}\}$ such that $a_{i_{0}}\neq a_{i_{j}}$ for all $j\neq 0$ , and such that $a_{i_{0}}$

is involved in the convex hull of $\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{l}+1}\}$ .

We may assume that $\{a_{0}, \ldots, a_{k}\}$ has no superfluous points. Let $\overline{a}$ be the center

of $C$ , i.e., $\overline{a}=(\Sigma_{i\leq k}a_{i})/(k+1)$ . We construct a retraction $\hat{g}$ : $[-d, d]^{l}arrow C$ as

follows. For $b\in[-d, d]^{l}\cap Q^{l}$ , if $b\in C$ then we put $g(b)=b$ , and if $b\not\in C$ then we

put $g(b)=$ the point at which the line segment connecting $b$ and $\overline{a}$ intersects a face
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of $C$ . Note that such an intersection can be obtained by solving a system of linear

equations with rational coefficients. The function $g$ thus defined on $[-d, d]^{l}\cap Q^{l}$ can

be uniquely extended to a continuous function $\hat{g}$ on $[-d, d]^{l}$ . In fact, a code $\Phi$ for the

continuous function $\hat{g}$ is defined by

$(B, B’)\in\Phi$ $\Leftrightarrow$ $\exists b_{0},$ $b_{1},$
$\ldots,$

$b_{l}\in[-d, d]^{l}\cap Q^{l}$

$B$ is included in the convex hull of $\{b_{0}, \ldots , b_{l}\}$

and $\{g(b_{0}), \ldots, g(b_{l})\}$ is included $inB’$ .

Then we can easily see that $\Phi$ is indeed a code for the desired retraction. This

completes the proof. $\square$

The above theorem can be further generalized to Theorem 5.4 and Theorem 6.1.

Since the next theorem can be proved in the same way as Theorem 6.1, we just state

it without proof.

5.4 BROUWER’S THEOREM $III(WKL_{0})$ . Let $C$ be a nonempty compact convex

closed set in $R^{n}$ , which is also assumed to be countably represented by $A\subseteq Q^{n}$ . Then

for any continuous function $f$ : $Carrow C$ has a fixed point.

6. Tychonoff-Schauder theorem for $R^{N}$ and its applications to

ordinary differential equations

In this section, we extend Brouwer’s theorem to its infinite dimensional analogue

(Tychonoff-Schauder theorem for $R^{N}$ ), from which we prove the Cauchy-Peano the-

orem for ordinary differential equations.

6.1 TYCHONOFF-SCHAUDER THEOREM$(WKL_{0})$ . Let $C$ be a nonempty compact

convex closed set in $R^{N}$ , which is also assumed to be countably represented by $A\subseteq$
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$Q^{N}$ . Then for any continuous function $f$ : $Carrow C$ has a fixed point.

PROOF. By way of contradiction, we assume that for all $x\in C,$ $f(x)\neq x$ . Let $\Phi$ be

a code for $f$ . Recall that $(B, B’)\in\Phi$ means that $f(B)\subseteq\overline{B’}$. Let $B=\{B$ : there is $B’$

such that $(B, B’)\in\Phi$ and $B\cap B’=\emptyset$ }. It is easy to see that $\mathcal{B}$ covers $C$ , since $f(x)\neq$

$x$ for all $x\in C$ . By the compactness of $C,$ $l3$ has a finite subcover $\{B_{0}, B_{1}, \ldots, B_{k}\}$ .

So there exists $n\geq 1$ and $\epsilon>0$ such that for all $x\in C$ , I $f(x)-x\Vert_{n}>\epsilon$ . We may

assume $\epsilon$ is a rational number. Fix $n$ and $\epsilon$ . For contradiction, we will show that

there exists $x\in C$ such that 1 $f(x)-x\Vert_{n}\leq\epsilon$ . We define, for each $a\in A$ ,

$Ta=\{B$ : there exists $B’=(b, s)$ with $\dim(b)\geq n$

such that $(B, B’)\in\Phi$ and $\Vert b-a\Vert_{n}+s\leq\epsilon$}.

$Ta$ is a $\Sigma_{1}^{0}$ predicate and hence $Ta$ can be viewed as a recursive enumeration of its

numbers (cf. Lemma 2.1 of Simpson [14]). Clearly, $\cup\{Ta : a\in A\}$ covers $C$ . So by

compactness, it has a finite subcover $\{B_{ij} : i\leq k,j\leq l\}$ such that $B_{ij}\in Ta_{i}$ , where

$a_{i}$ is the $(i+1)$ -th element of $A$ . From this subcover, we will construct a continuous

function $g$ on a finite dimensional set, which has a fixed point by Brouwer’s theorem.

Then from this fixed point, we will make $x\in C$ such that 1 $f(x)-x\Vert_{n}\leq\epsilon$ .

Suppose that $B_{ij}=(b_{ij}, r_{ij})$ and $\dim(b_{ij})=m_{ij}$ for $i\leq k$ and $j\leq l$ . Let

$m= \max$ [ $\{m_{ij}$ : $i\leq k$ and $j\leq l\}\cup\{n\}$ ]. For $x\in R^{N},$ $x[m]$ denotes the initial

segment of $x$ with length $m$ . Let $D$ be the convex hull of $\{a_{i}[m] : i\leq k\}$ . We will

construct a continuous function $g$ on $D$ .

For each $i\leq k$ , we first define a continuous function $d_{i}$ : $Darrow R$ by

$d_{i}(x)= \max[\{r_{ij}-\Vert x-b_{ij}\Vert_{m_{ij}} : j\leq l\}\cup\{0\}]$ .

Note that $d_{i}(x)>0$ iff any extension of $x$ to $C$ belongs to $B_{ij}$ for some $j\leq l$ . It is not
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difficult (but somewhat messy) to construct a code for the continuous function $d_{i}$ . So

we leave this construction to the reader. It is also easy to see that $\sum_{i\leq k}d_{j}(x)>0$ for

each $x\in D$ . We set

$\beta_{i}(x)=\frac{d_{i}(x)}{\Sigma_{j\leq k}d_{j}(x)}$ .

Then for all $x\in D$ , we have

$\sum_{i\leq k}\beta_{i}(x)=1$
.

We finally define a continuous function $g:Darrow D$ by

$g(x)= \sum_{i\leq k}\beta_{i}(x)a_{i}[m]$
.

We now apply Brouwer’s theorem II to the function $g:Darrow D$ . Let $x$ be any fixed

point of $g$ , and $\overline{x}$ be a point in $C$ such that $\overline{x}[m]=x$ . Let $I=\{i\leq n : \beta_{i}(x)>0\}$ .

Such an $I$ exists by bounded $\Sigma_{1}^{0}$ separation (cf. Lemma 1.6 of [8]). We here notice

that

$||f(\overline{x})-a_{i}\Vert_{n}\leq\epsilon$ for all $i\in I$ ,

since if $\beta_{i}(x)>0,\overline{x}$ belongs to $B_{ij}$ for some $j$ and hence $\overline{x}$ belongs to $Ta_{i}$ .

Since $\sum_{i\in I}\beta_{i}(x)=1$ , we have

$|If(\overline{x})-\overline{x}\Vert_{n}$ $=$ I $\sum_{i\in I}\beta_{i}(x)f(\overline{x})-\sum_{i\in I}\beta_{i}(x)a_{i}\Vert_{n}$

$\leq$

$\sum_{i\in I}\beta_{i}(x)\Vert f(\overline{x})-a_{i}\Vert_{n}$

$\leq$ $\epsilon$ .

This completes the proof. $\square$

Remark: The above theorem is indeed provable within $RCA_{0}$ . For if the compact

set $C$ includes a line segment, the line segment is also compact, which implies $WKL_{0}$

by Lemma 3.1, and otherwise the theorem is trivial since $C$ consists of a single point.
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As an application of the above fixed point theorem, we prove, within $WKL_{0}$ ,

the Cauchy-Peano theorem for ordinary differential equations. In [14], Simpson has

already proved the Cauchy-Peano theorem in $WKL_{0}$ by eliminating the use of the

Ascoli lemma from Peano’s original proof. A key idea in his proof is that a solution

of the initial value problem can be found in a set of equicontinuous (or Lipchitzian)

functions, which can be encoded by points in $R^{N}$ (see Lemma 4.3 in this paper). In

order to use the fixed point theorem, we need a precise description of the set in $R^{N}$

corresponding to the set of equicontinuous functions, while Simpson only uses the fact

that the equicontinuous functions can be embedded into the compact set $[$ -1, $1]^{N}$ .

We here emphasize that our aim is not merely to prove the Cauchy-Peano theorem

but also to develop a part of functional analysis related to fixed point theorems within

second-order arithmetic.

6.2 $CAUCHY- PEANOTHEOREM(WKL_{0})$ . Let $f(x, y)$ be a continuous function

from the rectangle $D=\{(x, y)\in R^{2} : |x|\leq a, |y|\leq b\}$ to $R$ . Then the initial value

problem

$\frac{dy}{dx}=f(x, y)$ , $y(0)=0$

has at least one solution $y=\phi(x)$ on the interval $[-\alpha, \alpha]$ , where $\alpha=\min(a, b/M)$

and $M= \max\{|f(x, y)| : (x, y)\in D\}$ . (Note: It is provable in $WKL_{0}$ that $f$ has a

maximum on D. see [13].)

PROOF. Suppose that $\{q_{i}\}_{i\in N}$ enumerates the rationals in $[-\alpha, \alpha]$ so that $q_{0}=0$

and $q_{i}\neq q_{j}(i\neq j)$ . We define a closed set $C$ in $R^{N}$ by

\langle $u_{i}$ } $\in C\Leftrightarrow u_{0}=0$ and $|u_{i}-u_{j}|\leq M|q_{i}-q_{j}|$ for all $i,j$ .

By Lemma 4.3, we may think that $u=\{u_{i}\rangle$ $\in C$ encodes a continuous function

$\tilde{u}$ : $[-\alpha, \alpha]arrow R$ such that $\tilde{u}(q_{i})=u_{i}$ for all $i$ . By identifying $u$ with $\tilde{u},$ $C$ can be
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regarded as the set of continuous functions $g$ : $[-\alpha, \alpha]arrow R$ such that $g(0)=0$ and

$|g(x)-g(y)|\leq M|x-y|$ for all $x,$ $y\in[-\alpha, \alpha]$ . It is easy to see in $WKL_{0}$ that $C$ is

compact and convex. To apply Theorem 6.1 to this $C$ , we also need to show that $C$

is countably represented by some $A\subseteq Q^{N}$ .

Let $P=$ {{ $p_{0},$ $\ldots$ , $p_{n}\rangle\in Q^{<N}$ : $p_{0}=0$ and $|p_{i}-p_{j}|<M|q_{i}-q_{j}|$ if $i\neq j$ }. For

$p=$ \langle $p_{0},p_{1},$ $\ldots$ , $p_{n}\}\in P$ , we define a standard extension $\overline{p}=\{\overline{p}0f\overline{l},$ $\ldots,\overline{p}_{n},\overline{p}_{n+1},$ $\ldots\rangle$

of $p$ into $Q^{N}$ as follows: for each $k\geq 0$ ,

$\overline{p}_{k}=\{\begin{array}{l}p_{i}ifq_{k}\in[q_{i},\alpha],i\leq nand\neg\exists l\leq n(q_{l}\in(q_{i},\alpha])\frac{p_{J}-pi}{q_{j}-q}(q_{k}-q_{i})+p_{i}ifq_{k}\in[q_{i},q_{j}),i,j\leq nand\neg\exists l\leq n(q_{l}\in(q_{i},q_{j}))pjifq_{k}\in[-\alpha,q_{j}),j\leq nand\neg\exists l\leq n(q_{l}\in[-\alpha,q_{j}))\end{array}$

We put $A=\{\overline{p}\in Q^{N} : p\in P\}$ . Then $A$ can be seen as the set of piecewise

linear functions on $[-\alpha, \alpha]$ . We will show that $C$ is countably represented by $A$ .

Choose any $u=\{u_{i}\rangle$ $\in C$ . We want to find a sequence $\{\overline{p}^{k} : k\in N\}$ from $A$

such that $\Vert u-\overline{p}^{k}\Vert_{k+1}\leq 2^{-k}$ for each $k$ . Fix $k\in N$ . We construct a sequence

$p^{k}=\{p_{0},$ $p_{1},$ $\ldots,$
$p_{k}\rangle$ in $P$ such that $|u_{i}-p_{i}|\leq 2^{-k}$ for each $i\leq k$ , and then extend it

to $\overline{p}^{k}\in A$ . Let $n\in N$ be large enough (strictly, $n\geq 2k+2$ and $\frac{2^{k+1}}{2^{n}}\leq M|q_{i}-q_{j}|$ for all

$i,j\leq k(i\neq j))$ . For each $i\leq k$ , let $r_{i}$ be a rational number such that $|u_{i}-r_{i}|<2^{-n}$ .

Suppose $|r_{i_{0}}|\leq|r_{i_{1}}|\leq\ldots\leq|r_{i_{k}}$ I with $\{i_{0}, i_{1}, \ldots, i_{k}\}=\{0,1, \ldots, k\}$ . We now define

$\{p_{0},p_{1}, \ldots, p_{k}\}$ as follows: for $j\leq k$ ,

$p_{i_{j}}=\{\begin{array}{l}r_{i_{j}}-\frac{2^{j+1}}{2^{n}}ifr_{i_{j}}\geq\frac{2^{j+1}}{2^{n}}r_{i_{j}}+\frac{2^{j+1}}{2^{n}}ifr_{i_{j}}\leq-\frac{2^{j+1}}{2^{n}}0otherwise\end{array}$

Then it is easy to see that $|u_{i}-p_{i}|\leq 2^{-k}$ for all $i\leq k$ . To show $\{p_{0}, \ldots, p_{k}\}\in P$ , we
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compute: for $j<l\leq k$ ,

$|p_{i_{j}}-p_{i_{l}}|$ $\leq$
$\max\{|r_{i_{j}}-r_{i_{l}}|-\frac{2^{l+1}-2^{j+1}}{2^{n}}, \frac{2^{l+1}-2^{j+1}}{2^{n}}\}$

$<$ $\max\{|u_{i_{j}}-u_{i_{l}}|+\frac{1}{2^{n}}+\frac{1}{2^{n}}-\frac{2^{2}-2^{1}}{2^{n}}, \frac{2^{k+1}}{2^{n}}\}$

$\leq$ $M|q_{i_{j}}-q_{i_{\iota}}|$ .

It is also obvious that $p_{0}=0$ . Henc$e\{p_{0}, \ldots , p_{k}\}$ is in $P$ , and so it can be extended

to $\overline{p}^{k}$ in $A$ .

We next define a continuous function $F:Carrow C$ as follows: for $u\in C$ ,

$F(u)= \langle\int_{0}^{qi}f(t,\tilde{u}(t))dt:i\in N\}$ ,

where $\tilde{u}$ is a continuous function encoded by $u$ . It is then obvious that $F(u)\in C$ for

$u\in C$ , since $F\overline{(u}$ )(0) $=0$ and for all $x,$ $y$ in $[-\alpha, \alpha]$ ,

$|F \overline{(u})(x)-F\overline{(u})(y)|=|\int_{x}^{y}f(t,\tilde{u}(t))dt|\leq M|x-y|$.

Formally, a code $\Phi$ for $F$ is given by

$(a, r, b, s)\in\Phi\Leftrightarrow a,$ $b\in P$ and $r,$ $s\in Q^{+}$ ,

and if $n=\dim(a)$ and $-\alpha\leq q_{i_{0}}<q_{i_{1}}\ldots<q_{i_{n-1}}\leq\alpha$

with $\{i_{0}, \ldots, i_{n-1}\}=\{0, \ldots, n-1\}$ ,

then there exists $e\in N$ such that

(i) $\alpha-q_{i_{n-1}},$ $q_{i_{j}}-q_{i_{j-1}}(1\leq j\leq n-1),$ $q_{i_{0}}+\alpha$ are all $< \frac{1}{M\cdot 2^{h(e)+2}}$

(ii) $r<2^{-h(e)-2}$

(iii) 1 $F(\overline{a})-b\Vert_{\dim(b)}<s-\alpha\cdot 2^{-e}$ ,

where $h$ is a modulus of uniform continuity for $f$ . Conditions (i) and (ii) together

implies that for any point $u=\{u_{i}\rangle$ $\in B_{r}(a)\cap C,$ $|u_{i}-\overline{a}_{i}|<2^{-h(e)}$ for all $i$ , where
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$\overline{a}=\langle\overline{a}_{i}$ } is the standard extension of $a$ . Then $|f(t,\tilde{u}(t))-f(t,\simeq a(t))|\leq 2^{-e}$ for all

$t\in[-\alpha, \alpha]$ , and so $|F\overline{(u}$ ) $(x)-F\overline{(\overline{a}})(x)|\leq|x|\cdot 2^{-e}\leq\alpha\cdot 2^{-e}$ . Therefore, $F(u)\in B_{s}(b)$

by (iii), which means that $\Phi$ is a code for $F$ . We leave the details to the reader. At

last, the fixed point of $F$ clearly gives a solution of the initial value problem. $\square$

7. Markov-Kakutani fixed point theorem and Hahn-Banach

theorem

The Markov-Kakutani fixed point theorem asserts the existence of a common fixed

point for certain families of affine mappings. A continuous function $T$ from a convex

closed set $C$ to itself is said to be affine if $T(qx+(1-q)y)=qT(x)+(1-q)T(y)$

whenever $q\in[0,1]\cap Q$ and $x,$ $y\in C$ . This theorem has numerous applications [4],

[17]. Among others, Kakutani [11] has proved the Hahn-Banach theorem from this

type of fixed point theorem (see also [10], [18]). In this section, we prove the Markov-

Kakutani theorem for $R^{N}$ within $RCA_{0}$ , and use it to prove the Hahn-Banach theorem

for separable Banach spaces within $WKL_{0}$ .

7.1 $MARKOV- KAKUTANITHEOREM(RCA_{0})$ . Let $C$ be a nonempty compact con-

vex closed set in $R^{N}$ . Let { $T_{n}\rangle$ be a sequence of continuous functions from $C$ to $C$

such that

(i) for each $n,$ $T_{n}$ is affine on $C$ ,

(ii) for each $m$ and $n,$ $T_{n}oT_{m}(x)=T_{m}oT_{n}(x)(x\in C)$ .

Then there exists $x\in C$ such that $T_{n}(x)=x$ for all $n$ .

PROOF. Let $C$ and { $T_{n}\rangle$ be as in the above statement. For each $n\in N$ , let

$K_{n}=\{x\in R^{N} : T_{n}x=x\}\cap C$ . Formally, we express the complement of $K_{n}$ in $R^{N}$
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as the union of the open set { $B$ : $(B,$ $B’)\in\Phi_{n}$ and $B\cap B’=\emptyset$ } and the complement

of $C$ , where $\Phi_{n}$ is a code for $T_{n}$ . Then $K_{n}$ is a closed set in $R^{N}$ . Our goal is to show

$that\cap\{K_{n} ; n\in N\}$ is nonempty.

Let $K_{n,i}=\{x\in R^{N} : \Vert T_{n}x-x\Vert_{i+1}\leq 2^{-i}\}\cap C$ . We can easily see that $K_{n,i}$ is well

defined as a closed set in $R^{N}$ . Since $K_{n}=\cap\{K_{n,i} : i\in N\}$ for each $n$ , we want to

show $that\cap\{K_{n,i} ; n\in N, i\in N\}\neq\emptyset$ .

By way of contradiction, we $assume\cap\{K_{n,i} : n\in N, i\in N\}=\emptyset$ . $Then\cup$ { the

complement of $K_{n,i}$ in $R^{N}$ : $n\in N,$ $i\in N$ } $=R^{N}\supset C$ . By the compactness of $C$ , there

exist $k\in N$ and $l\in N$ such $that\cup$ { the complement of $K_{n,i}$ in $R^{N}$ : $n\leq k,$ $i\leq l$ } $\supset C$ .

$Hence\cap\{K_{n,i} : n\leq k, i\leq l\}\cap C=\emptyset$ , and $so\cap\{K_{n,i} : n\leq k, i\leq l\}=\emptyset$ , sinc$e$ each

$K_{n,i}\subseteq C$ .

Let $z$ be any element of $C$ . Choose $p\in N$ such that $\Vert x-y\Vert_{l+1}\leq p\cdot 2^{-l}$ for all

$x,$ $y\in C$ . The existence of such a $p$ is clear from the compactness of $C$ . We define a

point $x$ in $C$ by

$x= \frac{1}{p^{k+1}}\sum_{i_{0}=0}^{p-1}\ldots\sum_{i_{k}=0}^{p-1}T_{0^{0}}^{i}\ldots T_{k}^{i_{k}}z$ ,

where $T_{n}^{i+1}(z)=T_{n}(T_{n}^{i}(z))$ and $T_{n}^{0}(z)=z$ . We will show $x\in\cap\{K_{n,i} : n\leq k, i\leq l\}$

for a contradiction. Fix any $n\leq k$ . Putting

$x_{n}= \frac{1}{p^{k}}\sum_{i_{0}=0i_{n}}^{p-1}\ldots\sum_{=-10i_{n}}^{p-1}\sum_{=,+10}^{p-1}\ldots\sum_{i_{k}=0}^{p-1}T_{0}^{i_{0}}\ldots T_{n-1}^{i_{n-1}}T_{n+1}^{i_{n+1}}\ldots T_{k}^{i_{k}}z$ ,

we have

.

$\Vert T_{n}x-x\Vert_{l+1}$ $=$ $\Vert T_{n}(\frac{1}{p}\sum_{i_{n}=0}^{p-1}T_{n^{n}}^{i}x_{n})-\frac{1}{p}\sum_{i_{n}=0}^{p-1}T_{n^{n}}^{i}x_{n}\Vert_{l+1}$

$=$ $\Vert\frac{1}{p}\sum_{i_{n}=0}^{p-1}T_{n^{n}}^{i+1}x_{n}-\frac{1}{p}\sum_{i_{n}=0}^{\dot{p}-1}T_{n^{n}}^{i}x_{n}\Vert_{l+1}$

$=$ $\frac{1}{p}\Vert T_{n^{p}}x_{n}-x_{n}\Vert_{l+1}$
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$\leq$ $\frac{1}{p}(p\cdot 2^{-l})=2^{-l}$ .

Remark that we can easily show by $\Pi_{1}^{0}$ induction (cf. the proof of Lemma 3.2) that

if $T$ : $Carrow C$ is affine, then for any finite subset $\{x_{0}, \ldots, x_{n-1}\}\subseteq C$ , and for any

set of non-negative reals $\{\alpha_{0}, \ldots, \alpha_{n-1}\}$ with $\sum_{i<n}\alpha_{i}=1$ , we have $f( \sum_{i<n}\alpha_{i}x_{i})=$

$\sum\alpha_{i}f(x_{i})$ . From the above inequality, $x\in K_{n,l}=\cap\{K_{n,i} : i\leq l\}$ . Since $n$ is any

number $\leq k,$ $x\in\cap\{K_{n,i} ; n\leq k, i\leq l\}$ . This is a contradiction. So we are done. $\square$

To state the Hahn-Banach theorem, we need introduce some basic notions on

Banach spaces. We define a code for a separable Banach space to be a nonempty set

$A\subseteq N$ together with $operations+,$ $-:A\cross Aarrow A,$ $\cdot$ : $Q\cross Aarrow A,$ $\Vert\cdot\Vert$ : $Aarrow[0, \infty$ )

and distinguished element $0\in A$ such that $A,$ $+,$ $-,$ $0$ forms a vector space over $Q$ and

$\Vert$ . I satisfies 1 $qa\Vert=|q|\Vert a\Vert$ and $\Vert a+b\Vert\leq\Vert a\Vert+\Vert b\Vert$ for all $a,$ $b\in A,$ $q\in Q$ . A point of the

separable Banach space $\hat{A}$ is defined to be a sequence $\langle a_{n} : n\in N\rangle$ from $A$ , satisfying

$\forall n\forall i(\Vert a_{n}-a_{n+i}\Vert\leq 2^{-n})$ . Let $\hat{A}$ and $\hat{B}$ be a separable Banach spaces. A continuous

function $F$ : $\hat{A}arrow\hat{B}$ is encoded as a sequence of $(a, r, b, s)\in A\cross Q^{+}\cross B\cross Q^{+}$

satisfying the three conditions analogous to those for a continuous function on $R^{n}$ .

A bounded Zinear operator is a continuous function $F:\hat{A}arrow\hat{B}$ such that

(i) $F(pa+qb)=pF(a)+qF(b)$ for all $a,$ $b\in A$ and $p,$ $q\in Q$ ,

(ii) there exists a $re$al number $\alpha$ such that $\Vert F(x)\Vert\leq\alpha\Vert a\Vert$ for all $a\in A$ .

If $\alpha\in R$ satisfies $\Vert F(a)\Vert\leq\alpha\Vert a\Vert$ for all $a\in A$ , we write $\Vert F\Vert\leq\alpha$ . A bounded linear

operator $F:\hat{A}arrow\hat{B}$ is also called a bounded linear functional if $\hat{B}=R$ . A bounded

linear operator $F:\hat{A}arrow\hat{B}$ can be encoded by the restriction of $F$ to $A$ (see Lemma

5.4 in Brown and Simpson[3] and Lemma 4.3 in this paper). If there is a bounded
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linear operator $\Psi$ from $\hat{A}$ to $\hat{B}$ satisfying $\Vert\Psi(a)\Vert=\Vert a\Vert$ for all $a\in A$ , then $\hat{A}$ is called

a closed separable subspace of $\hat{B}$ , and a point $x$ in $\hat{A}$ is identified with $\Psi(x)$ in $\hat{B}$ .

We now state the Hahn-Banach theorem for separable Banach spaces, and prove

it within $WKL_{0}$ .

7.2 $HAHN- BANACHTHEOREM(WKL_{0})$ . Let $\hat{S}$ be a closed linear subspace of the

separable Banach space $\hat{A}$ . Let $F:\hat{S}arrow R$ be a bounded linear functional such that

$\Vert F\Vert\leq 1$ . Then there exists a bounded linear functional $\tilde{F}$ : $\hat{A}arrow R$ extending $F$ and

such that $\Vert\tilde{F}\Vert\leq 1$ .

PROOF. Let $\hat{S}$ and $\hat{A}$ be separable Banach spaces. Let $\Psi$ : $\hat{S}arrow\hat{A}$ be a bounded

linear operator satisfying $\Vert\Psi(x)\Vert=\Vert x\Vert$ for all $x\in S$ . Let $F:\hat{S}arrow R$ be a bounded

linear functional such that $\Vert F\Vert\leq 1$ . We want to obtain a bounded linear functional

$\tilde{F}$ : $\hat{A}arrow R$ such that $F(x)=\tilde{F}(\Psi(x))$ for all $x\in\hat{S}$ , and such that $\Vert\tilde{F}\Vert\leq 1$ .

Suppos $e$ that $A=\{a_{i}\},$ $S=\{s_{i}\},$ $a_{0}=0$ and $s_{0}=0$ . We define a closed set $C_{0}$ in

$R^{N}$ by

{ $x_{i}\rangle$ $\in C_{0}\Leftrightarrow x_{0}=0$ and $|x_{i}-x_{j}|\leq\Vert a_{i}-a_{j}\Vert$ for all $i,j$ .

We can easily see in $WKL_{0}$ that $C_{0}$ is compact and convex. Let $P=\{\{u_{0},$
$\ldots,$

$u_{n}$ ) $\in$

$Q^{<N}$ : $u_{0}=0$ and ( $|u_{i}-u_{j}|<\Vert a_{i}-a_{j}\Vert$ or $u_{i}=u_{j}$ )} and $X=\{\{\overline{u}_{i}\}\in R^{N}$ :

$\{u_{0}, \ldots, u_{n}\}\in P$ and $\overline{u}_{i}=\min\{u_{j}+\Vert a_{i}-a_{j}\Vert : j\leq n\}\}$ . As in the proof of Theorem

6.2, we can easily show that $C_{0}$ is countably represented by $X$ . By (a generalization

of) Lemma 4.3, we can identify $g=\{g_{i}\}\in C_{0}$ with the continuous function $\tilde{g}$ : $\hat{A}arrow R$

such that $\tilde{g}(a_{i})=g_{i}$ . So $C_{0}$ may be regarded as the set of continuous functions

$\tilde{g}$ : $\hat{A}arrow R$ such that $\tilde{g}(a_{0})=0$ and $|\tilde{g}(x)-\tilde{g}(y)|\leq\Vert x-y\Vert$ for all $x,$
$y\in\hat{A}$ . A desired

functional $\tilde{F}$ will be found in $C_{0}$ .
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Our proof goes as follows. We define three closed subsets of $C_{0},$ $C_{1}\supset C_{2}\supset C_{3}$ .

Roughly speaking, $C_{1}$ is the set of continuous functions $\tilde{f}$ in $C_{0}$ extending $F,$ $C_{2}$ the

set of continuous functions $\tilde{f}$ in $C_{1}$ such that $\tilde{f}(x+y)=\tilde{f}(x)+\tilde{f}(y)$ for all $x\in\hat{A}$ and

$y\in\hat{S},$ $C_{3}$ the set of continuous functions $\tilde{f}$ in $C_{2}$ such that $\tilde{f}(x+y)=\tilde{f}(x)+\tilde{f}(y)$ for

all $x\in\hat{A}$ and $y\in\hat{A}$ , and such that $\tilde{f}(\alpha x)=\alpha\tilde{f}(x)$ for all $\alpha\in R$ and $x\in\hat{A}$ . Clearly,

any function in $C_{3}$ is a desired functional $\tilde{F}$ . So what we need is to show that $C_{3}$ is

nonempty. To show the non-emptiness of $C_{2}$ and $C_{3}$ , we will apply Theorem 7.1 to

certain families of continuous functions on $C_{1}$ and $C_{2}$ , respectively.

First let $C_{1}=$ { $f\in C_{0}$ : $\tilde{f}(\Psi(s_{i}))=F(s_{i})$ for all $i$ }. Formally, we should express

the complement of $C_{1}$ as an infinite sequence of (codes for) basic open sets. We

however omit this routine work. To prove that $C_{1}$ is not empty, we set $C_{1,n}=\{f\in$

$C_{0}$ : $\tilde{f}(\Psi(s_{i}))=F(s_{i})$ for all $i\leq n$ } and show $C_{1,n}\neq\emptyset$ for each $n$ . Choose any $n$ . We

defin$e$ a point \langle $x_{k}$ } $\in R^{N}$ by

$x_{k}= \min\{F(s_{i})+\Vert a_{k}-\Psi(s_{i})\Vert : i\leq n\}$.

Then we have

$x_{k}\leq F(s_{0})+\Vert a_{k}-\Psi(s_{0})\Vert=\Vert a_{k}\Vert$ ,

$x_{k} \geq\min\{-\Vert\Psi(s_{i})\Vert+\Vert a_{k}-\Psi(s_{i})\Vert : i\leq n\}\geq-$il $a_{k}\Vert$ .

In particular, $x_{0}=\Vert a_{0}\Vert=0$ . We also have

$x_{k}-x_{l}$ $\leq$ $\min\{F(s_{i})+\Vert a_{k}-a_{l}\Vert+\Vert a_{l}-\Psi(s_{i})\Vert : i\leq n\}-x_{l}$

$=$ $\Vert a_{k}-a_{l}\Vert$ ,

$x_{k}-x_{l}$ $\geq$ $x_{k}- \min\{F(s_{i})+\Vert a_{l}-a_{k}\Vert+\Vert a_{k}-\Psi(s_{i})\Vert : i\leq n\}$

$=$ $-\Vert a_{k}-a_{l}\Vert$ .
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Thus $\langle x_{k}\rangle\in C_{0}$ . Let $\tilde{g}$ : $\hat{A}arrow R$ be the continuous function such that $\tilde{g}(a_{k})=x_{k}$ .

Then for each $j\leq n$ ,

$\tilde{g}(\Psi(s_{j}))\leq F(s_{j})+\Vert\Psi(s_{j})-\Psi(s_{j})\Vert=F(s_{j})$,

$\tilde{g}(\Psi(s_{j}))\geq\min\{F(s_{i})+F(s_{j}-s_{i}):i\leq n\}=F(s_{j})$ .

So $g\in C_{1,n}$ . Since $C_{0}$ is compact and $C_{1}= \bigcap_{n}C_{1,n}$ , it follows that $C_{1}\neq\emptyset$ . Moreover,

it is obvious that $C_{1}$ is compact and convex.

Next let $C_{2}=$ { $f\in C_{1}$ : $\tilde{f}(a_{i}+\Psi(s_{j}))=\tilde{f}(a_{i})+\tilde{f}(\Psi(s_{j}))$ for all $i,j$ }. We want to

show $C_{2}\neq\emptyset$ . Define a family of continuous functions $\{T_{j} : C_{1}arrow C_{1}\}$ by

$(T_{j}f)(a_{i})=\tilde{f}(a_{i}+\Psi(s_{j}))-\tilde{f}(\Psi(s_{j}))$ .

Formally, a code $\Phi$ for { $T_{j}\rangle$ is given by

$(j, u,p, v, q)\in\Phi\Leftrightarrow j\in N,$ $u,$ $v\in P$ and $p,$ $q\in Q^{+}$ ,

and if $n=\dim(u),$ $m=\dim(v)$ and $\Psi(s_{j})=\{a_{j_{k}}$ : $k\in N\rangle$ then

(i) $\forall i<m\exists l<n(a_{l}=a_{i}+a_{j_{m-1}})$,

(ii) $p<2^{-m+1}$ ,

(iii) $\Vert T_{j}\overline{u}-v\Vert_{m}<q-6\cdot 2^{-m+1}$ ,

where $\overline{u}=\{\overline{u}_{i}\rangle$ is defined by $\overline{u}_{i}=\min\{u_{j}+\Vert a_{i}-a_{j}\Vert : j<n\}$ . We omit checking that

$\Phi$ really encodes $\langle T_{j}\rangle$ . We show that the range of $T_{j}$ is included in $C_{1}$ as follows: for

each $f\in C_{1},$ $T_{j}f\in\hat{X}$ , since

$|(T_{j}f)(a_{i})-(T_{j}f)(a_{k})|$ $=$ $|\tilde{f}(a_{i}+\Psi(s_{j}))-\tilde{f}(a_{k}+\Psi(s_{j}))|$

$\leq$ $\Vert a_{i}-a_{k}\Vert$ ,
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and for each $f\in C_{1},$ $T_{j}f\in C_{1}$ , since

$(T_{j}f)(\Psi(s_{k}))$ $=$ $\tilde{f}(\Psi(s_{k})+\Psi(s_{j}))-\tilde{f}(\Psi(s_{j}))$

$=$ $F(s_{k}+s_{j})-F(s_{j})$

$=$ $F(s_{k})$ .

It is obvious that each $T_{j}$ is affine and $T_{j}oT_{k}=T_{k}oT_{j}$ . So by Theorem 7.1, there

exists $g\in C_{1}$ such that $\tilde{g}(a_{i})=\tilde{g}(a_{i}+\Psi(s_{j}))-\tilde{g}(\Psi(s_{j}))$ for all $i,j$ . Then $C_{2}\neq\emptyset$ .

Moreover, $C_{2}$ is compact and convex.

Finally, let $C_{3}=$ { $f\in C_{2}$ : $\tilde{f}(a_{i}+a_{j})=\tilde{f}(a_{i})+\tilde{f}(a_{j})$ for all $i,j$ }. Define a family

of continuous functions $\{U_{j} : C_{2}arrow C_{2}\}$ by

$(U_{j}f)(a_{i})=\tilde{f}(a_{i}+a_{j})-\tilde{f}(a_{j})$ .

A code for $\{U_{j}\}$ can be encoded in the same way as for \langle $T_{j}$ }. It is easy to see that for

each $f\in C_{2},$ $U_{j}f\in C_{0}$ . To see $U_{j}f\in C_{1}$ , we have

$(U_{j}f)(\Psi(s_{i}))=\tilde{f}(\Psi(s_{i})+a_{j})-\tilde{f}(a_{j})=\tilde{f}(\Psi(s_{i}))=F(s_{i})$.

We leave a check for $U_{j}f\in C_{2}$ to the reader. It is also easy to see that each $U_{j}$

is affine and $U_{j}oU_{k}=U_{k}oU_{j}$ . So by Theorem 7.1, there exists $g\in C_{3}$ such that

$\tilde{g}(a_{i})=\tilde{g}(a_{i}+a_{j})-\tilde{g}(a_{j})$ for all $i,j$ . Thus $C_{3}\neq\emptyset$ .

By $\Pi_{1}^{0}$-induction (equivalently $\Sigma_{1}^{0}$-induction), we can easily show in $RCA_{0}$ that if

$f\in C_{3}$ then

$f(na_{i})=nf(a_{i})$ for all $n\in N$ .

Hence, if $f\in C_{3}$ , then

$m \tilde{f}(\frac{n}{m}a_{i})=\tilde{f}(na_{i})=n\tilde{f}(a_{i})$ for $n,$ $m\in N$ ,
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that is,

$f(qa_{i})=q\tilde{f}(a_{i})$ for $q\in Q$ .

Therefore, any continuous function in $C_{3}$ is a bounded linear functional extending $F$ .

This completes the proof. $\square$

For the reversal of the Hahn-Banach theorem, see Metakides, Nerode and Shore

[12], and Brown and Simpson [3]. They have indeed proved that the Hahn-Banach

theorem and $WKL_{0}$ are equivalent to each other over $RCA_{0}$ .
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