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Analytic Subalgebras Associated with Integrable Flows

on von Neumann Algebras
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1. Introduction

Let M -be a von Neumann algebra and let {at}teR be a o-weakly
continuous flow on M; i.e. suppose that {at}teR is a one-parameter
group of *-automorphisms of M and .that for each p in the predual,

M of M and for each x € M, the function of t, p(at(x)), is

*s
continuous on R. In recent years, we have investigated the

structure of the subspace of M, Hm(M,a), which is defined to be
( x € M: p(x,(x)) € H™(R), for all p € M),

where Hw(R) is the classical Hardy space consisting of the boundafy
values of functions bounded analytic in the upper half-plane. As in
{4, 8, etc.], the elements of Hm(M,a) are called analytic with
respect. to {“t}teR and Hm(M,a) itself, is called the analytic
subalgebra of M determined by {x,},.p- Further, as in [41, H (M,
is equal to the set of elements of M such thét Spa(x) c [0, =)
where Spa(x) is the Arveson spectrum of x with respect to {at}tER
(ef. [11, [41).

In this paper, we contribute a partiél answer tb the following



Question. When is Hm(M,a) maximal among the o-weakly closed

subalgebras of M?

For recent years, we have proved the partial answers of this
question (cf. [5, 6, 7, 8, 11, 12, 13, 14, etc.1). In particular,
Muhly and the second author in [8] proved that, if M is a crossed
product determined by a von Neumann algebra N and a o-weakly
continuous flow {Bt}tER on N and if (at}teR is the dual action
of {Bt}tem’ then Hm(M,a) is maximal among the o-weakly closed

o

subalgebras of M if and only if the fixed point algebra M (= N) is

a factor. Recall that, if (at}tER is a dual action, then {at)tER
is integrable in the sense of Connes-Takesaki [2]1. Therefore, our aim

in this note is to prove the following

Theorem. If {at}teR is integrable on M, then the fixed point
algebra Ma is a factor if and only 1if Hw(M,a) is maximal among the

o-weakly closed subalgebras of M.

After finishing this note, we found the paper by Solel in [15]
to study the maxility of Hw(M,a) in the general setting. However, we
believe that our theory is interesting from a point of view of

studying the structure of integrable actions in von Neumann algebras.

2. Preliminaries.
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Let M be a von Neumann algebra on a Hilbert space H and let

{at}teR be a o-weakly continuous flow on M. First, we define the

notion‘of spectral subspaces defined by [1]1. We consider
A(£IX = IR f(ho, odt; x €M, felLl®.

For ll(R), we denote by Z(f) the set {(t € R: f({) = 0}, where

f(t) = fR e—lstf(s)ds. For x € M, we define Spa(x) to be the set
Nz £ e LYR), adi)x = 0

| and, for any closed subset S of R, we define the spectral subspace
M¥(S) to be (x € M: Sp,(x) ¢ §). If S is not closed, then
Ma(S) is defined to be the o-weak closure of the set {(x € M: Spa(x)
c S}. We refer the reader to [lj, [4] and [16]1 for the basic facts
about spectra.

In this note, we write H (M,e) for MY(R,) and Hy(M,@) for
MG(R+O), where R, = [0, ») and R+0'= (0, «), fespectively.

Further, we write Mt for Ma({t}) and note that

MEC() = (x € Moo (x) = el s e Ry.

In particular,'put Ma = Ma({O}).

Let % be the set of all x € M such that there is some y € M
with y = IR at(x*x)dt.' 1f the linear span of R is o-weakly &ense
in M, we shall say that {at}teR is integrable. As in [2, 16]}

note that {at}ték is integrable if and only if IR at(x)dt, X €
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M is a faithful normal semifinite operator valued weight on

+°

M(cf.[161). Then we have the following lemma by [16, 21.4 Corollary],

Lemma 1. If {at)tGR is integrable on M, then M 1is the von

Neumann algebra generated by (M and HQ(M,a) is a o-weakly

t)teR

closed subalgebra of M generated by {Mt}telR .
+

Let M be a von Neumann algebra on a Hilbert space H and let

{ R be a O0-weakly continuous flow on M. Put M = M ® B(LZ(R))

%) e
and let &t = o, ® id. Then we easily have the following proposition

Proposition 2. Keep the notations as above. Then,

(i) for every subset S of R, M(s) = M%s) ® BALZR)).

(ii) The mapping A - A ® B(L?(R)) defines bijective
correspondence between the class of o-weakly closed subspaces of M
and the class of o-weakly closed subspaces of M ® B(LZ(R)) with the
form A @® B(&Z(R>), where A is a o-weakly closed subspace of M.

i 4 M,E) = H M0 ® BALZR)).

Gvy M= M% e BLZR)).

Proof. (i). Since M ® B(lz(R)) consists of all operators x =
(Xij) € B(H ® lZ(R)) with operators Xij € M, we may consider &t(x
= (at(xij))' Thus, we have d(f)x = (a(f)xij). By the definition of
spectra, if «(f)x = 0, then a(f)xij = 0 for all i, j. Thus, if X
€ ﬁ&(S), then xij e M*(s) for all i, j. Hence we have ﬁ&(S) c

M%(s) ® B(iz(R)). Since the converse inclusion is clear, we have (i).

(ii) is clear and, from (i), we have (iii) and (iv). This
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completes the proof.
By Proposition 2, we have the following corollary.

Corollary 3. Keep the notations as above. Then HQ(M,a) is
maximal among the o-weakly closed subalgebras of M if and only if

Hw(ﬁ,ﬁ) is maximal among the o-weakly closed subalgebras of M.

Next, we recall that the crossed product M Na R determined by
M and {at}teR is the von Neumann algebra on the Hilbert space
lz(R, H) generated by the operators na(x), X € M, and x(s), s

€ R, defined by the equations
o . 2 '

(qUr(xX)£X(t) = a_t(x)f(t), f € L°(R, H), t € R,
and

(A(s)£)(t) = £(t-s), £ € L°R, H), t € R.
The automorphism group {at}tGR of M Ma R which is dual to
{at}tek is implemented by the unitary repregentatlon of R, {St}tGR’
defined by the formula

(5,£)(s) = elStrsy, £ e LR, W.

Further, we recall that the double crossed product (M Na R> X& R is

the von Neumann algebra on LZ(R,'LZ(R, H)) generated by the



pperators na(y), y €M ”a R, and wu(s), s € R, defined by the

equations

cSe ) = 6 ey, gel?® LER, W), teR,
and

(u(s)g)(t) = g(t-s), g € L2(R, L3R, W), t € R.

s A - -
The automorphism group {at}tGR of (M Na R> N& R which is dual to
{at}teR 15 implemented by the unitary representation of R, {St}tER’
lefined by the formula
S.er(s) = e 'g(s), g e LR, L5R, W),
For simplicity, we put N = (M Na R> M& R. From the definition of

spectra, we have easily

Lemma 4. Let p Dbe a projection of M Na R. Put na(p) = P

is the reduced von Neumannh algebra of N

A
and B8P = o , where N
lNP P

P A
by P. Then, for every subset S of R, (NP)B (s> = P N*(s) P.

3. Proof of Theorem.

Keep the notations and the assumptions as in §2. Suppose that



{“t}teR is integrable on M. Considering (M ® B(LZ(R)), o ® id},

by Proposition 2 and Corollary 3, we may suppose that Ma is

properly infinite to prove this theorem. By [10, Theorem 4.11], there

a®Ad (p)

exists a projection p in (M & B(Lz(R))) (= M Xa R) such

that
{M ® B(EZCR)), o ® id} = (M ® B(LZ(RS), o ® Ad(p)}p

where {pt}tER is the left regular representation of R on LZ(R)
and Ad{p) is implemented by {pt}tek' Put P = na(p). From the

duality theorem of crossed product, we have

M ® BALZMR)), o ® id} = (N., &
P iNP

where NP is the reducéd von Neumann algebra of N by P. Put Bp =

A
alN That is, there exists an isomorphism ® of M ® B(LZ(R)) onto
P .

NP such that

Then, for any X € N and: f € LI(R), we have

P (X (£)X)

¢(fRf(t)at(X)dt) = fRf(t)¢(at(X))dt

H

IR f(t)Bﬁ(m(X))dt = BP ()@,
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Thus, we have the following

’\4~ p
Propogsition 5. For every subset S of R, o (M*(s)) = (NP)B (8).

Let (M Ma R M& R+ be the o-weakly closed subalgebra generated

by na(M Na Ry and {“(t))tER . As in [8], we call it the analytic
v +

A
crossed products determined by M Na R and (at By 8,

o R @
Proposition 5.11, three spaces H (N,x), HO(N, ) and
(M Na R> A R, coincide. Then, by Lemma 4 and Propositions 2 and 5,

we have

L N o0 A
Proposition 6. (i) ®H (M,&)) = H (N_,8"%) = p 0 (N,a) P.

P’

>

'\/N p v
(ii) O(Ma) = (N )8 = Pna(M Na RpP = na((M Na R)p), where

(M X, R)p is the reduced von Neumann algebra of M Ma R.

To prove Theorem, by Proposition 6, it is sufficient to prove
that (M %, R)  is a factor if and only if H (Np,8P) (= PH(N,&OP)
is maximal among the o-weakly closed subalgebras of NP' Let c(p)
be the central projection of p in M Na R. Then we have (M Na R)p’

= xRy . ’ ' o= Ry’ i
((M o Ry )p and (M Na R) ((M Na RyY”) Since

c(p)’
(M Na R)p is a

c(p)

((M Na R)’)p is isomorphic to ((M ”a R)’)c(p)’

factor if and onl if ‘M X f i
i y i (M o R)C(p) is a factor.

o
Suppose that M i i ' ’ .
PP is a factor, that is, (M Na R>c(p) 15 @

factor. This implies that c¢(p) 1is a minimal projection in the

center 3(M X, Ry of M Xy R. Since &t(c(p)) is a minimal

projection in 3(M X _R) for all t € R, &t(c(p))c(p) = 0 or c(p).



since {&t}teR is o-weakly continuous, &t(c(p)) converges to p
o-weakly as t -» 0. It follows that &t(c(p)) =kC(p) for all t
a neighborhood of 0 and, therefore, for all t € R. Put Q =

na(c(p)). :Then we have

in

pHranHr™ = pcom%ceompyur® = na(&t(c(p))) = % e(p)) = Q.

This implies that Q is in the center 3(N) of N. Since the

reduced von Neumann algebra N is generated by \na((M Na R> )

Q c(p)

and p(t)Q, we have NQ = (M xa R)c(p) XY R, where vy =

and the crossed product (M Na R> X R is

RS 4, R) c(p) ¥

c(p)
considered on the Hilbert space LZ(R, c(p)iz(R, H)). Since

0 Fa)
(M Na R> is a factor, by [8, Theorem 5.21, H (N,x)Q (=

c(p)

© c(p) . . ' :

H (Nq,ﬁ ) is maximal among the o-weakly closed subalgebras of

NQ.
We now prove that HQ(NP,BP) is maximal among the o-weakly

closed subalgebras of NP‘ Let B be a o-weakly closed subalgebra

of NP containing Hm(NP,Bp) properly. We construct the o-weakly

~ A
closed subalgebra B of NQ generated by Hm(N,a)Q and B. Sinc

s QO A ~ ~
B a H (N,o)Q@ clearly, we have B = NQ. It is clear that PBP = B

’ _ - _ © P .
and (NQ)P = NP. Thusf B = NP’ Therefore, H (NP,B ) is maximal

among the o-weakly closed subalgebras of NP .and so Hw(M,a) is
maximal among the a—weakly closed subalgebras'of M.
Convefsely, we suppose that Hm(M,a) is maximal among the

o-weakly closed subalgebras of M, thét is, we suppdse that

HW(NP,BP) is maximal among the o-weakly closed subalgebraé of NP'

e
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Further, suppose that (M Na R)p is not a factor. Let c¢(p) be the
central projection of p in J(M Na R). Put q = tgRAozt(c(p)).

Then &, (a) = a and so n%(q) € 3(N). Putting @ = n%(q), then Ny

is isomorphic to the crossed product (M Na R)q XY R defined by

8% is

~ L]
X = i
(M " R)q and v, ( a'(M xa R)q) in such a way that H (NQ.

carried onto the analytic crossed product (M Na

X R..
IR)q Y o+
If {Yt}tGR is not ergodic on 3(M Na R)q, then there exists g
{v,} ep-invariant projection p; in (M Xy R)q such that 0. < p, ¢
q. Since q 1is the least, {?t}-invariant central projection in

(M Na R)q containing .p, it is clear that 0 PP < P. Put

B=nx (pl)H (NQ,B ) & (q pl)NQ.

Then B is a proper o-weakly closed subalgebra of NQ containing

H”(NQ,BQ) properly. Put B = no(p)Bn™(p). 1f B = H (Np,8°), then

we have
n* (pyn™ (g-p IR M X Ryuct)n®(p) = 0, for all t < O.
o o o
Thus, 7 (p)x (q-pl)u(t)n (p) = 0 for all t < 0 and so
(p—ppl)at(p) = 0 for all t < 0. Since {at}tER is o-weakly
continuous, we have (p-ppl)p = 0 and so p = PP, . This is a
contradiction, Then B # HQ(NP,BP). Similarly, we have B # N_.

P

Therefore B is a properly o-weakly closed Subalgebra of NP

containing Hw(NP.Bp) properly. This is a contradiction.

Consequently, without loss of generality, we may suppose that
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{yt}telR is ergodic on 3(M xa R)q. Then we need the following lemma

as in [8].

Lemma 7. If (M X R)p is not a fgctor and if {Yt}tGR acts
ergodica.ly on the center 3(M Na R)q of (M Na R)q, then there is
a strongly continuous family {et}t<0 of projections in 3(M xa R)q

such that

e

tes = etyt(es), s, t < 0O,

and O é etp S eop é p for some t < O, where eO = s;iém et.

Proof. As in [8, Lemma 5.6], we note that 3(M Na R)q is
nonétomic and that there exists a faithful normal state on 3(M X Ry.

By Cohen’s factorization theorem,
(y(Hrx: £ € LERY, x € 3 g R

is a {v,},p-invariant, o-weakly dense, c*-subalgebra of 3(M X, R)q
on which {Yt}teR is strongly continuous. If @ is the maximal
ideal space of this subalgebra, then there is a continuous
one-parameter group of homeomorphisms, {Tt}tGR’ of Q, and, there
is a nonatomic, quasi-invariant, ergodic, probability measure g on

Q, with supp(a) =, such that

F(Yt(x))(m) = F(X)(Ttm) a.e. ),
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where I is the canonical extension of the Gelfand transform to 'all
of 3J(M X, R)q, mapping isometrically onto L®Q, u). Since

. . . 5
3M Na R)p is isomorphic to 3(M . R»

c(p)’ and, since 3(M xa R)p

is not a factor, there exists a projection e in 3(M Na R)q such

that 0O é ec(p) ; c(p). Then there is a measurable subset E of Q

such that TI'(e) = lE. Since M is regular on §, we may suppose
that E is open in §. As in [8, Lemma 5.61, for each t < 0, put
- ' : - r-1 : -
Et = téggo TSE. I1f we define e, —‘F (lEt), t < 0 and ey =
s-lim €y then 5 < e. Then we obtain the desired property of
t10 -

y .
{et’t<0‘ This completes the proof.

If {Yt}tGR is erg0d1§ on J3(M Na R)q, then, by Lemma 7, there

exists a strongly continuous family, (et}

+<0’ of pro;ectlons‘1n
3M Na R)q such that
et+s = etrt(es), for all s, t < 0O,
and O é etp g eop ; p- for some t < O, where e0 = g-1im et. Let

t10 o
ﬁ deﬁote the o—weak closure of ihe linear span of Hm(NQ,Bq) ~and ;

t<o" Then, as in the proof of [8, Theorem

5.21, B is a properly, o-weakly closed subalgebra of N

{na(et)na(M X Ryp(t):}
o |
Q containing

Hw(NQ,Bq) properly. Put B = n%(p)Bn%(p). If B = H”(NP,BP>, then

n*pin*ce ¥ M, RyucHn® @) = (03 for all t < 0.

and so n“(p)n“(et>u(t>n“<p) = 0 for all t < 0. Thus we have

_12_
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pet&t(p) = 0 for all t < 0. As t T O, pesp = e, p = 0. This is a
contradiction. This implies that B Q Hw(NP,Bp). On the other hand,
if B = NP’ then we have for all t < 0,

o o X . X X X X
% (pin (et)na(M X, Rruct)n®p) = n%mpn®m X, Rructrn* o,
and so, multipling both left side by na(q-et), we have

na(q-et)na(p)na(M X, Ryuct)n®(p) = 0 for all t < 0.
Therefore, we have (q-et)p&t(p) = 0 for all t < 0. As t 1 0,
p-pe, = 0. This contradiction implies that B g NP‘ This implies that
H™ (N

P,Bp) is not maximal among the o0-weakly closed subalgebras of
NP‘ This is a contradiction. Therefore, (M Na R)p is a factor and so
Ma is a factor. This completes the proof of Theorem.
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