A CHARACTERIZATION OF $\{2v_{\alpha+1} + 2v_{\beta+1}, 2v_{\alpha} + 2v_{\beta}; t,q\}$ -MIN.HYPERS IN PG(t,q) (t \geq 2, q \geq 5 and 0 \leq α < β < t) AND ITS APPLICATIONS TO ERROR-CORRECTING CODES

大阪女子大学 浜 田 昇 (Noboru Hamada) パリー大学 Michel Deza

1. Introduction

Let F be a set of f points in a finite projective geometry PG(t,q) of t dimensions where $t \ge 2$, $f \ge 1$ and q is a prime power. If (a) $|F \cap H|$ $\ge m$ for any hyperplane H in PG(t,q) and (b) $|F \cap H| = m$ for some hyperplane H in PG(t,q), then F is said to be an $\{f,m;t,q\}$ -min hyper (or an $\{f,m;t,q\}$ -minihyper) where $m \ge 0$ and |A| denotes the number of points in the set A. The concept of a minhyper (or a maxhyper) has been introduced by Hamada and Tamari [17]. In the special case t = 2 and $m \ge 2$, an $\{f,m;2,q\}$ -minhyper F is called an m-blocking set if F contains no 1-flat in PG(2,q).

For example, let F be a μ -flat in PG(t,q) where $0 \le \mu < t$. Then $|F| = v_{\mu+1}$ and $|F \cap H| = v_{\mu}$ or $v_{\mu+1}$ for any hyperplane H in PG(t,q) according as F $\not\subset$ H or F \subset H where $v_{\ell} = (q^{\ell}-1)/(q-1)$ for any integer $\ell \ge 0$. Hence F is a $\{v_{\mu+1},v_{\mu};t,q\}$ -min hyper. Tamari [27,29] shows that the converse holds, i.e., if F is a $\{v_{\mu+1},v_{\mu};t,q\}$ -min hyper, then F is a μ -flat in PG(t,q).

Let V(n;q) be an n-dimensional vector space consisting of row vectors over a Galois field GF(q) of order q where n is a positive integer. A k-dimensional subspace C of V(n;q) is said to be an (n,k,d;q)-code (or a q-ary linear code with length n, dimension k, and minimum distance d) if the minimum (Hamming) distance of the code C is equal to d where $n > k \ge 3$ and

 $d \ge 1$ (cf. McWilliams and Sloane [24]). It is well known that if there exists an (n,k,d;q)-code for given integers k, d and q, then

$$n \geq \sum_{\ell=0}^{k-1} \left[\frac{d}{q^{\ell}} \right]$$
 (1.1)

where x denotes the smallest integer $\ge x$. In what follows, we shall confine ourself to the case $k \ge 3$ and $1 \le d < q^{k-1}$. In this case, d can be expressed as follows:

$$d = q^{k-1} - \sum_{\alpha=0}^{k-2} \varepsilon_{\alpha} q^{\alpha}$$
 (1.2)

using some integers k, q and ϵ_{α} ($\alpha=0,1,\cdots,k-2$) and the Griesmer bound (1.1) can be expressed as follows:

$$n \geq v_k - \sum_{\alpha=0}^{k-2} \varepsilon_{\alpha} v_{\alpha+1}$$
 (1.3)

where $0 \le \varepsilon_{\alpha} \le q-1$ for $\alpha=0,1,\cdots,k-2$. Recently, Hamada [5,10] showed that in the case $k \ge 3$ and $d=q^{k-1}-\frac{k-2}{2}$ $\varepsilon_{\alpha}q^{\alpha}$, there is a one-to-one correspondence between the set of all nonequivalent (n,k,d;q)-codes meeting the Griesmer bound $(1\cdot3)$ and the set of all $\{\sum_{\alpha=0}^{k-2} \varepsilon_{\alpha}v_{\alpha+1}, \sum_{\alpha=1}^{k-2} \varepsilon_{\alpha}v_{\alpha}; k-1,q\}$ -min-hypers if we introduce some equivalence relation among (n,k,d;q)-codes. Hence in order to obtain a necessary and sufficient condition for integers k, d and q that there exists an (n,k,d;q)-code meeting the Griesmer bound $(1\cdot3)$ in the case $1 \le d < q^{k-1}$ and to characterize all (n,k,d;q)-codes meeting the Griesmer bound $(1\cdot3)$ in the case $1 \le d < q^{k-1}$, it is sufficient to solve the following problem.

Problem A. (1) Find a necessary and sufficient condition for integers t, q and ϵ_{α} ($\alpha = 0,1,\dots,t-1$) that there exists a $\{\sum_{\alpha = 0}^{\infty} \epsilon_{\alpha} v_{\alpha}, \sum_{\alpha = 0}^{\infty} \epsilon_{\alpha} v_{\alpha}, \sum$

(2) Characterize all { $\Sigma \in {}_{\alpha}v_{\alpha+1}$, $\Sigma \in {}_{\alpha}v_{\alpha}$; t,q}-min·hypers in the case $\alpha=0$ where there exist such min·hypers.

Since all (n,k,d;q)-codes meeting the Griesmer bound (1.3) have been characterized by Helleseth [20] and Tilborg [30] in the special case q=2, $k\geq 3$ and $1\leq d<2^{k-1}$, we shall confine ourself to the case $q\geq 3$, $k\geq 3$ and $1\leq d< q^{k-1}$ in what follows.

In the case $\sum_{\alpha=0}^{\kappa} \varepsilon_{\alpha} = 1$ (i.e., $\varepsilon_{\alpha} = 1$ for some integer α), it is shown by $\alpha=0$ Tamari [27,29] that F is a $\{v_{\alpha+1},v_{\alpha};k-1,q\}$ -min·hyper if and only if F is an α -flat in PG(k-1,q). In the case $\sum_{\alpha=0}^{\kappa} \varepsilon_{\alpha} = 2$, it is shown by Hamada [5,6,7] that F is a $\{v_{\alpha+1}+v_{\beta+1},v_{\alpha}+v_{\beta};k-1,q\}$ -min·hyper if and only if F is the union of an α -flat and a β -flat in PG(k-1,q) which are mutually disjoint where $0 \le \alpha \le \beta < k-1$. In the case $\sum_{\alpha=0}^{\kappa} \varepsilon_{\alpha} = 3$, it is shown by Hamada [5,6,7,8,9] and Hamada and Deza [14] that F is a $\{v_{\alpha+1}+v_{\beta+1}+v_{\gamma+1},v_{\alpha}+v_{\beta}+v_{\gamma};k-1,q\}$ -min·hyper if and only if F is the union of an α -flat, a β -flat and a γ -flat in PG(k-1,q) which are mutually disjoint where $\gamma \ge 1$ and either $\gamma \le 1$ and $\gamma \le 1$

 $0 \le \alpha < \beta < \gamma < \delta < k-1$, F is a $\{v_{\alpha+1} + v_{\beta+1} + v_{\gamma+1} + v_{\delta+1}, v_{\alpha} + v_{\beta} + v_{\gamma} + v_{\delta}, k-1, q\}$ -min hyper if and only if F is the union of an α -flat, a β -flat, a γ -flat and a δ -flat in PG(k-1,q) which are mutually disjoint. Recently, it has been shown by Hamada [8] and Hamada and Deza [12] that (1) in the case k = 3, $q \ge 5$, $\alpha = \beta = 0$ and $\gamma = \delta = 1$, there is no $\{2v_1 + 2v_2, 2v_0 + 2v_1, 2, q\}$ -min hyper and (2) in the case $k \ge 4$, $q \ge 5$, $\alpha = \beta = 0$ and $\gamma = \delta = 1$, F is a $\{2v_1 + 2v_2, 2v_0 + 2v_1, k-1, q\}$ -min hyper if and only if F is the union of two 0-flats and two 1-flats in PG(k-1,q) which are mutually disjoint. The purpose of this paper is to extend the above results, i.e., to prove the following theorem (cf. Reference [13] in detail).

Theorem 1.1. Let t and q be any integer \geq 2 and any prime power \geq 5, respectively, and let α and β be any integers such that $0 \leq \alpha < \beta < t$.

- (1) In the case t > 2 β , F is a $\{2v_{\alpha+1} + 2v_{\beta+1}, 2v_{\alpha} + 2v_{\beta}; t,q\}$ -min·hyper if and only if F is the union of two α -flats and two β -flats in PG(t,q) which are mutually disjoint.
- (2) In the case $t \le 2\beta$, there is no $\{2v_{\alpha+1} + 2v_{\beta+1}, 2v_{\alpha} + 2v_{\beta}; t, q\}$ min•hyper.

- (1) In the case $k > 2\beta+1$, C is an (n,k,d;q)-code meeting the Griesmer bound if and only if C is an (n,k,d;q)-code constructed by using two α -flats and two β -flats in PG(k-1,q) which are mutually disjoint.
- (2) In the case $k \le 2\beta+1$, there is no (n,k,d;q)-code meeting (1.1).

2. Propositions for the proof of Theorem 1.1

Let $\mathcal{F}_U(\varepsilon,\mu_1,\mu_2;t,q)$ denote a family of all unions of ε points, a μ_1 -flat and a μ_2 -flat in PG(t,q) which are mutually disjoint where $0 \le \varepsilon \le q$ -1 and $1 \le \mu_1 \le \mu_2 < t$. Let $\mathcal{F}(\nu_1,\nu_2,\cdots,\nu_h;t,q)$ denote a family of all unions of a ν_1 -flat, a ν_2 -flat, \cdots , a ν_h -flat in PG(t,q) which are mutually disjoint where $h \ge 2$ and $0 \le \nu_1 \le \nu_2 \le \cdots \le \nu_h < t$.

In order to prove Theorem 1.1, we shall prepare the following propositions.

Proposition 2.1. (Hamada [5,10])

Let t and q be any integer \geq 3 and any prime power \geq 3, respectively, and let α and β be any integers such that $0 \leq \alpha < \beta < t/2$. If $F \in \mathcal{F}(\alpha,\alpha,\beta,\beta;t,q)$, then F is a $\{2v_{\alpha+1} + 2v_{\beta+1}, 2v_{\alpha} + 2v_{\beta};t,q\}$ -min·hyper.

Proposition 2.2. (Hamada [5,10])

Let t and q be any integer ≥ 2 and any prime power ≥ 3 , respectively. If there exists a $\{2v_{\alpha+1} + 2v_{\beta+1}, 2v_{\alpha} + 2v_{\beta}; t, q\}$ -min hyper F for some integers α and β such that $0 \leq \alpha < \beta < t$, there exists at least one (t-2)-flat G in PG(t,q) such that $|F \cap G| = 2v_{\alpha-1} + 2v_{\beta-1}$ where $v_{-1} = 0$ and $v_{\ell} = (q^{\ell}-1)/(q-1)$ for any integer $\ell \geq 0$. Let H_{i} (i = 1,2,...,q+1) be q+1 hyperplanes in PG(t,q) which contain G.

- (1) In the case $\alpha=0$, $f \cap H_i$ is a $\{\delta_i+2v_{\beta},\ 2v_{\beta-1};t,q\}$ -min·hyper in H_i for $i=1,2,\cdots,q+1$ where δ_i 's are some nonnegative integers such that $\sum_{i=1}^{q+1}\delta_i$ = 2.
- (2) In the case $\alpha \ge 1$, $f \cap H_i$ is a $\{2v_{\alpha} + 2v_{\beta}, 2v_{\alpha-1} + 2v_{\beta-1}; t, q\}$ -min-hyper in H_i for $i = 1, 2, \cdots, q+1$.

Proposition 2.3. (Hamada [5,10])

Let t and q be any integer ≥ 4 and any prime power ≥ 3 , respectively.

- (1) Let ε , β and δ_i ($i=1,2,\cdots,q+1$) be any nonnegative integers such that $0 \le \varepsilon \le q-1$, $2 \le \beta \le t/2$ and $\sum_{i=1}^{q+1} \delta_i = \varepsilon$. If F is a $\{\varepsilon v_1 + 2v_{\beta+1}, \varepsilon v_0 + 2v_{\beta}; t,q\}$ -min·hyper such that (a) $|F \cap G| = 2v_{\beta-1}$ for some (t-2)-flat G in PG(t,q) and (b) $F \cap H_i \in \mathcal{F}_U(\delta_i,\beta-1,\beta-1;t,q)$ for any hyperplane H_i ($1 \le i \le q+1$) which contain G, then $F \in \mathcal{F}_U(\varepsilon,\beta,\beta;t,q)$.
- (2) Let α and β be any integers such that $2 \le \alpha < \beta \le t/2$. If F is a $\{2v_{\alpha+1} + 2v_{\beta+1}, 2v_{\alpha} + 2v_{\beta}; t,q\}$ -min hyper such that (a) $|F \cap G| = 2v_{\alpha-1} + 2v_{\beta-1}$ for some (t-2)-flat G in PG(t,q) and (b) $F \cap H_i \in \mathcal{F}(\alpha-1,\alpha-1,\beta-1,\beta-1;t,q)$ for any hyperplane H_i ($1 \le i \le q+1$) which contain G, then $F \in \mathcal{F}(\alpha,\alpha,\beta,\beta;t,q)$.

Proposition 2.4. (Hamada and Deza [13])

Let t and q be any integer \geq 4 and any prime power \geq 5, respectively, and let β be any integer such that $2 \leq \beta \leq t/2$. If F is a $\{2v_2 + 2v_{\beta+1}, 2v_1 + 2v_{\beta}; t,q\}$ -min-hyper such that (a) $|F \cap G| = 2v_{\beta-1}$ for some (t-2)-flat G in PG(t,q) and (b) $F \cap H_i \in \mathcal{F}(0,0,\beta-1,\beta-1;t,q)$ for any hyperplane H_i $(1 \leq i \leq q+1)$ which contain G, then $F \in \mathcal{F}(1,1,\beta,\beta;t,q)$.

Proposition 2.5. (Hamada [6,7,10])

Let t and q be any integer \geq 2 and any prime power \geq 3, respectively, and let β be an integer such that $0 \leq \beta < t$.

- (1) In the case t > 2 β , F is a $\{2v_{\beta+1}, 2v_{\beta}; t, q\}$ -min hyper if and only if $f \in \mathcal{F}(\beta, \beta; t, q)$.
- (2) In the case $t \leq 2\beta$, there is no $\{2v_{\beta+1}, 2v_{\beta}; t, q\}$ -min·hyper.

Proposition 2.6. (Hamada [6,7] and Hamada and Deza [14])

Let t and q be any integer \geq 2 and any prime power \geq 5, respectively, and let α and β be integers such that $0 \leq \alpha < \beta < t$.

- (1) In the case t > 2 β , F is a { $v_{\alpha+1} + 2v_{\beta+1}$, $v_{\alpha} + 2v_{\beta}$; t,q}-min-hyper if and only if F $\in \mathcal{F}(\alpha,\beta,\beta;t,q)$.
- (2) In the case $t \le 2\beta$, there is no $\{v_{\alpha+1} + 2v_{\beta+1}, v_{\alpha} + 2v_{\beta}; t, q\}$ -min·hyper.

Proposition 2.7. (Hamada [8] and Hamada and Deza [12])

- (1) In the case t = 2 and $q \ge 5$, there is no $\{2v_1 + 2v_2, 2v_0 + 2v_1; t, q\}$ min·hyper.
- (2) In the case $t \ge 3$ and $q \ge 5$, F is a $\{2v_1 + 2v_2, 2v_0 + 2v_1; t, q\}$ -min-hyper if and only if $f \in \mathcal{F}(0,0,1,1;t,q)$.

Proposition 2.8. (Hamada and Tamari [19])

Let t and q be any integer \geq 2 and any prime power \geq 3, respectively, and let α , β , γ and δ be any integers such that $0 \leq \alpha \leq \beta < \gamma \leq \delta < t$. Then $\mathcal{J}(\alpha,\beta,\gamma,\delta;t,q) \neq \emptyset$ if and only if $\gamma + \delta \leq t-1$.

3. The proof of Theorem 1.1

It follows from Proposition 2.1 that if F \in $\mathcal{F}(\alpha,\alpha,\beta,\beta;t,q)$, then F is a $\{2v_{\alpha+1} + 2v_{\beta+1}, 2v_{\alpha} + 2v_{\beta};t,q\}$ -min-hyper where $0 \le \alpha < \beta < t/2$.

Suppose there exists a $\{2v_{\alpha+1} + 2v_{\beta+1}, \ 2v_{\alpha} + 2v_{\beta}; t,q\}$ -min·hyper F for some integer α and β such that $0 \leq \alpha < \beta < t$. Then it follows from Proposition 2.2 that there exists at least one (t-2)-flat G in PG(t,q) such that $|F \cap G|$ = $2v_{\alpha-1} + 2v_{\beta-1}$. Let H_i (i = 1,2,...,q+1) be q+1 hyperplanes in PG(t,q) which contain G. Then it follows from Proposition 2.2 that (1) in the case $\alpha = 0$, $F \cap H_i$ is a $\{\delta_i + 2v_{\beta}, \ 2v_{\beta-1}; t,q\}$ -min·hyper in H_i for i = 1,2,...,q+1 and (2) in the case $\alpha \geq 1$, $F \cap H_i$ is a $\{2v_{\alpha} + 2v_{\beta}, \ 2v_{\alpha-1} + 2v_{\beta-1}; t,q\}$ -min·hyper in H_i for i = 1,2,...,q+1 where δ_i 's are some nonnegative integers q+1 such that $\sum_{i=1}^{\infty} \delta_i = 2$. We shall prove Theorem 1.1 by induction on α and β .

Case I: $\alpha = 0$ and $\beta = 1$. It follows from Proposition 2.7 that

Theorem 1.1 holds.

Case II: $\alpha = 0$ and $\beta \ge 2$ (i.e., $\beta = \theta + 1$ and $\theta \ge 1$). Suppose Theorem 1.1 holds in the case $\alpha = 0$ and $\beta = \theta$, i.e., suppose that (1) in the case $t > 2\theta$, F is a $\{2v_1 + 2v_{\theta+1}, 2v_0 + 2v_{\theta}; t,q\}$ -min.hyper if and only if $f \in \mathcal{F}(0,0,\theta,\theta;t,q)$ and (2) in the case $t \le 2\theta$, there is no $\{2v_1 + 2v_{\theta+1}, 2v_0 + 2v_{\theta}; t,q\}$ -min.hyper F.

In the case $\beta=\theta+1$, it follows from induction on β and Propositions 2.5 and 2.6 that (1) in the case t-1 > 20 (i.e., t > 2 β -1), F \bigcap H₁ is a $\{\delta_i v_1 + 2v_{\theta+1}, \delta_i v_0 + 2v_{\theta}; t, q\}$ -min hyper in the (t-1)-flat H₁ if and only if F \bigcap H₁ is the union of δ_i 0-flats (i.e., δ_i points) and two 0-flats in H₁ which are mutually disjoint (i.e., F \bigcap H₁ \in $\mathcal{F}_U(\delta_i, \beta-1, \beta-1; t, q)$) and (2) in the case t-1 \leq 20 (i.e., t \leq 2 β -1), there is no $\{\delta_i + 2v_{\theta+1}, 2v_{\theta}; t, q\}$ -min hyper in H₁. Hence it follows from Propositions 2.2 and 2.3 that (1) in the case t > 2 β -1, F \in $\mathcal{F}_U(0,0,\beta,\beta;t,q)$ and (2) in the case t \leq 2 β -1, there is no $\{2v_1 + 2v_{\beta+1}, 2v_0 + 2v_{\beta}; t, q\}$ -min hyper F. Since it follows from Proposition 2.8 that $\mathcal{F}_U(0,0,\beta,\beta;t,q) = \emptyset$ in the case t = 2 β , there is no $\{2v_1 + 2v_{\beta+1}, 2v_0 + 2v_{\beta}; t, q\}$ -min hyper F in the case t = 2 β . Hence Theorem 1.1 holds in Case II.

the case t-1 > 2(β -1) (i.e., t > 2 β -1), F \bigcap H_i is a {2v₁ + 2v_{β}, 2v₀ + 2v_{β -1};t,q}-min·hyper in the (t-1)-flat H_i if and only if F \bigcap H_i \in \mathcal{J} (0,0, β -1, β -1;t,q) and (2) in the case t-1 \leq 2(β -1) (i.e., t \leq 2 β -1), there is no {2v₁ + 2v_{β}, 2v₀ + 2v_{β -1};t,q}-min·hyper in H_i. Hence it follows from Proposition 2.4 that (1) in the case t > 2 β -1, F \in \mathcal{J} (1,1, β , β ;t,q) and (2) in the case t \leq 2 β -1, there is no {2v₂ + 2v_{β +1}, 2v₁ + 2v_{β};t,q}-min·hyper F. Since it follows from Proposition 2.8 that \mathcal{J} (1,1, β , β ;t,q) = \emptyset in the case t = 2 β , there is no {2v₂ + 2v_{β +1}, 2v₁ + 2v_{β};t,q}-min·hyper in the case t = 2 β .

Case III : α = 1 and $\beta \geq 2$. It follows from Cases I and II that (1) in

Hence Theorem 1.1 holds in Case III.

Case IV : $2 \le \alpha < \beta < t$. It follows from Propositions 2.2, 2.3 and induction on α and β that Theorem 1.1 holds. This completes the proof.

Remark 3.1. In the case t=2, $\alpha=0$, $\beta=1$ and q=3 or 4, it is shown by Hamada [8,11] that there exists a $\{2v_1+2v_2, 2v_0+2v_1; 2,q\}$ -min·hyper F in PG(2,q) such that $f \notin \mathcal{F}(0,0,1,1;2,q)$. Hence Theorem 1.1 does not hold in the case q=3 or 4.

Remark 3.2. In the case $t \ge 3$ and $q \ge 5$, we can characterize all $\{2v_{\alpha+1} + v_{\beta+1} + v_{\gamma+1}, 2v_{\alpha} + v_{\beta} + v_{\gamma}; t, q\}$ -min-hypers for any distinct integers α , β and γ in $\{0,1,\dots,t-1\}$ using a method similar to the proof of Theorem 1.1.

Remark 3.3. In order to solve Problem A, completely, for the case $q \ge 5$ and Σ $\varepsilon_{\alpha} = 3$ or 4, it is necessary to solve the following open problem. $\alpha = 0$

Problem B. Let t and q be any integer ≥ 2 and any prime power ≥ 5 , respectively.

- (1) Characterize all $\{3v_{\alpha+1}, 3v_{\alpha}; t,q\}$ -min·hypers and all $\{4v_{\alpha+1}, 4v_{\alpha}; t,q\}$ -min·hypers for any integer α in $\{1,2,\dots,t-1\}$.
- (2) Characterize all $\{3v_{\alpha+1} + v_{\beta+1}, 3v_{\alpha} + v_{\beta}; t,q\}$ -min·hypers for any distinct integers α and β in $\{0,1,\cdots,t-1\}$.

References

- R. D. Carmichael, Introduction to the Theory of Groups of Finite Order, Dover Publications, New York, 1956.
- 2. P. Dembowski, Finite Geometries, Springer-Verlag, New York, 1968.
- 3. P. G. Farrell, Linear binary anticode, Electron. Lett. 6 (1970),419-421.

- 4. J. H. Griesmer, A bound for error-correcting codes, IBM J. Res. Develop. 4 (1960), 532-542.
- 5. N. Hamada, Characterization resp. nonexistence of certain q-ary linear codes attaining the Griesmer bound, Bull. Osaka Women's Univ. 22 (1985), 1-47.
- 6. N. Hamada, Characterization of {2(q+1),2;t,q}-min·hypers and {2(q+1)+1, 2;t,q}-min·hypers in a finite projective geometry, to appear in Bull. Osaka Women's Univ. 26 (1989).
- 7. N. Hamada, Characterization of $\{2v_{\mu+1}, 2v_{\mu}; t, q\}$ -min·hypers and $\{2v_{\mu+1} + v_{\mu}, 2v_{\mu} + v_{\mu-1}; t, q\}$ -min·hypers and its applications to error-correcting codes, to appear in Bull. Osaka Women's Univ. 26 (1989).
- 8. N. Hamada, Characterization of {(q+1)+2,1;t,q}-min hypers and {2(q+1)+2,2;2,q}-min hypers in a finite projective geometry, Grapha and Combinatorics 5 (1989). (in press)
- 9. N. Hamada, Characterization of $\{v_{\mu+1} + 2v_{\mu}, v_{\mu} + 2v_{\mu-1}; t,q\}$ -min·hypers and its applications to error-correcting codes, Graphs and Combinatorics 5 (1989). (in press)
- 10. N. Hamada, Characterization of min hypers in a finite projective geometry and its applications to error-correcting codes, Bull. Osaka Women's Univ. 24 (1987), 1-24.
- 11. N. Hamada, Characterization of {12,2;2,4}-min hypers in a finite projective geometry PG(2,4), Bull. Osaka Women's Univ. 24 (1987), 25-31.
- 12. N. Hamada and M. Deza, Characterization of $\{2(q+1)+2,2;t,q\}$ -min·hypers in PG(t,q) (t \geq 3, q \geq 5) and its applications to error-correcting codes, Discrete Mathematics 63 (1988). (in press)
- 13. N. Hamada and M. Deza, Characterization of $\{2v_{\alpha+1} + 2v_{\beta+1}, 2v_{\alpha} + 2v_{\beta}; t,q\}$ -min·hypers in PG(t,q) (t \geq 2, q \geq 5 and 0 \leq α < β < t) and its applications to error-correcting codes, submitted for publication.
- 14. N. Hamada and M. Deza, A characterization of some (n,k,d;q)-codes meeting the Griesmer bound for given integers $k \ge 3$, $q \ge 5$ and $d = q^{k-1} q^{\alpha} q^{\beta} q^{\gamma}$ ($0 \le \alpha \le \beta < \gamma < k-1$ or $0 \le \alpha < \beta \le \gamma < k-1$), Bull. Inst. Math. Academia Sinica 16 (1988). (in press)
- 15. N. Hamada and M. Deza, A characterization of $\{v_{\mu+1} + \epsilon, v_{\mu}; t, q\}$ -minhypers and its applications to error-correcting codes and factorial designs, J. Statistical Planning and Inference 19 (1988). (in press)
- 16. N. Hamada and M. Deza, A survey of recent works with respect to a

- characterization of an (n,k,d;q)-code meeting the Griesmer bound using a min-hyper in a finite projective geometry, to appear in Annals of Discrete Mathematics (1989).
- 17. N. Hamada and F. Tamari, On a geometrical method of construction of maximal t-linearly independent sets, J. Combinatorial Theory (A) 25 (1978), 14-28.
- 18. N. Hamada and F. Tamari, Construction of optimal codes and optimal fractional factorial designs using linear programming, Annals of Discrete Mathematics 6 (1980), 175-188.
- 19. N. Hamada and F. Tamari, Construction of optimal linear codes using flats and spreads in a finite projective geometry, European J. Combinatorics 3 (1982), 129-141.
- 20. T. Helleseth, A characterization of codes meeting the Griesmer bound, Information and Control 50 (1981), 128-159.
- 21. T. Helleseth, New construction of codes meeting the Griesmer bound, IEEE Trans. Information Theory IT-29 (1983), 434-439.
- 22. T. Helleseth and H. C. A. van Tilborg, A new class of codes meeting the Griesmer bound, IEEE Trans. Information Theory IT-27 (1981), 548-555.
- 23. D. R. Hughes and F. C. Piper, Projective Planes, Springer, New York (1973).
- 24. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Mathematical Library Vol. 16 (1977), Amsterdam.
- 25. N. L. Manev, A characterization up to isomorphism of some classes of codes meeting the Griesmer bound, Comptes rendus de l'Academie bulgare des Sciences 37 (1984), 481-483.
- 26. G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes, Information and Control 8 (1965), 170-179.
- 27. F. Tamari, A note on the construction of optimal linear codes, J. Statistical Planning and Inference 5 (1981), 405-411.
- 28. F. Tamari, On an {f,m;t,s}-max.hyper and a {k,m;t,s}-min.hyper in a finite projective geometry PG(t,s), Bull. Fukuoka University of Education 31 (III) (1981), 35-43.
- 29. F. Tamari, On linear codes which attain the Solomon-Stiffler bound, Discrete Mathematics 49 (1984), 179-191.
- 30. H. C. A. van Tilborg, On the uniqueness resp. nonexistence of certain codes meeting the Griesmer bound, Information and Control 44 (1980), 16-35.