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Entropy of automorphisms on the hyperfﬁmite‘ﬂﬂl factor

.8 7/’15;( % 7’(\%@;} 31)3,(Marie CHODA)

1. Introduction.

Connes and Stormer ([5]) extended the notion of the entropy from
the classical.ergodic theory to the frame of II1 von Neumann algebras
and showed that the n-shift of the hyperfinite II1 factor is not
conjugate to the m-shift for n # m. For each n, the n-shift is
the automorphism corresponding té the translate of 1 in the
infinite tensor product R = (:282 (Mi’tri) of the algebra Mi - . of
n X n matrices with the normalized trace tri on Mi’ for each 1.

In the index theory([7]) for I1, factors, Jones gives the

1
sequence (ei;i=1,2,...) of projections related on the number A &
(0,1/4]U{(1/4)se02(n/n);n=3,4,.{.),which generates the hyperfinite

II1 factor R. By his method, from this sequencé {ei;iSN),‘ we get
the two sided sequence {ei;isl} with the(same property as (ei;iSN}.
Pimsner-Popa([8]1) computed the entropy of automorphism ‘91 of R
generated by {ei;isl} translating e, to ei+1. However, {he-
value of it has not been obtained in the case x=1/4. Powers [9]
developed those results to another direction, considering the.

éonjugacy problem of *-endomorphisms of R generated by the sequence

(ui;ieN) of self adjoint unitaries which translate ui to ui+1.



Those *-endomorphisms ,which are not automorphisms, are called binary
shifts. After then, in [21,[41,[1] and [10], the conjugacy problem of
*-endomorphisms corresponding to sequences more general uniiaries are
discassed. We call those *-endomorphisms unitary shifts. On the
other hand, the author([ZJ)‘treated *-endomorphisms of R genetated
by seqﬁence (pi;isN} of projections translating P, to’ Pispe

which we call projection shifts. Those unitary shifts,and‘projecfion
shifts turn out ergodic automorphisms of the hyperfinite IIlifactor

by the natural method.

In this paper, we shall study the entropy of those automorphisms.
First, we shall get simple formulas of the entropy of ergodic
automorphisms of the hyperfinite II1 factor, which have applications
to compute the entropies of the above automorphisms. Under some good
conditions, the entropy H(O) of an automorphism O of a hyper
finite II, factor R is determined by the entropy H(An)?s for an

1

increasing sequence (A )

n’ neN of finite dimensional subalgebras

which generating R:

H(O) = lim

H(An)/n.

The above all automorphisms satisfy the conditions. As an
application of this result to the automorphism OA treated by
Pimsner-Popa, we show that H(Ol) = log 2, in the case. x = 1/4.
As another application, we shall show that if the inclusion data for

“the above sequence (An) is periodic in the sense below, then

neN
H(@) = (1/p) log 8,

where p is the period of the data and 8 is the Perrun—Frobenius

eigen value of the inclusion matrix. This gives another proof of the

results on the n-shift given by Connes-Stormer and also the results



on Bl's by Pimsner=Popa for ‘A strictly larger than 1/4.

2. General results.
In this section, we shall get two formulas for the entropy of

x-automorphisms of the hyperfinite II1 factor.

Theorem 1. Let N be an approximately finite dimensional
finite von Neumann algebra with a faithful normal normalized trace
tr. Let © be a *-automorphism of N with tr8 = tr. Let

{(N,;j=1,2,...} be an increasing sequence of finite dimensional

J
subalgebras ofia N such that N is the weak closure of UjN 3 Assum
that the following two conditions are satisfied:
e ‘
(1Y For j and M, there is an *-automorphism o¢ such that
o(N ) contains the weak closure of N,U 8(N.,)VU...U 0M(N.).
j+m J i i
(2) There exists an sequence (n(j))jsN such that

x6™(y) = 0M(y)x (x,y 8 N;» m 200,

lim,, ( (i) - /I =0
and »

tr(x8™(y)) = tr(x)tr(y) x,y BNj, m = 0.
Then

o

H(8) = limj* H(Nj)/J.

Proof. BY the properties of functions H(...) (I51),
H(8) = 1im, H(N,,0)
J J

. . m
= 11mj lxmm (1/m)H(Nj j), | 0 (Nj))

L0 (N |
< lim _(1/mHUN,,...8" vy, @™ 3w, .., 0™
J,m J J J J
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: m-j+1
< 1_imj lim infm H(o(Nm), 0 G(sz_l))

< limjliminfm(l/m) {H(Nm) + H(sz_l)}

"

lim inf - (1/m) H(Nm).

o«

On the other hand,

nCj)

n(iYH(8) = H(O ) 2lim (1/m)HCN, en(j)(mj),...,em“(J’(Nj))

= H(Nj),

because (N‘1 Bn(j)(Nj),..,Gmn(j)(Nj)} are pairwise commuting , 0

is tr-preserving and tr(xﬂm(y)i = tr(x)tr(y) for x, ¥y in Nj an

m = n(j). Hence
H(8) = (1/j)H(Nj) -({n(j) - §)/3IHB for all o
Since li?*m(n(j) - j)/j = 0, we have H(8) = 1im supj(llj)H(Nj).

Therefore H(8) = limj (l/j)H(Nj).

>

Theorem 1 is a generalization of a similar result in the proof

of the computation of 9l of x >1/4.

Next, we shall give a formula for the entropy of automorphisms
of a factor generated by a periodic sequence of finite dimensional

algebras.
Let N be a finite von Neumann algebra generated by an

ncreasing sequence (N of finite dimensional von Neumann

i’ jeN
algebras. Let tr be a faithful normal normalized trace on N. Then

following after [7], we get the dimension vector dj of Nj, the

trace vector tj of the restriction of tr on Nj and the

inelusion matrix [NJANj+m]
dyIN Ny 1 = dy ), NN, I, o=t and d;t, = 1,

where the dimension vector d = (d(i)) of A means that A is decon

for Njc Nj+m :
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posed into the direct sum )I0) Ai of the d(i) X d(i) matrix algebra
Ay and the trace vector t = (t(i)) (which is given as a column
vector) méans that tr(x) = 2 t(i) Tr(x(i)) for an x = ESX(i) in A.
1f the inclusion data for the sequence (Nj)jew satisfies the
following two conditions, then the sequence (Nj)jSN is said to be
periodic([111):

There is a no"z 0 and p 2’1 such that for all j 2 nO;

(i) [Nj*Nj+13 j+p”

(ii) The matrix [NjaNj+pJ is primitive.

[N N ]

jt+p+l

Remark. If N 15 generated by a periodic sequence (Nj)jSN'

then N 1is a factor([6], [111).

Lemma 2. Let N be a hyperfinite II1 factor generated by a

periodec sequgnce (Nj)jSN' ’Then for all q > Ny

.= = N .
tJ 3 [NJ j+p] Il tJ+p
and
i = : - .

lim, ., HN)/ (1/p) log |IIN;»N, 111

Proof. For j§ = n,, we denote by Tj the matrix [@ *?+p ]
and by Bj a Perron-Frobenius eigen value of Tj‘ Since

k . -

tj+p = Tj tj+kp fop‘all k21 and Tj . is primitive for all
i =2 nO, there is an o > 0 such that tj+p = v for a unique
Perron-Frobenius eigen vector v of Tj by the well known theorem.

‘Hence



ty = Tt,,, =8 = 1NNy T

JtJ+P j+p.

By the property of the entropy of finite dimensional algebras,

H(Nj) - Ek dj(k)t (k)log tj(k)

]

, -n
: ZK dj(k)t (k) log Bj tj_np(k)

J

n log Bj - Zk dj(k)tj(k) log tj_np(k).

Let m be the largest natural number such that j - np =2 n0 that
= i-n ] i ‘ = ’
is m [ D 0l. Since Zk dj(k)tj(k) 1 and {tj_mp(k),k} . is a

finite set, we have that
lip, H(n;>/j = lim (m/§> log 8= (1/p) logll NN, 11].

Theorem 3. Let O be an automorphism of a hyperfinite II1
factor N which is generated b? a periodic sequence (Nj)jSN of
finite dimensional subalgebras of N. Let P be the period
of (Nj)jSN’ If 0 and (Nj)jeN satisfy the conditions (1) and (2)

in Theoreml, then
ﬂ(e) = (1/p) log‘ll[Nj»Nj+p]|| for large j§.

As an application of this, we have the following result by

Connes~-Stormer.




Corollary 4. Let Sn be the n-shift of the hyperfinite II1

factor, then H(Sn) = log n.

Proof. Let M be the algebra of n X n -matrices. For an

integer j, let

ﬂ=.”®1®”®1®§®1®” (XEM) .

J
Then Sn(xj) = Xy for all xeM and jgZ. For an integer j 2> 0,
let

(UM Ikl < §3'' and N (M, UNy 3

2]
is a periodic sequence which generates

Ny j+1

. Then the sequence (Nj).jSN

the hyperfinite Il, factor N. The period of (Nj)jew is 1 andthe

inclusion matrix [NjﬂNj+1] is the number n for all j 2 0. Hence
,\",// .

we have H(Sn) =/n.

908

}>

For another application of Corollary 3, we shall discuss in the

next section.

3. Some Applications.

" In this section, we shall give some applications of the
preceding results. First, as an application of Theorem 1, we compute
the entropy H(Gl) for the automorphism‘ Gl’due to Pimsngr—Popa in
the case A = 1/4 (only which they did not compute). The
automorphism ék is defined as follows.

~Let. (ei)iel ~be the two sided sequence pf projections

satisfying the axioms;



a) e,e. .18 = A e, for a 8(0,1/4]U{1/4se02n/m;m23),

b) e.,e.= e,e, for li-jl = 2
1 ] J 1

c) the von Neumann algebra P generated by (ei)isz is a
hyperfinite 1, factor

d) tr(wei) = X tr(w) for the trace tr of P if w is a
word on 1 and (ej;j<f).

The automorphism OA of P is defined by Gk(ei) = ei+1. We defin

the sequence (A.) of finite dimensional subalgebras of P whicl

i’ jeN

generates P by

{ej;|j|$j-1)", (M ,ej}".

By By el 2j
Then we proved in [3] that the inclusion data for (Aj)jBN is same

as the data in [7]. In case x = 1/4, the sequence of trace vectors

has beautiful values as follows.

Lemma 4. Let tj be the trace vector for the restriction of

on Aj‘ If X = 1/4, then for all kegN,

t. = (1/4% 3745 5745, ..., 2k+1)745

and

k k

¢ = /45,2745 3745, ... (k+1)745).
Proof. We shall prove it by the induction on K. It is obvious
for k = 1. Assume that Lemma holds for k = m. It is known that

t (j) = (1/4)t2m(j) for j =1,2,...,m+1l. Hence we just have

2m+1

2(m+l)

to show t2(m+1)(m+2) = (2m+3)/4
2Kk : 2k

gt . _ n . :
satisfies d,, (i) = ( . ) ( k-i)+» Wwhere () is the binomial

The dimension vector d2k

symbols with the convention ( 1) = 0. Since Z;d (D)t (i) = 1,



2p+1

we have o = (p+1) = (2p+3)/4 by the equality:

top+1

p+l _ 2(p+1), _ ' p-1 2(p+1), . ,p+l
4 = ( p+1 ) (2p+1) + 22j= ( P ) + 4 o.
Similarly, we have the values for t2k+1'

Theorem 5. Let A = 1/4, then we have;

H(Ql) = log 2.

Proof. We denote 91 by 0. It is easy to check that the

sequence (Aj)jeN and 0 satisfy the condition (1) and (2) in

Theorem 1. Hence H(8) = lim, ., H(Aj)/j. On the other hand,
HCA, ) = -Z50] dzk(j)tZK(j)log ty, (3
= - T dy (Dt (1) (log(2j+1) - 10g4%)
= log 4F - Zidy (1Dt (1) 10£(2i+1),  for k=1,2,...

- _ K _ . : ' ~
Similarly, H(A2k+1) = log4 Zjd2k+1(j)t2k+1(3)log j for all k.

On the other hand,

0 < lﬁmw(I/ZR)Z g Zﬁj)t 2}&j)log (2j+1) £ l%m&1/2k)log(2k+1) = 0

and

2k+1(j) log j = 0.

limkam(1/2k+1)zjd2k+1(j)t

Hence we have



H(@) = 1ip(1/DHHA) = lim, (1/25)10g 47 = log 2.

By applying Corollary 3 to 61 ',we have the following results

by Pimsner-Popa:

Theorem 6. Let x 21/4.,‘Then H(OA) = -(1/2) log .

Proof. Since the inclusion data for the sequence (Aj)jeN is

same as one obtained by Jones [7] ([31), the sequence (Aj)jBN

periodic and the period of it is 2. For a sufficiently large j,

is

the Perron-Frobenius eigen value of the inclusion matrix [Aj*A ]

. j+2
is 1/x if x > 1/4. Hence H(Gl) = -(1/2)log » by Corollary 3.

In [2], we discussed on projection shifts and unitaryi shifts on

the hyperfinite II1 factor which are defined as follows.

Let take an 18(0,1/4]U{(1/4)se02(n/m);m23). Let k be a
positive integer. Then there exists a sequence (pj)jSN of

projection which generates a hyperfinite Illfactor R and satisfies

the followings; for all positive integers i1 and j,

(i) pipj = pjpi if li-jl # k
(ii) P;P;P; = AP if I;le = k

(iii) tr(wp,) = X tr(w) if w 1is an associative word

i

on  {1,P;,Pys+-sPy ;).

The Xx-projection shift o¢ is an *-endomorphism on R defined

by o(p.) =P,
Let S be a subset of N. Let 7 = exp(2ri/n) for some

positive integer n. Then there exists a sequence (ui)iSN of

unitaries which generates the hyperfinite II1 factor R and satisfy

- 1D -



the following conditions;
(i')y u, =1
(ii") ugu, = 14 u,uy if li-jles

(iii') uu, = ujui if li-jl  is not contained in 8.

J
The n-unitary shift p on R 1is a *-endomorphism defined by o(ui)
= ui:"'l‘ ’

Those sequences s(pi)iSN and’ ﬁui)iBN are oxtended to @wo
sided sequences (pi)iel and (ui)ieZ with a similar property as
(i), (ii),(iii) and (i'"),(ii"),(iii') by methods discussed in [2] and
[(41.. Then the endomorphisms og. and p on R are extended
to automorphisms on the‘hyperfinite II1 factor R generated by
(pi)iez or (ui)iSZ‘ The automrphisms of and P are ergodic

because the weak closure of linear span of reduced words (with

respect to the properties (j) and (j') for j =1, ii and iii)

on the products of powers of (pi)iel or (ui)isl is R and
the trace of R has the multiplicative property; tr(xa(y)) =
tr(x)tr(y)  for the reduced words X and y.

Applying the resul;s in soction 2, we can compute the entropy,of
those automorphisms g and p. As projection shifts, all o
for fx, k) are not conjugate to o for (',k')  if (k)
(x*',k'), However, the entropies of o for (A,k) are all
-(1/2) log X. As are all -(1/2) log x. As_unitary shifts, p
for (y,S) are not conjugate to o] for (y';8"') if «(y,S) is not
equal to (y', S'). However, for an example, the entropies of P
for (y,k) are all (1/2)log n , where Y = exp(2ri/n) and k is a

positive integer.
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